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ABSTRACT 

This theoretical model mathematically analyses the steady flow of blood in a tapered narrow artery with mild 

stenosis and dilation, treating the blood as non-Newtonian Casson fluid model. The resulting nonlinear boundary value 

problem is solved to obtain the analytic expressions to the velocity profile, volumetric flow rate, pressure gradient, wall 

shear stress and longitudinal impedance to flow. The influence of various flow parameters on the aforesaid rheological 

quantities are analyzed through appropriate graphical and tabular representation of data. It is noted that the pressure 

gradient and wall shear stress increases with the increase of the maximum depth of stenosis, yield stress and consistency 

index of blood and, it decreases with the increase of the angle of tapering, flow rate and maximum height of dilatation. It is 

also found that the blood velocity decreases considerably with the increase of the yield stress of blood and it decreases 

significantly with the increase of the consistency index. The percentage of increase in the frictional resistance to flow 

increases rapidly with the increase of the maximum depth of stenosis and maximum height of dilatation and, it increases 

marginally with the increase of the yield stress of blood. 

 
Keywords: steady flow, casson fluid, axi-symmetric stenosiss, dilatation, frictional resistance. 

 

INTRODUCTION 

Blood vessels’ wall is hardened and the blood 

passage region is constricted by the development of 

atherosclerotic plaques which are technically called as 

stenosis and are formed by the deposit of fats, lipids, 

cholesterol and other unsaturated substances in the lumen 

of arteries [1-3]. When the stenosis grows in an artery, it 

considerably affects the normal blood circulation, changes 

the blood flow pattern and thus it significantly enhances 

the wall shear stress and resistance to flow and thus, it 

leads to many cardiovascular diseases like heart attack, 

ischemia strokes like cardiac ischemia, brain ischemia, etc. 

which claim the life of millions of people around the 

world every year [4 - 6]. The serious consequences of 

arterial stenosis draw the attention of several researchers 

to find the chemical, biological and fluid dynamical 

factors which influence the development of arterial 

stenosis [7 - 11]. Tang et al. [12] reported that the 

continuous development of stenosis may damage the cells 

in the lumen of the artery and the arterial segment with 

stenosis may be collapsed due to the low pressure which 

causes severe blood pooling in that locality. Thus, it is 

important to analyze the influence of arterial stenosis on 

the fluid dynamical characteristics of blood. 

Vasodilatation is the biological process of 

widening of blood vessels which is caused by relaxation of 

smooth muscle cells on the inner wall of smaller and 

larger diameter blood vessels [13] and is opposite to the 

process of vasoconstriction. The development of dilation 

in blood vessels increases the blood flow and thus it 

decreases the resistance to flow [14]. Since the dilation in 

arteries and arterioles reduces arterial blood pressure and 

heart rate, artificial artery dilators are used to treat heart 

failure, systemic and pulmonary hypertension, and angina 

[15]. Vasodilation occurs in arterioles when the tissues are 

not receiving enough glucose or lipids or other nutrients 

[16]. Vasodilators are the factors that results in 

vasodilation and some of them are carbondioxide and 

Nitric oxide [17, 18]. Hence, it is useful to investigate the 

effects of vasodilation on the rheological properties of 

blood. 

It has been well established that blood behaves 

like Newtonian fluid when it flows in larger diameter 

arteries ( 1300 m ) at high shear rates ( 100 s ), but 

when it flows through smaller diameter arteries 

( 50 1300 m ) at low shear stress ( 100 s ), it exhibits 

remarkable non-Newtonian fluids’ character [19, 20]. 

Several researchers attempted to analyze the blood 

rheology when it flows through smaller diameter arteries 

at low shear rates under normal (tapered, non-tapered etc) 

and abnormal (stenosis, aneurysm, stented, 

catheterizedetc) conditions, treating blood as non-

Newtonian fluid model with or without yield stress and 

pointed out the effects of abnormal conditions on blood 

flow characteristics [21 - 25]. 

Casson fluid model is a non-Newtonian fluid 

(non-linear) model with yield stress which is widely 

applied in the mathematical modeling of blood rheology in 

narrow arteries [26]. Casson [27] investigated in vivo the 

appropriateness of Casson fluid for modeling blood and 

propounded that at low shear rates, the yield stress value 

of blood is nonzero. Scott Blair [28] propounded that the 

Casson fluid’s parameters such as viscosity and yield 

stress are adequate to describe the shear flow of blood. 

