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ABSTRACT 

Like an earthquake, sinkhole subsidence can strike with little or no warning and can result in damage to 

infrastructure and loss of human life without admonition. Sinkhole subsidence is sudden and abrupt fall of the surface into 

the void created due to mining activity. It cannot stop, but can be controlled in different ways where complete strata 

deformation may be dangerous or costly effects. In recent years at South Eastern Coalfields Limited (SECL) several 

sinkholes have been reported and to study the various influencing parameters which triggering the sinkhole, this study has 

taken up. The parameters which are causing to sinkhole have been collected & compiled based on parametric analysis to 

this parameters model was developed in Artificial Neural Network (ANN) by using EasyNN-plus software for sinkhole 

depth prediction. The same developed model has been validated by randomly selected four different mines with model 

results matching to ± 10 % of error. 

 
Keywords: underground coal mining, sinkhole subsidence, artificial neural network. 

 

1. INTRODUCTION 

The underground extraction of minerals leads to 

deformations on the surface which can be further 

classified into trough and sinkhole subsidence. The 

subsidence may either be deep or shallow and accordingly 

it is called as trough and sinkhole subsidence respectively 

(Figure-1). When the overlying strata suddenly collapse, it 

leads to an unexpected formation of an underground 

cavity. This mechanism usually leads to the sinkhole 

subsidence. (Lokhande et al., 2013).   

Subsidence of the ground can be stated as vertical 

movement of the ground which occurs due to the 

extraction of mineral resources. From the environment 

point of view, it is a typical consequence of underground 

mining activities. In the broader perspective, it reflects 

those movements which occur above the exploited area. It 

is a matter of concern because, subsidence can and does 

have serious effects on surface structures, environment as 

well as social-life (Genske et al., 2000). 

 

 
 

Figure-1. Trough and sinkhole subsidence (Anon, 2017). 

 

Sinkholes cause severe damage to surface 

landmarks due to the collapse of houses; in addition to it, 

severe cracks are developed on walls and floors. Social 

life too may be hampered due to the likelihood of risk of 

falling into the sinkholes. Due to the inflow of surface 

runoff in mines and emission of a large quantity of mine 

gases and breathing in the mines becomes difficult. Thus 

sinkholes deteriorate the underground mining conditions 

(Lokhande et al., 2015). Sinkhole subsidence, hampers the 

economic assets in the form of loss of surface and 

underground property, discontinuity of work, loss of 

production, cleaning of the sinkhole affected area and 

filling of the sinkhole, is a significant issue in many cases 

(Lokhande et al, 2013) (Figure-2). 

 

 
 

Figure-2. Impact of sinkhole on surface structure 

(Anon
1
, 2017). 

 

The paper mainly highlights the parametric 

analysis of influencing parameters responsible for sinkhole 

subsidence and based on this parametric analysis, an ANN 

(By using Easy NN-plus software) model has been 

developed for prediction of sinkhole depth.   

 

2. PREVIOUS WORK ON SINKHOLE  

    SUBSIDENCE 

Previous research on sinkhole subsidence is 

presented briefly in this section. In the past, several 

sinkholes were reported across the globe due to 

underground coal mining, particularly, at shallow depth. In 

India, several mines suffer this challenge of unsafe 

conditions due to sinkholes, stoppage of work and mining 

losses particularly, at shallow depth. Thus, the present 

study assumes a significant importance. Sinkhole 
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subsidence was reviewed for understanding the parameters 

which are prone to their occurrences.  

Atkinson et al. (1975) model is based on limit 

equilibrium analysis, in model the vertically collapse 

configurations may give real representation of that 

collapse.  According to Gray et al. (1978) the most 

probable cause of the development of a sinkhole is the 

collapse of a mine roof, especially over mine junctions 

where the exposed roof is more. Singh and Atkins (1983) 

