STRATEGY IMPROVEMENT ALGORITHM FOR SINGULARLY PERTURBED DISCOUNTED MARKOV DECISION PROCESSES

Abdesselam Elbahja and Aziz Soulhi
National Higher School of Mines, Rabat, Morocco Department Informatique B.P: Morocco
Email: eabdesselam@gmail.com

ABSTRACT
In this paper, we consider a perturbed Markov decision process with the discounted reward criterion. The transition probabilities and discounted factor are perturbed slightly. We assume that the underlying process is completely decomposable in finite number of separate irreducible processes. We introduce the limit Markov control problem which is the optimization problem that should be solved in case of singular perturbations. In order to solve the limit Markov control problem, we propose an aggregation-disaggregation policy improvement algorithm which converges in a finite number of iterations to an optimal deterministic strategy.

Keywords: irreducible matrix, limit Markov control problem, deterministic strategy, policy improvement algorithm.

1. INTRODUCTION
Finite state and action Markov decision process (MDPs for short) are dynamic, stochastic, systems controlled by controller, sometimes referred to as “decision make”. These models have been extensively studied since 1950’s by applied probabilists, operations researchers, and engineers.

Engineers typically refer to these models as “Markov control problems”; and in this paper we shall use these labels interchangeably. The early MDP models were studied by Howard [21] and Blackwell [9] and, following the latter, are sometimes referred to as “Discrete dynamic programming”.

During the 1960’s and 1970’s the theory of classical MDP’s evolved to the extent that there is now a complete existence theory, and a number of good algorithms for computing optimal policies, with respect to criteria such as maximization of limiting average expected output, or the discounted expected output (e.g. see [7], [13], [17], [20], [23]). These models were applied in a variety of contexts, ranging from water resource models, through communication networks, to inventory and maintenance models.

One class of problems that began to be addressed in recent years focused around the following question:
How is the analysis of an MDP model affected by perturbations (typically small) of the problem data?

If the perturbation of a Markov chain alters the argotic structure of that chain, then stationary distribution of the perturbed processes has a discontinuity at the zero value of the disturbance parameter.

This phenomenon was illustrated by Schweitzer [18] with the following example:
Let $P_\epsilon = \begin{bmatrix} 1 - \frac{\epsilon}{2} & \frac{\epsilon}{2} \\ \frac{\epsilon}{2} & 1 - \frac{\epsilon}{2} \end{bmatrix}$ be the perturbed Markov chain whose stationary distribution matrix is:
$P_\epsilon = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix}$ for all $\epsilon \in [0,2]$. Thus we have:

$$\lim_{\epsilon \to 0} P_\epsilon = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \neq P_0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

where P_0 is the stationary distribution matrix of the unperturbed Markov chain P_0.

Some authors [1], [2], [3], [5], [8] considered a singularly perturbed MDP with the limiting average reward criterion.

In this paper we consider a singular perturbation with the discounted expected criterion; we give explicitly the limit Markov control problem (limit MCP) that is entirely different from the original unperturbed MDP, which forms an appropriate asymptotic to a whole family of perturbed problems; thus only the single limit MCP needs to be solved. We construct an aggregation-disaggregation algorithm for solving the limit MCP, which is the main contribution of this paper.

2. DEFINITIONS AND PRELIMINARIES
A discrete Markovian decision process (MDP, for short) is observed at discrete time points $t = 0, 1, 2, \ldots$. The state space is denoted by $S = \{1, 2, \ldots, N\}$. With each state $s \in S$ we associate a finite action set $A(s) = \{1, 2, \ldots, m(s)\}$. At any time point t, the process is in one of the states s and the controller chooses an action $a \in A(s)$; as a result the following occur: i) an immediate reward $r(s, a)$ is accrued, and ii) the process moves to state $s' \in S$ with transition probability $P(s'/s, a)$, where $p(s'/s, a) \geq 0$ and $\sum_{s' \in S} p(s'/s, a) = 1$.

Henceforth, such an MDP will be synonymous with the four-uple:
$$\Gamma = (S, A(s), r(s, a), \mathbb{S}, \mathbb{A})$$

While a general control state in Γ may depend on the complete state-action histories of the process, in this paper we shall concern ourselves only with the class \mathbb{S} of all stationary strategies. A stationary strategy $\pi \in \mathbb{F}_\mathbb{S}$ is the vector: $\pi = \{p(s, a)\}$. The value of the limit problem can be expressed in terms of the stationary strategy π as:
$$V^\pi = \mathbb{E}_{\Gamma}[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t)]$$

where \mathbb{E}_{Γ} is the expectation under the stationary strategy π.
\[\sum_{a \in A(s)} \pi(s, a) = 1 \] for all s.

A strategy \(\pi \in F_1 \) will be called deterministic if \(\pi(s, a) \in \{0, 1\} \) for all \((s, a) \in S \times A(s)\).