Merrill et al. [29] reported that Casson fluid’s constitutive 

lawholds good for blood flow in arteries of diameter 

130m - 1300 m. Scott Blair and Spanner [30] pointed 

out that blood behaves like a Casson fluid when it flows in 

small diameter arteries at moderate shear rates. Hence, it is 

more appropriate to assume blood as a Casson fluid when 

it flows through narrow arteries at low shear rates.   

Several attempts were made by researchers to 

study the non-Newtonian behavior of blood when it flows 
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in smaller diameter arteries, treating blood as Casson fluid 

[31 - 33]. Pincombe et al. [34] studied the fully developed 

flow of Caason fluid through a non-tapered narrow artery 

in the presence of stenosis and dilatation and obtained 

analytical solutions to flow rate and resistance to flow. 

Priyadharshini and Ponnalagusamy [35] analyzed the 

steady flow of blood through a narrow artery with 

constriction and dilation, treating blood as Herschel-

Bulkley fluid. It is aimed to develop amathematical model 

to analyze the steady, laminar, axi-symmetric and fully 

developed flow of blood through a tapered narrow artery 

with mild stenosis and mild dilation, treating the blood as 

non-Newtonian Casson fluid.  

Though the formulation and solution method of 

the present study looks similar to that of Pincombe et al. 

[34] (both studies primarily use Casson fluid model for 

blood flow through arteries with constriction and 

dilatation), our proposed study differs significantly from 

their studies and these differences are spelt out below: 

 

a) The tapering of the arterial segment is incorporated in 

this study which was not considered in their studies. 

b) Two different methods are used (analytical and 

numerical) to find out and verify the pressure gradient 

which are different from their method. 

c) The expressions for velocity distribution, wall shear 

stress and stream function are obtained in the present 

works which are not dealt in their studies. 

d) The expression obtained for flow rate and resistance 

to flow are different from the corresponding 

expressions obtained by them. 

e) The results and discussion section of this study 

discusses the variations of several parameters on the 

rheological quantities such as pressure gradient, 

velocity profiles, wall shear stress, resistance to flow 

and stream lines pattern and these are not analyzed in 

their studies.  

 

Since, the proposed study is quite different from 

the studies of Pincombe et al. [34] and the aforesaid 

differences in the studies of blood flow was not 

investigated by any researcher so far, it is aimed to study 

the steady, laminar, axi-symmetric and fully developed 

flow of blood in a narrow artery with mild stenosis and 

dilatation, treating the blood as Casson fluid. This paper is 

organized as briefed below:    

Section 2 formulates the physical problem 

mathematically and then the non-dimensional form of the 

governing equations is obtained. In Section 3, the resulting 

non-linear boundary value problem is solved along with 

the set of boundary conditions. The influence of various 

rheological parameters on the important flow 

measurements are discussed in the results and discussion 

Section 4. Section 5 collates the major outcomes of this 

mathematical analysis. 

 

MATHEMATICAL MODEL 

 

Governing equations 

Let us consider the steady, axially symmetric, 

laminar and fully developed flow of blood in the axial 

direction through atapered narrow artery with stenosis and 

dilatation, treating blood as viscous incompressible fluid 

and is modeled as non-Newtonian Casson fluid. The 

stenosis and dilatation in the artery are considered to be 

mild and axially symmetric. Two dimensional view of the 

segment of atapered narrow artery with stenosis and 

dilatation is depicted in Figure-1a. We have used the 

cylindrical polar coordinate system  , ,r z  to 

mathematically analyze the flow pattern, where r and z
are the coordinates in the radial and axial directions 

respectively and   is the azimuthal angle. The 

mathematical representation of segment of atapered artery 

with stenosis and dilatationis defined as 

 

 
   
 

0

0

, if

,   otherwise

i i
R z A z z

R z
R z
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  
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(1b) 

 

i
  denotes the maximum projection 

(depth/height) of the th
i  abnormal segment into the lumen 

and it is positive for stenosis and negative for dilatation 

(aneurysms), 
0R is the radius of the normal artery,  R z is 

the radius of the artery in the abnormal 

(stenosis/aneurysm) region, tan  ,  is the angle of 

tapering of the artery,
i
l is the length of th

i abnormal 

segment of the artery,
i

 is the distance of the starting 

point of th
i abnormal segment from the origin and is 

defined as 

 