have provided some suggestions which are similar to 

Kendorski model, this model refined by introducing 

different strains zones. In their earlier developed model 

carrying the large water bodies restricted for10 mm/m 

strains value to protect the surface structure. According to 

Karfakis (1986) the sinkhole can also be present to an 

extent further by self-choking action. The natural bulking 

of caved roof rock may cease the further extension of 

sinkhole subsidence. If, however at shallow cover or 

presence of weak rock in overlying strata or presence of 

water in overlying rock allowing caved material to flow 

into the cavity. The subsurface cavities which create 

tension cracks or fracture in overlying strata may create 

weak planes through which impact or caving may reache 

to surface. Abdullah and Goodings (1996) model explain a 

complete picture of stability of overlying rock particularly 

sand layer above the cavity. Sheorey P.R et al. (2000) 

have worked in India on shallow depth working and its 

impact on surface. In study it includes subsidence 

behaviour in caved roof rock and uncaved rock due to 

underground extraction. Vaziri et al. (2001) have given an 

analytical model for ascertaining the stability of an 

axisymmetric region of roof rock. Singh et al. (2008, 

2011) have given a theory of trough and sinkhole 

subsidence on shallow depth working in underground coal 

mines. In study it is concluded that sinkhole subsidence 

affected mostly to low strength strata, fault and fissures, 

amount of rainfall. Saro et al. (2012) studied more than 

824 cases in South Korea related to trough and sinkhole 

subsidence and model developed using Ground 

Subsidence Susceptibility (GSS), Artificial Neural 

Network (ANN) and Geographic Information System 

(GIS). In their study this emphasis has been given to 

subsidence affected area and slope, cover, distance from 

pit, presence of water reservoirs, RMR, impact of fault and 

its distance, geology of area and land use. Lokhande et al. 

(2014) gave an in-depth understanding of various 

parameters which influence the occurrence to formulating 

the basis of different predictive models. These critical 

parameters have been compiled and analysed, further a 

multiple regression model was developed to calculate 

sinkhole depth under different conditions. Strzalkowski 

and Tomiczek (2015) mostly studied the sinkhole 

formation due to at shallow depth which creates danger to 

social-life and available infrastructure. 

 

3. FIELD INVESTIGATIONS 

Field investigations work was carried out in three 

different areas, namely, Jamuna Kotma, Korba and 

Bisrampur area of South Eastern Coalfields Limited 

(SECL) which is one of the subsidiaries of Coal India 

Limited (CIL), India (Figure-3). This investigation was 

done in ten different mines of these three areas. Geo-

mining & geological parameters are needed for carrying 

out detailed analysis and out of which the parameters 

having more influence has been selected for further 

development of the model. 

 

 
 

Figure-3. Location of the study area (Anon, 2016). 

 

A total 41 sinkholes were studied from the view 

of geo-mining and geologic aspects. The extraction height 

varied from 1.7 to 3 m & depth of working varied from 

15.1 to 58.05 m. Out of 41 sinkholes, nine were circular in 

shape with diameter 2 m and 20 m respectively and 32 

sinkholes were oval in shape with  different dimensions 

occurred over the working at shallow depth. The data 

related to field investigations and laboratory testing is 

given in Table-1. 
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Table-1. Data related to field investigations and laboratory testing. 
 

Method of 

working 

Geo-mining parameters Physico-mechanical  parameters Geological parameters 
SD 
(m) 

HE 

(m) 

Depth of 

working (m) 
RTS 

WCS 

(MPa) 

WTS  

(MPa) 

WD 

(kN/m
3
) 