With every \(\pi \in F_s \), we associate the following quantities:
\[r(\pi) = (r_1(\pi), \ldots, r_N(\pi))^T \]
the vector of single stage expected rewards in which
\[r_n(\pi) = \sum_{a \in A(s)} \pi(s, a) r(s, a) \quad \text{for each } s \in S; \]
\(A \) Markov matrix \(P(\pi) = (P_{s's'}(\pi))_{s', s' \in S} \),
where
\[P_{s's'}(\pi) := \sum_{a \in A(s)} P(s' \mid s, a) \pi(s, a) \]
for all \(s, s' \in S; \) the generator of the corresponding Markov chain, namely, the matrix \(G(\pi) := P(\pi) - I; \) the corresponding Cesaro-limit matrix is defined by:
\[P^*(\pi) := [P_{s's'}^*(\pi)]_{s', s' \in S} = \lim_{t \to +\infty} \frac{1}{t+1} \sum_{k=0}^t P^k(\pi), \]
where \(P^0(\pi) := I_n \), an \(N \times N \) identity matrix.

The classical discount expected Markov decision problem is the optimization problem:

\[
\text{Find } \pi^* \in F_s \text{ such that: } V_\beta(s, \pi^*) \geq V_\beta(s, \pi) \quad \forall \pi \in F, \forall s \in S \quad (1.1).
\]

where \(V_\beta(s, \pi) = \sum_{t=0}^{\infty} \beta^t E_s \pi(R_t); \beta \in [0, 1] \) is the discounted factor, \(R_t \) is the random variable which presents the reward at time \(t \), and \(E_s \pi(R_t) \) is the expected reward at time \(t \) when the process begins at state \(s \) and the controller uses the strategy \(\pi \).

The following theorem is well known (eg. see [15], [22]).

Theorem (1.1)
\[V^*_\beta = \max_{\pi \in F_s} V_\beta(\pi) \text{ exists and } V^*_\beta = \max_{\pi \in F_s} [r(\pi) + \beta P(\pi)V^*_\beta]; \text{ where } V_\beta(\pi) = V_\beta(s, \pi)^T_{s \in S}. \]

Remark (1.1)

Let \(\beta = \frac{1}{1+\lambda}, \lambda > 0; \) and \(V_\lambda(\pi) = (1 - \beta) V_\beta(\pi) \).

Then:

a) \[V_\lambda(\pi) = \lambda [(1 + \lambda)^{-1} \sum_{m=0}^{\infty} (1 + \lambda)^{-m} p^m(\pi) r(\pi)] = \lambda(1 + \lambda)^{-1} \left[I_n - (1 + \lambda)^{-1} P(\pi) \right]^{-1} r(\pi) \]
b) \[V_\lambda^* := \max_{\pi \in F_s} V_\lambda(\pi) = (1 - \beta) \max_{\pi \in F_s} V_\beta(\pi) \]

\[u_j = \begin{cases} 1 & \text{if } \sum_{k=1}^{s-1} n_k < s \leq \sum_{k=1}^{s} n_k \quad \text{for } s = 1, 2, ..., N \text{ and } j = 1, 2, ..., n; \\ 0 & \text{otherwise} \end{cases} \]

and \(M(\pi) \) is an \(n \times N \) matrix with entries:

\[m_jk(\pi) = \begin{cases} [p_j(\pi)]s & \text{if } \sum_{k=1}^{s-1} n_k < s \leq \sum_{k=1}^{s} n_k \text{ of } j = 1, 2, ..., n \text{ and } s = 1, 2, ..., N. \\ 0 & \text{otherwise} \end{cases} \]

Of course we set \(\sum_{k=1}^{0} n_k := 0 \). Note also that from the above definitions we conclude that:
\[M(\pi) E = I_n. \]

\[\lim_{\lambda \to 0} V_\lambda(\pi) = P^*(\pi) r(\pi). \]

From theorem (1.1) and part (ii) of remark 1.1, we can get the following result:

Proposition (1.1) \(V^*_\lambda \) satisfies the optimality equation:
\[\lambda V^*_\lambda + \max_{\pi \in F_s} \{G(\pi)V^*_\lambda + \lambda r(\pi)\} = 0. \]

A strategy \(\pi^* \) satisfying the equation above will be called optimal. It is well known that there always exist an optimal deterministic strategy and there is a number of finite algorithms for its computation (eg. [15], [22]).