 
1

i

i j j i

j

d l l


 
   
 


                                                   

(1c) 

 

where
i

  is the distance between the origin of the flow 

region and the end of th
i abnormal segment and is defined 

as 

 

 
1

i

i j j

j

d l


                                                             (1d) 

 

where
i

d is the distance between the end of  1
th

i  abnormal 

segment and start of the th
i abnormal segment or from the 

start of the segment if 1i  . The geometry of artery for 

different values of the angle of tapering  and for 

different values of stenosis depth and dilatation height are 

plotted in Figures-1b and 1c.One can observe that when 
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the angle of tapering  is positive, the artery converges 

and when it is negative, the artery diverges whereas when 

it is zero, the artery neither converges nor diverges. 

 

 
 

Figure-1(a). Geometry of arterial segment with mild 

stenosis and mild dilatation. 

 

 
 

Figure-1(b). Geometry of arterial segment for different 

values of angle of tapering with 
1
 = 0.1 and 

2
 = - 0.1. 

 

 
 

Figure-1(c). Geometry of arterial segment for different 

values of stnosis depth and dilatation height with 

 = 0.01
o

. 

 

The segment of artery under study is assumed to 

be so long such that the entrance, end and special wall 

effects are negligibly small in magnitude and thus these 

are not considered in this study. It is well accepted that for 

low Reynolds number viscous incompressible fluid flow, 

the radial component of the velocity is negligibly small 

and can be ignored. Thus, the axial and radial components 

of momentum equation governing the blood flow reduce 

respectively to  

 1
0

p p
r ; ,

z r r r
  

 
  

                                            (2a; 2b) 

 

where
rz

  is the shear stress of blood; p  is the pressure 

in the fluid flow; Equation (2b) indicates that the pressure 

is independent of r  and it is function of only z . The 

simplified form of the constitutive equation of Casson 

fluid model is [31] 

 

21
, if

0 if

y y

y

u
k

r

   

 

        
  

                             (3) 

 

where u , y
 and k are the Casson fluid’s axial velocity, 

yield stress and consistency index respectively. Eq. (3) 

indicates that normal flow occurs in the region when the 

shear stress exceed the yield stress and plug flow (solid-

like flow) in the region where the shrear stress does not 

exceed the yield stress limit. When 1
y

  , Equation (3) 

reduces to the constitutive equation of Newtonian fluid. 

The boundary conditions appropriate to this flow are 

 

is finite and 0;r                                                       (4a) 

 

0 0; 0
u

at r u at r R
r


   


                        (4b; 4c) 

 

Non-dimensionalization 

Let us introduce the following non-dimensional 

variables: 

 

    0 0 0 0 0
; ; ; ;R z R z R z z R u u u p R p u   

0 0 0 00 0
; ; ; ;

y i i i
R u R u R l l R          

0 0; ,
i i i i

R R                                                       (5) 

 

where 0u is the mean velocity of blood,  is the 

coefficient of viscosity of Newtonian fluid. Substitution of 

the non-dimensional variables in Eqs. (1a) - (1d) yield the 

mathematical form of geometry of artery in dimensionless 

form as below respectively: 
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(6b; 6c) 
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Use of the non-dimensional variables into 

Equations (2a) and (3), we obtain dimensionless form of 

the momentum and constitutive equations as below: 

 

 1
,

dp
r

r r dz





(7)

21
, if

0 if

y y

y

u
k

r
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 

        
  

.(8) 

 

The dimensionless form of the boundary 

conditions (4a) - (4c) are 

 

is finite 0;r                                                          (9a) 

0 at 0; 0 .
u

r u at r R
r


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
                         (9b; 9c) 

 

Equations (7) and (8) have to be solved for the 

shear stress   and velocity profile u subject along with 

the boundary conditions (9a) - (9c). 