WBF 
Presence of 

fault 

Presence 

of water 
 

Development 2.8 32.80 9.75 5.47 0.36 19.05 9.75 84 m 140 m 5.0 

Development 2.8 47.61 0.84 5.81 0.42 17.57 0.84 4 m - 12.0 

Depillaring 2.6 27.95 8.16 5.30 0.41 18.83 8.16 72 m 40 m 1.4 

Depillaring 2.6 27.95 8.16 5.30 0.41 18.83 8.16 30 m 104 m 1.8 

Depillaring 2.6 27.95 8.16 5.30 0.41 18.83 8.16 182 m 50 m 2.5 

Depillaring 2.6 27.95 8.16 5.30 0.41 18.83 8.16 110 m 42 m 2.5 

Depillaring 2.6 27.95 8.16 5.30 0.41 18.83 8.16 280 m 24 m 5.0 

Depillaring 2.6 27.95 8.16 5.30 0.41 18.83 8.16 460 m 172 m 2.5 

Depillaring 2.6 27.95 8.16 5.30 0.41 18.83 8.16 - - 2.8 

Development 2.3 23.08 5.26 5.84 0.42 19.45 5.26 Fault plane 176 m 9.0 

Depillaring 2.8 38.60 11.65 9.00 0.71 20.90 11.65 - 20 m 4.0 

Depillaring 2.8 38.60 11.65 9.00 0.71 20.90 11.65 - - 4.3 

Depillaring 2.8 38.60 11.65 9.00 0.71 20.90 11.65 - - 3.0 

Depillaring 2.8 38.60 11.65 9.00 0.71 20.90 11.65 - - 3.5 

Depillaring 2.8 38.60 11.65 9.00 0.71 20.90 11.65 - - 2.5 

Depillaring 2.8 38.60 11.65 9.00 0.71 20.90 11.65 - - 4.7 

Depillaring 2.8 38.60 11.65 9.00 0.71 20.90 11.65 - - 3.3 

Depillaring 2.8 38.60 11.65 9.00 0.71 20.90 11.65 - - 2.5 

Development 2.5 49.59 12.35 6.09 2.40 23.37 12.35 Fault plane 44 m 2.0 

Development 2.5 49.59 12.35 6.09 2.40 23.37 12.35 40 m - 2.0 

Development 2.5 49.59 12.35 6.09 2.40 23.37 12.35 - - 2.0 

Development 2.0 48.20 15.26 6.42 0.93 22.93 15.26 26 m 100 m 1.7 

Development 3.0 29.00 2.17 6.20 0.89 22.90 2.17 30 m - 2.5 

Development 3.0 29.00 2.17 6.20 0.89 22.90 2.17 12 m - 2.8 

Development 3.0 29.00 2.17 6.20 0.89 22.90 2.17 4 m - 2.5 

Development 3.0 29.00 2.17 6.20 0.89 22.90 2.17 16 m - 3.5 

Development 1.8 15.10 0.65 3.10 0.28 16.40 0.65 300 m Y 12.0 

Depillaring 1.7 58.05 24.57 3.24 0.36 17.69 24.57 - - 3.0 

Depillaring 1.7 58.05 24.57 3.24 0.36 17.69 24.57 - 60 m 3.0 

Development 2.7 41.87 12.97 3.35 0.26 23.47 12.97 - - 3.0 

Development 2.7 41.87 12.97 3.35 0.26 23.47 12.97 - - 2.0 

Development 2.7 41.87 12.97 3.35 0.26 23.47 12.97 - - 2.5 

Development 2.7 41.87 12.97 3.35 0.26 23.47 12.97 - - 4.5 

Development 2.7 41.87 12.97 3.35 0.26 23.47 12.97 - - 3.0 

Development 2.7 41.87 12.97 3.35 0.26 23.47 12.97 - - 4.0 

Development 2.7 41.87 12.97 3.35 0.26 23.47 12.97 - - 8.5 

Development 2.7 36.45 17.22 4.06 0.47 20.24 17.22 - 128 m 4.8 
 

HE-Height of Extraction                           RTS-Rock to soil ratio                         WCS-Weighted compressive strength                               

WTS-Weighted tensile strength                WD-Weighted density                         WBF-Weighted bulk Factor  

SD-Sinkhole depth 
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Field investigations work was done for the 

collection of various parameters which directly or 

indirectly influence the triggering of sinkhole subsidence. 

Investigations included the collection of geo-mining and 

geological data where sinkholes have developed. 

Geological discontinuities and presence of water bodies in 

the areas adjacent to sinkhole occurrence were given a 

major focus and importance in this study. Based on the 

literature review, field investigations and laboratory 

testing, the following parameters which have produced 

significant influence on sinkhole formation were 

identified. The parameters are, namely, depth of working 

(cover), height of extraction, thickness of hardcover (rock) 

in overburden, thickness of soft cover (soil) in the 

overburden, compressive strength of the overburden rock, 

tensile strength of the overburden rock, density of 

overburden rock and bulking factor of overlying strata. 