In this paper, we shall assume the following:

A1) \(S = \bigcup_{i=1}^{n} S_i \), where \(S_i \cap S_j = \emptyset \) if \(i \neq j, n > 1 \) card \(S_i = n_i, \sum n_i + n_2 + ... + n_n = N \)

A2) \(P(s' \mid s, a) = 0 \), whenever \(s \in S_i, s' \in S_j, i \neq j \) and \(a \in A(s) \)

Consequently we can think of \(\Gamma \) as being the union of \(n \) smaller MDP’s \(\Gamma_i \), defined on the state space \(S_i \) for each \(i = 1, 2, ..., n \), respectively. Note that if \(F_i \) is the space of stationary strategies in \(\Gamma_i \), then a strategy \(\pi \in F_i \) in \(\Gamma \) can be written in the natural way as \(\pi = (\pi^1, \pi^2, ..., \pi^n) \) where \(\pi^i \in F_i \).

The probability transition matrix in \(\Gamma_i \) corresponding to \(\pi^i \) is of course defined by:
\[P_i(\pi^i) = (P_{s's'}^i(\pi^i))_{s', s' \in S_i}; \text{ and the generator } G_i(\pi^i) \text{ and the Cesaro-limit matrix } P^*_i(\pi^i) \text{ can be defined in manner analogous to that in the original process } \Gamma. \]

In addition, we assume the following:

A3) For every \(i = 1, ..., n \) and for all strategy \(\pi^i \in F_i \), the matrix \(F_i(\pi^i) \) is an irreducible matrix.

In view of the A3) \(P^*_i(\pi^i) \) is the matrix with identical rows. We shall denote any row of \(P^*_i(\pi^i) \) by \(p_i^* \).

Remark (1.2)

Note that for all \(\pi \in F_i \), we have the following representation of \(P^*(\pi^i) = EM(\pi^i) \) where \(E \) is an \(N \times n \) matrix with entries:

\[[p_j(\pi)]s \]
3. PERTURBATIONS

In order to analyse the perturbed Markov control problem, we must first understand the uncontrolled case that is equivalent to the controller having only a single strategy at his disposal. This sub-topic is sometimes called the perturbation theory of Markov chain (M.Cs.) and is of interest in its own right.

In what follows, we concentrate only on a specially structured case has received the most attention in the literature. A nearly decomposable M.C is defined by an \(N \times N \) irreducible transition probability matrix \(P(\varepsilon) \), \(P(\varepsilon) = P + \varepsilon D; \) where

\[
\begin{pmatrix}
P_1 & 0 & \ldots & 0 \\
0 & P_2 & \ldots & 0 \\
\vdots & \ldots & \ldots & \vdots \\
0 & 0 & \ldots & P_n
\end{pmatrix}
\]

And \(P_i \) is an \(n_i \times n_i \) irreducible transition probability matrix \(i = 1, 2, \ldots, n \).

This class arises naturally in many applications of large scale finite state Markov chains. It is characterized by a decomposition of the states into groups, with strong interactions between states in the same groups, and weak interactions between states in different groups.

The strong-weak interaction structure was first introduced by Simon and Ando [24]. Courtois [10] developed the first analytical techniques for this class, and applied it to many problems in queuing networks and computer systems.

The fundamental problem to be analyzed for this class of M.C is the computation of the stationary distribution. This problem suffers from high dimensionality and ill conditioning. Courtois gave an aggregation procedure for the computation of an \(\mathcal{O}(\varepsilon) \) - approximation of the stationary distribution of \(P(\varepsilon) \). But it can be easily checked that Courtois’s procedure will fail in many cases where the nearly decomposable structure is no longer present. This points to the need to develop an analogous theory for the more general perturbed M.Cs.

In this section we introduce the formulation and some results of the underlying control problem for the singularly perturbed MDP; the so called “limit Markov control problem” (Limit MCP). In particular, we prove that an optimal solution to the perturbed MDP can be approximated by an optimal solution to the limit MCP for perturbed slightly.

Towards this goal we shall define the disturbance law as the set:

\[
D = \{ d(s'/s, a)(s, a, s') \in \mathcal{S} \times \mathcal{A}(s) \times \mathcal{S} \} \text{ where the elements of } D \text{ satisfy:}
\]

\[
\sum_{s' \in \mathcal{S}} d(s'/s, a) = 0
\]

(1)

(for all \((s, a) \in \mathcal{S} \times \mathcal{A}(s) \))

In the limit MCP, \(\lim_{\varepsilon \to 0} \mathcal{F}(\varepsilon) \mathcal{G}(\varepsilon) \) is of exponential decay. This points to the need to develop an analogous theory for the more general perturbed M.C.

Let \(P^\varepsilon(s'/ s, a) = p(s'/ s, a) + \varepsilon d(s'/ s, a) \).

We have that every \(\pi \in \mathcal{P}_I \) induces in the perturbed process \(\mathcal{F}_\varepsilon \) the Markov chain with the probability transition matrix \(P^\varepsilon(\pi) = \mathcal{G}_\varepsilon(\pi) + I_n \).

(SPA) Singular perturbation assumption

For every \(\pi \in \mathcal{P}_I \text{ and } \varepsilon \in (0, \varepsilon_0) \), \(P^\varepsilon(\pi) \) is an irreducible matrix.

Under (SPA), the MDP \(\mathcal{F}_\varepsilon \), \(\varepsilon \in (0, \varepsilon_0) \), defined as:

\[
\mathcal{F}_\varepsilon = \{ \mathcal{F}(s, A(s), s) \; \varepsilon \in \mathcal{F}(s, A(s)) \}
\]

\(\mathcal{A}(s) \) is an \(\mathcal{A}(s) \) - irreducible matrix.

Under (SPA), the MDP \(\mathcal{F}_\varepsilon \), \(\varepsilon \in (0, \varepsilon_0) \), defined as:

\[
\mathcal{F}_\varepsilon = \{ \mathcal{F}(s, A(s), s) \; \varepsilon \in \mathcal{F}(s, A(s)) \}
\]

\(\mathcal{A}(s) \) is an \(\mathcal{A}(s) \) - irreducible matrix.

Now, in the perturbed discounted problem \(\mathcal{F}_\varepsilon \), for every stationary strategy \(\pi \), we have that:

\[
V_{\lambda}(\varepsilon) = V_{\mu}(\varepsilon) = \frac{\mu e(1 + \mu)}{1 - m e P^m(\pi)} r(\pi).
\]

Set \(V_{\lambda}(\varepsilon) = V_{\mu}(\varepsilon) \), then:

\[
V_{\lambda}(\varepsilon) = \mu e(1 + \mu) r(\pi) = 1 + \mu e r(\pi).
\]

The optimality equation in proposition (1.1) becomes:

\[
-\varepsilon \mu V^\varepsilon(s) + \max_{\pi \in \mathcal{P}_I} \{ [G_{\varepsilon}(\pi)] V^\varepsilon(s) + \mu e r(\pi) \} = 0 \text{ for all } s \in \mathcal{S} \text{ [2.3]}
\]
In Philips and Kokotovic [19], the authors came up with equation [2.3]. They proposed an algorithm for solving equation [2.3].

In [19], the authors considered the continuous M.C model:

$$\frac{dp}{dt} = p(G + \epsilon D)$$ \hspace{1cm} (1)

where I + G+\epsilon D is a nearly decomposable M.C, and p is the N-dimensional row vector whose entries are probabilities p_i of being in state i at time t.

In order to analyze the influence of weak interactions \epsilon D, the authors considered the change time scale to t: = \epsilon t. Therefore, in the t-scale model (1) becomes:

$$\frac{dp}{dt} = p\left(\frac{G}{\epsilon} + D\right)$$

In the discrete time, the model (2) has the analog:

$$p(k+1) = p(k) \left(\frac{G}{\epsilon} + I + D\right)$$

It is well known (e.g. see [2.3], also, Delebecque and Quadrat [12]) that the optimality equation with respect to the discounted reward criterion for the model described above is:

$$J^*_\epsilon = \max_{\pi \in \mathcal{P}_D} \left\{\alpha \left(\frac{G(\pi)}{\epsilon} + D(\pi) + I\right) J^*_\epsilon + r(\pi)\right\}. \hspace{1cm} (4)$$

Note that (4) is similar to [2.3]. Also, Delebecque and Quadrat [12] came up with equation [2.3] and they proposed another algorithm.

In this paper, our main objective is to solve equation [2.3] for small \epsilon, by using the methods developed in [5], [8]. Using similar techniques, Abbad and Kissai [4] found an algorithm for solving [2.3] which is based on linear programming.

For each \pi \in F_S, let us define the n x n matrix \bar{B}(\pi) by:

$$\bar{B}(\pi) = M(\pi)D(\pi) + \bar{P}(\pi) = \bar{B}(\pi) + 1_n.$$ \hspace{1cm} (5)

Note that B(\pi) is a generator of an aggregated M.C on state space \{1, 2, ..., n\} with the transition probability matrix P(\pi).

Definition 2.1

For every \pi \in F_S we define:

$$\bar{V}(i, \pi) = \mu(1 + \mu)^{-1}\left\{1 - (1 + \mu)^{-1}\bar{P}(\pi)\right\} r(\pi), \text{ for all } \pi \in F_S,$$

$$\bar{V}(s, \pi) = E\bar{V}(i, \pi) \text{ for all } s \in S.$$ \hspace{1cm} (6)

Proposition 2.1

For all strategy \pi \in F_S, we have: \lim_{\epsilon \rightarrow 0} V(\pi) = \bar{V}(\pi) + O(\epsilon)

Proof: (see [12]).