Strength, density and bulk factor of rock are 

represented as a weighted average. The overlying rocks 

extended up to the surface excluding soil. 

After an in-depth understanding of influencing 

parameters on the occurrence of sinkhole, it forms the 

basis of preparing prediction model. These parameters 

have been initially analysed on the basis of regression 

analysis and then used in development for of ANN model. 

 

4. PARAMETRIC ANALYSIS 

Seven parameters were studied to develop the model, 

namely, depth of working, height of excavation, rock to 

soil ratio (overlying rock till topsoil layer), weighted 

density of overburden, weighted compressive strength of 

overlying rock, weighted tensile strength of overlying rock 

and weighted bulk factor of overlying rock. Initially, these 

seven parameters were correlated with sinkhole depth to 

comprehend their impact consecutively and further model 

development. 

 

4.1 Depth of working (cover) 

At higher depth; the impact of working takes time 

to reach on surface and deform, whereas at shallow depth 

the immediate deformation reflected on the surface (Sahu 

& Lokhande, 2015). In the deeper cover, sinkhole trigger 

probabilities are less as in respect to shallow cover 

(Lokhande et al., 2013). Shallow cover is most dominating 

factor in terms of  sinkhole  incidence in different parts of 

globe and was broadly used by different researchers in 

their predictive models, namely, Price and Malkin (1969), 

Atkinson and Potts (1975), Grey et al. (1978), Piggott and 

Eyon (1977), Kendorski (1979), Dunrud and Osterwalk 

(1980), Singh and Atkins (1983), Muhlhaus (1985), 

Karfakis (1986), Whittaker and Reddish (1989), Abdullah 

and Goodings (1996), Singh and Dhar (1997), Dyne 

(1998), Tharp (1999), Sheorey et al. (2000),  Vaziri et al. 

(2001), Soni et al. (2007), Singh (2007),  Tajdus  and 

Sroka (2007), Lokhande et al. (2005, 2008), Prakash et al. 

(2010), Singh et al. (2008, 2011), Saro et al. (2012), Lee et 

al. (2013), Swift (2014), Strzalkowski and Tomiczek 

(2015), Lokhande et al. (2013, 2014, 2015). 

 

 
 

Figure-4. Influence of depth of working on 

sinkhole depth. 

 

Parametric analysis was done between depth of 

working and sinkhole depth. The cover varied from 15.1 m 

to 51.15 m.  From the Figure-4, it has been observed that 

at lesser depth the occurrence of sinkholes is more than at 

larger depth. The coefficient of determination (R
2
) 

between depth of working and sinkhole depth was found 

to be 0.45. 

 

4.2 Height of excavation 

Lower the extraction percentage lowers the rate 

of subsidence. Height of extraction is important 

parameters causing sinkhole on the surface. Opinion 

differs from the effects of height of extraction on the 

magnitude of sinkhole subsidence. Researchers namely, 

Price and Malkin (1969), Grey et al. (1978),  Piggott and 

Eyon (1977), Dunrud and Osterwalk (1980),  Karfakis 

(1986), Whittaker and Reddish (1989)  Abdullah and 

Goodings (1996) , Dyne (1998), Tharp (1999),  Vaziri et 

al. (2001), Lokhande et al. (2005), Tajdus K and Sroka 

(2007), Singh et al. (2008,  2011) and  Salmi et al. (2017)  

have used this parameter in their developed models. 

 

 
 

Figure-5. Influence of height of extraction on 

sinkhole depth. 

 

Parametric analysis was done between height of 

extraction and sinkhole depth. The extraction height was 

varying from 1.7 m to 2.8 m. From Figure-5, it has been 

seen that sinkhole depth is less at less extracted height and 

increased relatively as height of extraction increased. The 

coefficient of determination (R
2
) between Height of 

extraction and sinkhole depth was found to be 0.43. 
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4.3 Rock to soil ratio 
The soil is the uppermost layer of the earth’s 

surface and important in terms of mining activities. The 

changes to the permeability and porosity of the rock 

(Anon
2
, 2017). Competent rock in immediate roof and 

floor may avoid sinkhole through their arresting action. 