Remark 2.2

$$\lim_{\epsilon \rightarrow 0} V(\pi) = \bar{V}(\pi) \text{ for all } s \in S, \text{ and } \pi \in F_S$$

4. LIMIT MARKOV CONTROL PROBLEM

Definition 3.1

The optimization problem: \(V'(s) = \max_{\pi \in F_S} V'(s, \pi);\) \(s \in S\) [L] is called limit Markov control problem.

The problem: \(V^*(i) = \max_{\pi \in F_S} V(i, \pi); i \in \{1, 2, ..., n\}\) [AL] is called the aggregated limit Markov problem.

Remark 3.1

We have that: \(\bar{V}(s, \pi) = \bar{V}(i, \pi)\) for all \(s \in S, \text{ and } \pi \in F_S\).

It follows that any optimal strategy for [AL] is also an optimal strategy for [L] and vice-versa.

Proposition 3.1

$$V^*_\epsilon = \bar{V}^* + O(\epsilon)$$

Proof: (see [6]).

Remark 3.2

By proposition 3.1 we have that:

$$\lim_{\epsilon \rightarrow 0} V^*_\epsilon(s) = \bar{V}^*(s), \text{ for all } s \in S.$$ \hspace{1cm} (7)

Proposition 3.2

There exists a deterministic strategy \(f \in F_D\) such that:

We have that: \(\bar{V}(s, \pi) \leq \bar{V}(s, f)\) for all \(s \in S, \text{ and } \pi \in F_S\).

Proof:

Let \(\epsilon_n\)\(\rightarrow 0\) be any sequence in \((0, \epsilon_0]\) which converges to 0. From Markov decision theory we have that for any \(n\) there exists \(f_n \in F_D\) such that:

$$V_n(s, \pi) \leq V_n(s, f_n) \text{ for each } s \in S, \pi \in F_S.$$ \hspace{1cm} (8)

Since \(\epsilon_n \rightarrow 0\) and \(F_D\) is finite, there must exist a deterministic strategy \(f \in F_D\) and subsequence \(\epsilon_{n_k}\)\(\rightarrow 0\) of the sequence \(\epsilon_n\)\(\rightarrow 0\) such that:

$$V_{n_k}(s, \pi) \leq V_{n_k}(s, f) \text{ for each } k \in N^*, s \in S, \pi \in F_S.$$ \hspace{1cm} (9)

From proposition 2.1, it follows that for all \(s \in S, \pi \in F_S:\)

$$\bar{V}(s, \pi) = \lim_{\epsilon \rightarrow 0} V_{\epsilon}(s, \pi) = \lim_{k \rightarrow +\infty} V_{n_k}(s, \pi).$$

Therefore \(\bar{V}(s, \pi) \leq \bar{V}(s, f)\), for each \(s \in S, \pi \in F_S\).

In view of proposition (3.2) we conclude that the problem [L] can be restricted to the optimization problem [L']:

$$\max \bar{V}(\pi); \text{ and any optimal strategy for [L'] is also optimal for [L].}$$
Theorem 3.1
There exists deterministic strategy \(f^0 \in F_D \) and a number \(\delta > 0 \) such that for all \(\epsilon \in]0, \delta[\), \(f^0 \) is optimal for \(\Gamma_\epsilon \). Moreover \(f^0 \) is optimal for \([L] \).

Proof:
From Markov decision theory, for any \(\epsilon \in]0, \epsilon_0[\), there exists an optimal deterministic strategy \(f^0 \in F_D \) for the problem \(\Gamma_\epsilon \).

Since the class \(F_D \) is finite there exists a deterministic strategy \(f^0 \) and a sequence \((\epsilon_n)_{n=1}^{\infty} \) in \(]0, \epsilon_0[\) which converges to 0 such that \(f^0 \) is an optimal strategy in \(\Gamma_{\epsilon_n} \) for all \(n \in \mathbb{N}^* \).

For a fixed \(f \) in \(F_D \) and \(s \in S \), we have that:
\[
V_{\epsilon_n}(s, f^0) \geq V_{\epsilon_n}(s, f); n \in \mathbb{N}^*.
\]

From the fact that \(V_{\epsilon_n}(s, f^0) \) and \(V_{\epsilon_n}(s, f) \) are rational functions of \(\epsilon \), there exists \(\epsilon(s, f) \) in \(]0, \epsilon_0[\) such:
For all \(\epsilon \in]0, \epsilon_0[\), \(V_{\epsilon_n}(s, f^0) \geq V_{\epsilon_n}(s, f) \).

Define \(\epsilon = \min \{ \epsilon(s, f), \epsilon(s, f_0) \} \) for all \(s \in S \) and \(f \in F_D \).

This proves the first part of the theorem.

For the second part let \(\epsilon \to 0 \), then Remark 2.2 implies that:
\[
\hat{V}(f^0) \geq \hat{V}(f) \text{ for all } f \text{ in } F_D.
\]

Corollary 3.1 (limit control principle)
Let \(\pi^s \in F_D \) be any optimal strategy in \([L] \), then for all \(\beta > 0 \) there exists \(\epsilon_0 \) such that for all \(\epsilon \in]0, \epsilon_0[\), \(\epsilon \in]0, \epsilon_0[\):
\[
|V_{\epsilon}(s, \pi^s) - V_{\epsilon}(s, \pi_0^s)| < \beta \text{ for all } s \in S
\]

Proof:
Let \(\epsilon \) be any number in \(]0, \delta[\), in view of theorem 3.1, for all \(s \) in \(S \) we have that:
\[
|V_{\epsilon}(s, \pi^s) - V_{\epsilon}(s, \pi^s)| = |V_{\epsilon}(s, \pi^s) - \hat{V}(s, \pi^s) + \hat{V}(s, \pi^s) - V_{\epsilon}(s, \pi^s)| < \beta
\]
where \(f^0 \) is as in theorem 3.1. Since \(V_{\epsilon}(s, \pi^s) = V_{\epsilon}(f^0, s) \), we shall write:
\[
|V_{\epsilon}(s, \pi^s) - V_{\epsilon}(s, \pi^s)| \leq |V_{\epsilon}(s, \pi^s) - \hat{V}(s, \pi^s)| + |\hat{V}(s, f^0) - V_{\epsilon}(s, f^0)|
\]

In view of \(\lim_{\epsilon \to 0} V_{\epsilon} = \hat{V} \); then for all \(\beta > 0 \) there exists \(\epsilon_0 \) such that:
\[
|V_{\epsilon}(s, \pi^s) - \hat{V}(s, \pi^s)| < \beta/2 \text{ et } |\hat{V}(s, f^0) - V_{\epsilon}(s, f^0)| < \beta/2 \text{ for all } s \in S.
\]

The next result shows that remark 3.2 can be proved without using proposition 3.1.

Theorem 3.2
\[
\lim_{\epsilon \to 0^+} V_{\epsilon}^* = \hat{V}^*.
\]

Proof:
\[
\hat{V}^* = \max_{f \in F_D} \hat{V}(f) \text{ (by definition 2.3.1)}
\]
\[
= \hat{V}(f^0) \text{ (by theorem 3.1)}
\]
\[
= \lim_{\epsilon \to 0^+} V_{\epsilon}(f^0) \text{ (by remark 2.2)}
\]
\[
= \lim_{\epsilon \to 0^+} V_{\epsilon}^* \text{ (by theorem 3.1)}.
\]

5. AGGREGATED PROBLEMS AND POLICY IMPROVEMENT ALGORITHM

In section 3, we proved that the limit M.C.P. (L):
\[
\max_{\pi \in F_S} \hat{V}(\pi) \text{ where } \hat{V}(\pi) = \lim_{\epsilon \to 0^+} V_{\epsilon}(\pi) \text{ can be converted to an equivalent aggregated problem:}
\]
\[
\max_{\pi \in F_S} \bar{V}(\pi) \text{ where } \bar{V}(\pi) = \mu(1 + \mu)^{-1}[I_\pi - (1 + \mu)^{-1}\bar{P}(\pi)]^{-1} \bar{r}(\pi).
\]

The vector \(\bar{V}(\pi) \) in (4.0) can be considered as the reward of the strategy \(\pi \) is some M.C.P. \(\bar{F} \) that we shall define as follows:

a) the state space of \(\bar{F} \) is \(\bar{S} = \{1, 2, 3, ..., n\}, (i \equiv S_i) \),
b) the action space of \(\bar{F} \) is \(\bar{A}(i) \) for each \(i \in \bar{S} \),
c) the transition law of \(\bar{F} \) is: for all \(i, j \in \bar{S} \), \(a \in \bar{A}(i) \),
d) the rewards for \(\bar{F} \) : for all \(i \in \bar{S}, a \in \bar{A}(i), \) where \(a = (a_s/s \in S_i) \)
\[
c(i, a) = \sum_{s \in S_i}(p_{\epsilon}(a))r(s, a_s).
\]

Remark 4.1
For all \(i \in \bar{S}, \) action \(a \in \bar{A}(i) \) defines a deterministic strategy in \(\bar{F} \), which takes actions \(a_i \) in state \(s \in S_i \). If \(\bar{F} \) is a deterministic strategy in \(\bar{F} \) and \(\pi \) its corresponding deterministic strategy in \(\bar{F} \), then \(\bar{V}(\pi) = \mu(1 + \mu)^{-1}\bar{P}(\pi) \), \(\bar{V}_\mu(\bar{F}) \) is the reward for the strategy \(\bar{F} \) in the aggregated problem \(\bar{F} \) with the discounted criterion (discounted factor is \(1/(1+\mu) \)).