Singh (2007) and Lokhande et al. (2013) have used rock to 

soil ratio parameter in their work for the development of 

sinkhole subsidence models. Sinkhole involves failure and 

collapse of bedrock, and where soil cover is flushed into 

stable rock fissures Waltham (2005). 

 

 
 

Figure-6. Influence of rock to soil ratio on 

sinkhole depth. 

 

Parametric analysis was done between rock to 

soil ratio and sinkhole depth. The ratio of rock to soil is 

varying from 0.84 to 24.57.  It has been observed from 

Figure-6, that at lower rock to soil ratio higher is the 

sinkhole depth and vice versa. The R
2
 value was found to 

be on lower side (0.40). 

 

4.4 Weighted density of overburden 

The rock density is an important parameter for 

the prediction of sinkhole subsidence. Rock at higher 

density is difficult to cave and if it gets cave then due to 

lower density. And if it caved at higher density the created 

void will not be filling up but at low density, this process 

is reversed due to its bulking process. Cracks and fissures 

may develop and constitute further weak zones from 

which processes of mass movement start (Lokhande et al. 

2014). This parameter was used by researchers, namely, 

Whittaker and Reddish (1989), Singh K B (2000), 

Strzalkowski and Tomiczek (2015) in their research. 

 

 
 

Figure-7. Relationship between weighted density and 

sinkhole depth. 

The parametric analysis is shown in Figure-7, it 

was found that at low density the sinkhole depth is high 

because of weak strata and as density is increasing the 

sinkhole depth get reduces. The coefficient of 

determination (R
2
) between weighted density and sinkhole 

depth was found to be 0.60. 

 

4.5 Weighted compressive strength  

In underground coal mining extraction, strength 

factor of immediate roof playing a vital role and it is 

calculated from the compressive strength. As the 

underground extraction takes place, the immediate roof 

gets disturbed and a load of overlying rocks may lead to 

failure of the roof rocks. The rocks present in the 

overlying layers have to withstand this load else it may 

collapse and increase the chances of sinkhole Abbasnejad 

et al. (2016). This parameter is very important in term of 

strength of strata is concerns and has been  used widely by 

researchers, namely, Forster (1995), Abdullah and 

Goodings (1996), Vaziri et al. (2001,) Singh (2007), Singh 

et al. (2008, 2011), Parise and Lollino (2011), Saro et al. 

(2012), Lokhande et al. (2013, 2014, 2015), Salmi  et al. 

(2017). 

 

 
 

Figure-8. Influence of weighted compressive strength 

on sinkhole depth. 

 

The parametric analysis is shown in Figure-8, it 

has been observed that at low compressive strength the 

sinkhole depth is high because of low competence and as 

compressive strength is increased the sinkhole depth gets 

reduce. The R
2
 between weighted compressive strength 

and sinkhole depth of rock mass was found to be 0.60. 

 

4.6 Weighted tensile strength of overlying rock 
The disturbance produced by one gallery failure 

often leads to the weakening of adjacent areas particularly 

on the roof, resulting in the development of cracks that 

decrease tensile strength and allow the entry of water into 

weakened zones between blocks (Varnes 1984). Failure in 

coal mine roof is dominated by either tensile or shear 

stress developed due to the extraction of coal. Researcher 

Singh (2013), Forster (1995), Abdullah and Goodings 

(1996), Vaziri et al. (2001), Booth and Greer (2011), 

Parise and Lollino (2011), Lokhande et al. (2013, 2014, 

2015), Potvin et al. (2016) and Salmi et al. (2017) have 

incorporated this parameter in their prediction models.  
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Figure-9. Influence of weighted tensile strength on 

sinkhole depth. 

 

The parametric analysis is shown in Figure-9; it 

has been observed that at lower tensile strength the 

sinkhole depth was on higher side. The R
2
 value between 

weighted tensile strength and sinkhole depth of rock mass 

was found to be 0.64. 