Since problem (AL) and (\(\bar{E} \)) are equivalent, we shall solve the problem (\(\bar{E} \)): \(\max_{\bar{F}_\mu} \bar{V}_\mu(\bar{F}) \).

We know that the problem (\(\bar{E} \)) admits an optimal solution (proposition 3.2 and remark 3.1). From the policy improvement algorithm (eg. see [15]):

Algorithm 1
Step 1: Select an arbitrary deterministic strategy \(\bar{F} \) and compute:
\[
\bar{V}_\mu(\bar{F}) = [I_n - \frac{1}{1+\mu} Q(\bar{F})]^{-1} C(\bar{F}),
\]
where \(C(\pi) = (c(i, \pi(i)) \mid i \in \bar{S})\).

Step 2: For all \(i \in \{1, 2, \ldots, n\} = \bar{S}\), find \(a \in \bar{A}(i)\) that satisfies:
\[
\begin{align*}
&[c(i, a) + \beta \sum_{j \in S} q(j / i, a) \bar{V}_\mu(j, \pi)] > \bar{V}_\mu(i, \pi) \quad \text{where} \\
&\beta = \frac{1}{\mu} \text{ and } \bar{V}_\mu(\pi) = (\bar{V}_\mu(i, \pi))_{i \in \bar{S}}.
\end{align*}
\]

Step 3: Let \(\bar{\pi}_1(i)\) be the deterministic strategy defined by: for all \(i \in \bar{S},\)
\[
\bar{\pi}_1(i) = \begin{cases}
 a & \text{if } a \text{ exists} \\
 \pi(i) & \text{if } a \text{ does not exist.}
\end{cases}
\]

Step 4: If \(\bar{\pi}_1 = \pi\), then \(\pi\) is optimal (stop).

Step 5: \(\bar{\pi}_1(i) \rightarrow \bar{\pi}(i), i = 1, 2, \ldots, n\) and go to step 1.

We shall now develop the fundamental steps of algorithm 1.

Step 1:
We select an arbitrary deterministic strategy \(\pi \in \bar{\Gamma}\) and compute:
\[
q_{ij}(\pi) := q(j / i, \pi(i)) \text{ for } i, j \in \bar{S} \quad \text{and} \quad Q(\pi) = (q_{ij}(\pi))_{i=1, \ldots, n}, j = 1, \ldots, n.
\]

Remark 4.2
If \(\pi \in \bar{\Gamma}\), then the corresponding deterministic strategy \(\bar{\pi}\) in \(\Gamma\) is defined by:
\[
\pi(s) = [\bar{\pi}(i)], s \in S, \text{ and } \pi(i) \in \bar{S}.
\]

Remark 4.3
In \(q_{ij}(\pi)\) and \(C(\pi)\) we can compute \((p_i^*(\pi(i)))\). For computing \((p_i^*(\pi(i)))\); \(i \in \bar{S}\), we can apply the following algorithm [eg.see 15] in which \(P_i(\pi(i))\) is irreducible for each \(i \in \bar{S}\).

Algorithm 2 (for computing \(p_i^*(\pi(i)), i \in \bar{S}\)).

1. Solve the (steady-state equations)
\[
x_i^* = \sum_{s \in S_i} x_s^* P_{s \rightarrow i} \pi(s), \quad s \in S_i, x_0 = (1, 1, \ldots, 1)\text{, } \sum_{s \in S_i} x_i^* = 1
\]
2. Vector \(p_i^*(\pi(i))\) is given by \(p_i^*(\pi(i)) = x_i^*, s \in S_i\).

Then compute
\[
I_n - \frac{1}{\mu + \beta} Q(\pi)^{-1} C(\pi).
\]

Step 2:
Now, we shall show that for each \(i = 1, 2, \ldots, n\) the problem in step 2 can be converted to one iteration of the policy improvement algorithm for some MDP defined by \(\Gamma_i\), except for the reward which will be defined appropriately.

For every \(i \in \bar{S}\) and \(a \in \bar{A}(i)\) we have that:
\[
\begin{align*}
&[c(i, a) + \beta \sum_{j \in S} q(j / i, a) \bar{V} \mu(j, \pi)] = \sum_{s \in S_i} p_i^*(\pi(i), s) r(s, a) + \sum_{s \in S_i} \sum_{j \in S} p_i^*(\pi(i), a) d(s' / s, a, \bar{V} \mu(j, \pi)) \\
&+ \sum_{s \in S_i} \sum_{j \in S} p_i^*(\pi(i), a) d(s' / s, a, \bar{V} \mu(j, \pi)) \\
&= \beta \bar{V} \mu(i, \pi) + \sum_{s \in S_i} p_i^*(\pi(i), s) (r(s, a) + \beta \sum_{j \in S} d(s' / s, a, \bar{V} \mu(j, \pi))).
\end{align*}
\]

We can consider that:
\[
r(s, a) + \beta \sum_{j \in S} d(s' / s, a, \bar{V} \mu(j, \pi)) \text{ is some reward in } \Gamma_i, \text{ which results from the choice of action } a, \text{ if the process is in state } s.
\]

If we set:
\[
\bar{c}_i(s, a) = r(s, a) + \beta \sum_{j \in S} d(s' / s, a, \bar{V} \mu(j, \pi));
\]

then:
\[
c(i, a) + \beta \sum_{j \in S} q(j / i, a) \bar{V} \mu(j, \pi) = \beta \bar{V} \mu(i, \pi) + (p_i^*(\pi(i)))^T, \quad (4.2)
\]

where \(\bar{c}_i(s, a)\) is the value of the strategy \(a\) in \(s \in S_i\), in the irreducible MDP \(\Gamma_i\) in which the rewards are defined by \(\bar{c}_i\).

From (4.1) and (4.2), it follows that the problem defined in step 2 of Algorithm 1 is similar to:
\[
\beta \bar{V} \mu(i, \pi) + (p_i^*(\pi(i)))^T > \beta \bar{V} \mu(i, \pi) + (p_i^*(\pi(i)))^T.
\]

Hence, the problem is to find an action \(a\) such that:
\[
p_i^*(\pi(i)) > (p_i^*(\pi(i)))^T, \quad (4.3)
\]

It can be seen that the problem in (4.3) can be solved by one iteration of policy improvement algorithm (the initial strategy is \(\bar{\pi}(i)\)) to irreducible MDP \(\Gamma_i\) in which the rewards are defined by \(\bar{c}_i\).

We may now state the following algorithm for searching an action \(a \in \bar{A}(i), \in \bar{S} \text{, of step 2 in Algorithm 1.}

Algorithm 3

a) Fix \(i \in \bar{S}\) and \(\bar{\pi}(i)\).

b) Compute \(\lambda, \gamma \in R^{|S_i|}\), solution of the linear system:
\[
\lambda e + y = \bar{c}_i(\bar{\pi}(i)) + P_i(\bar{\pi}(i)) y \text{ with } y_{y_i = 0} \text{ where } y = (y_1, y_2, \ldots, y_{|S_i|}) \in R^{|S_i|} \text{ and } e = (1, 1, \ldots, 1) \in R^{|S_i|} \text{ and } P_i(\bar{\pi}(i)) = [p_{s \rightarrow s'}(\bar{\pi}(i))]_{s, s' \in S_i}.
\]

c) Find for each \(s \in S_i\), an action \(a_s\) in \(A(s)\) such that:
\[
(\bar{c}_i(s, a_s) + \sum_{s' \in S_i} p_{s \rightarrow s'}(\bar{\pi}(i), a_s)) y_{s'} > (\lambda + \gamma).
\]

If \(a_s\) does not exist, for every \(s\) de \(S_i\), then (stop) , otherwise go to e)

e) Choose \(\bar{\pi}(i)\) deterministic such that:
\[
\bar{\pi}(i) = a_s \text{ if } a_s \text{ exists and } \bar{\pi}(i) = \bar{\pi}(i) \text{ if } a_s \text{ does not exist; (see } S).
\]

h) Let \(a_s = (\bar{\pi}(i)) (s)\)

From the previous results, our aggregation-disaggregation algorithm for solving the limit M.C problem (L) is stated as follows:
Step 1: Select an arbitrary deterministic strategy \(\pi \in \Gamma \), the corresponding strategy \(\overline{\pi} \in \overline{\Gamma} \) is defined by: \(\pi(i) = \pi(s) \), \(s \in S \), \(s \in S \).

Step 2: Apply Algorithm 2 to compute \(p_i^s(\pi(i)) \), \(s \in S \).

Step 3: Compute: \(C(\overline{\pi}) = (c(1, \overline{\pi}(i)))_{i \in S} \) and \(Q(\overline{\pi}) = [q(1/i, \overline{\pi}(i))]_{i \in S} \).

Step 4: Compute: \(V_n(\overline{\pi}) = \left[I_n - \frac{1}{1+\mu} Q(\overline{\pi}) \right]^{-1} C(\overline{\pi}) \).

Step 5: For each \(i \in S \) and for \(\pi(i) \), apply Algorithm 3 for searching an action \(a \in \Lambda (i) \).

Step 6: Define the strategy: for all \(i \in S \), \(\pi_1(i) = \begin{cases} a & \text{if } a \text{ exists} \\ (\overline{\pi}(i)) & \text{if } a \text{ does not exist.} \end{cases} \)

Step 7: If \(\pi_1 = \overline{\pi} \), then \(\overline{\pi} \) is optimal (stop), otherwise set \(\overline{\pi} := \pi_1 \), and go to step 2.

REFERENCES