 

4.7 Weighted bulk factor of overlying rock   

In shallow working depth, bulking factor plays an 

important role. During depillaring the strata get caved 

immediately and its impact reaches to the surface which 

leads to the formation of sinkhole. But if the strata caved 

slowly and impact of this caved takes times to reach on the 

surface then bulking factor is playing a major role because 

the rock break gets swell and occupied more area. So the 

cavity is less and if less cavity then the intensity of 

sinkhole is less. This parameter was widely used by 

researchers, namely, Piggott and Eyon (1977), Bell and 

Bruyn (1999), Dunrud and Osterwalk (1980), Karfakis 

(1986), Whittaker and Reddish (1989), Tajdus and Sroka 

(2007) in their research. 

 

 
 

Figure-10. Influence of weighted bulk factor on 

sinkhole depth. 

 

The regression analysis is shown in Figure-10; it 

was found that when the bulking factor increases the 

sinkhole depth decreases. The coefficient of determination 

(R
2
) between weighted bulking factor and sinkhole depth 

was found to be 0.63. 

 

5. DEVELOPMENT EASYNN MODEL  

ANN is a pivotal form of artificial intelligence 

which exists for an input layer, hidden layer, and an output 

layer. It acts like a digital mathematical model for the 

nonlinear mapping between inputs and outputs which play 

a crucial role in the forecasting of sinkhole model. The 

characteristics of self-learning, self-organizing, nonlinear 

dynamic process and high fault tolerance, as well as 

associative inference and adjusted capacity and its 

particular application for processing various kinds of 

nonlinear problems makes it prominent and distinguished 

(Tomaz and Turk, 2003). Hundreds of single units, 

artificial neurons or processing elements (PE), linked with 

coefficients (weights), which comprise the neural structure 

organised layer wise are its constituents. The coefficients 

(weights) of these connecting elements and their 

arrangements are adjusted by a process of “training” for 

model graduation (Kustrin and Beresford, 2000). 

 

5.1 Methodology  
The development of sinkhole subsidence 

prediction model can be evolved through the Easy NN-

plus software. The relative importance and relative 

sensitivity are represented by coefficients (weights) of 

different input parameters in the networks which were 

considered to select important influencing factors for 

prediction of sinkhole. During training, software assigns a 

weight to the various inter-related parameters and attempts 

to limit the error. This process is repeated until the error 

converges to the set limits. The final weight is obtained 

after training. A feed forward, a back-propagation neural 

network has been used where the learning process is 

achieved using the generalised delta rule or the back-

propagation learning rule (Lokhande et al., 2014). 

 

5.1.1 Parameters used for model development 

The parameters which have significant influence 

on sinkhole formation were identified and used in 

development of ANN model are depth of working, height 

of extraction, thickness of hardcover (rock) in overburden, 

thickness of soft cover (soil) in the overburden, weighted 

compressive strength of the overburden rock, weighted 

tensile strength of the overburden rock, weighted density 

of overburden rock and weighted bulk factor of overlying 

strata. 

 

5.1.2 Data sets for the ANN model 

Total 34 data sets were selected for development 

and training of the neural network and five data randomly 

were used for the validation of model (Figure-11).  
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Figure-11. Training and validation data sets used in the neural network development. 

 

5.1.3 Training of the Neural Network 

For preparing a model only one hidden layer was 

used for learning purpose by setting a target error 0.05%. 

The model learning was controlled to stop when all the 

estimated error obtained below than the set targeted error. 

The learning and momentum rates were fixed to 0.7 and 

0.8 respectively. After 904 cycles the learning was 

completed an average error computed was 0.019558 with 

the maximum and the minimum values of 0.049029 and 

0.002343 (Figure-12). For training of the model seven 

input neurons, five hidden neurons and one output neuron 

were considered (Figure-13). Hidden neurons are used to 

avoid overfitting in the function approximation and based 

on the target error value. Optimizing the number of hidden 

neurons to use without a pre-set target for accuracy is one 

of the major challenges for a neural network (Geman et 

al., 1992). The thickness of the connections represented 

the weights of different processing elements. 

 

 
 

Figure-12. Learning of model. 
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Figure-13. Neural network after model development. 

 

The normalised and relative errors with respect to targeted and average error value of different sinkholes are 

depicted in Figure-14. 

 

 
 

Figure-14. Normalised and relative error with respect to targeted and average error. 

 

In the trained network, weights of input 

parameters and their relative importance in terms of 

percentage are shown in (Figure-15 a & b). Similarly, 

sensitivity of inputs parameters is shown in (Figure-16 a & 

b). The sensitivity value was obtained by setting all the 

input values to a median value and then each in turn was 

increased from the lowest value to the highest value. 
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(a) 

 

 
(b) 

 

Figure-15 (a & b). Weights of input parameters and their 

relative importance in terms of percentage. 

 

 
(a) 

 

 
(b) 

 

Figure-16 (a & b). Relative sensitivity of input 

parameters. 

 

6. MODEL VALIDATION  
ANN model was validated by using data of four 

various coal mines, namely, Jamuna  1 & 2 incline, Bhadra 

7 & 8 Incline, Surakachhar main mine, Balgi 1 & 2 mine 

and Balrampur 10 & 12  Incline. It was found that total ± 

10 % of the variation in observed and the predicted data of 

sinkhole depth (Table-2) (Figure-17). The developed 

model is of self-learning and with the availability of more 

number of data will help to fine tune the model. 

 

 

 

Table-2. Observed and the predicted sinkhole depth. 
 

Mine 

Observed  

sinkhole  depth 

(m) 

Predicted sinkhole 

depth  (m) 
Percentage 

difference 

Jamuna  1 & 2 incline (J5) 2.5 2.62 4.8 % 

Bhadra 7 & 8 Incline (B6) 2.5 2.73 9.2 % 

Surakachhar main mine (S1) 2.0 1.83 -8.5 % 

Balgi 1 & 2 mine (BL4) 3.5 3.70 5.7 % 

Balrampur 10 & 12  Inclines (BR7) 3.0 3.43 14.34 
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Figure-17. Comparison between measured and predicted 

sinkhole depth EasyNN-plus. 

 

7. RESULTS AND DISCUSSIONS  
The model is developed by carrying out 

correlation analysis between dependent and independent 

variables. These variables are studied under different 

conditions and are chosen on the basis of significant 

influence of them on the formation of sinkholes. 

Development & depillaring, presence & absence of faults 

and influence of water bodies are the major conditions 

were considered for the study. No parameter can 

individually determine the formation of sinkholes; hence 

ANN model was developed with a view of analysing and 

studying the combined influence of all these parameters. 

From (Figure-15 a & b) and (Figure-16 a & b), it 

was observed that weighted density is having the highest 

relative importance and sensitivity among the other 

parameters. It was also observed that the relative 

importance of different input parameters is not in the same 

order to that of their sensitivities except weighted density 

and bulk factor. The model was validated against the data 

of four sinkholes which were not used in the training. The 

percentage of error in these cases was about 10%. 

It was observed from Figure-17 that Balrampur 

10 & 12 Incline (BR7) yielded maximum training error of 

14.34 %, in this case, the observed sinkhole depth was 3.0 

m and predicted depth given by Easy-NN is 3.43 m.  

 

8. CONCLUSIONS 

Sinkhole occurrence is influenced by 

combination of the various parameters. Each parameter 

has its own relative degree of influence under different 

conditions. Rigorous literature review and filed 

investigations have revealed seven board parameters 

which are depth of working, height of excavation, rock to 

soil ratio, weighted density of overburden, weighted 

compressive strength of overlying rock, weighted tensile 

strength of overlying rock and weighted bulk factor of 

overlying rock. The developed ANN model was used to 

predict the depth of sinkhole subsidence. 

The ANN results depict that among the 

influencing parameters weighted density have the highest 

relative importance and sensitivity on the formation of 

sinkhole depth. The deviation of the sinkhole depth 

predicted by ANN model from the observed sinkhole 

depth was found that total ± 10 %. This confirms the 

utility of developed ANN model.  

The mining industry will have a great assistance 

for the sinkhole depth assessment from this model. The 

model can be more refined and fine tune with the 

involvement of varied geo-mining conditions covered in 

various case studies. 
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