 

METHOD OF SOLUTION 

Integrating Equation (7) for shear stress  and 

then making use of boundary condition (10a), we get 

 

   , 2r z q z r  . (10a) 

 

where  q z dp dz  . From Equation (10a), one can get  

 

 2
p y

R q z .                                                           (10b) 

 

Using Equation (10a) in Equation (8) and then 

making use of Eq. (10b), we obtain the expression for 

velocity profile as 
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,
2

R q z
u r z

k
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(11) 

 

On substituting p
r R  in Equation (11), one can 

get the velocity in the plug flow region as below: 

 

  22
8 1

1 2
4 3 3

p p p

p

R R RR q z
u
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         (12) 

 

The stream function  is defined in such a way 

that u r   and  1v r r    , where  ,v r z the 

fluid’s velocity in the radial direction. Thus the stream 

function   is obtained from the velocity profile and its 

ultimate expression is given below: 
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(13) 

The volumetric flow rate is defined as below: 
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0 0

2 , , .

p

p

RR R

p

R

Q u r z r dr u r dr u r z r dr              (14) 

 

Using Equations (11) and (12) in Eq. (14) and 

then integrating and simplifying, one can obtain ultimate 

the expression for the volumetric flow rate as 
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16 4 1
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8 7 3 21

p p p
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Q z
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(15) 

 

From Equation (15), one can find the pressure 

gradient in one of the two methods such as (i) Numerical 

method and (ii) Analytical method and these methods are 

applied as below: 

 

Numerical method 

Equation (15) can be simplified as an algebraic 

equation for the pressure gradient  x q z as below: 

 
4

4 7 2 3

4

16 2 8 3 16
0

7 3 21

y y yk Q
x x x

R R RR

     
       

   
.      (16)  

 

For a given set of values of the parameters ,
y

Q 
and k , Equation (16) can be solved for the pressure 

gradient  x q z using Newton-Raphson method or 

similar methods. 

 

Analytical method 

In blood flow through narrow arteries, the yields 

stress of blood is very small (is in the range of 0 Pa - 0.04 

Pa) and in diseased state, its range is 0 Pa - 0.2 Pa[26]. 

The shear stress at the wall is significantly higher in 

comparison with the yield stress. Thus, for small values of 

yield stress, 1
y w

   . On neglecting the terms involving 

 2

y w
  and higher powers of y w

  , Equation (15) can 

be simplified to the following form: 

 

   
4

16 2 8 3
0.

7 3

y y k Q
q z q z

R R R

  
    

 
             (17)  

 

Equation (17) is solved for  q z and then by 

neglecting the terms involving  2

y w
  and higher 
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powers of y w
  , we obtain the analytic (asymptotic) 

form of the expression for the pressure gradient as: 

 

 
3

4 7

383
8 64 32

147

y y y
Q kQ k

q z
R Q k RR R

         
          

(18) 

 

For a given set of values of parameters, one can 

numerically compute the pressure gradient values from 

Eq. (16) using Newton-Raphson method and directly from 

the analytical solution obtained in Equation (18). Table-1 

computes the numerical and analytical values of the 

pressure gradient at different stenosis locations and the 

difference between these values. The numerical and 

analytical values of the pressure gradient at different 

dilatation locations and the difference between these 

values are computed in Table-2. From Table-1 and Table-

2, it is found that the difference between the numerical and 

analytical values of the pressure gradient is not 

appreciable. Since the analytical expression of pressure 

gradient is convenient to apply for obtaining closed form 

solutions to other physical quantities, we will make use of 

it to get to the analytical expression for rest of the flow 

measurements. 

 

Table-1. Comparison between the numerical and analytical values of the pressure gradient at different locations of stenotic 

region of arterial segment with k = Q = 1, 1 0.1
y

   and 0.01  . 
 

z 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 

Numerical 

Value 
8.0112 8.3252 9.2222 10.5046 11.7088 12.2146 11.7105 10.5075 9.2261 8.3299 8.0168 

Analytical  

Value 
8.0115 8.3259 9.2231 10.5057 11.71 12.2159 11.72 10.5092 9.2275 8.331 8.0181 

Difference 0.0003 0.0007 0.0009 0.0011 0.0012 0.0013 0.0015 0.0017 0.0014 0.0012 0.0013 

 

Table-2. Comparison between the numerical and analytical values of the pressure gradient at different locations of stenotic 

region of arterial segment with k = Q = 1, 
2 0.1   , 0.1

y
  and 0.01  . 

 

z 4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5 

Numerical 

Value 
8.0224 7.7237 7.0042 6.2267 5.6754 5.4813 5.6762 6.2285 7.0072 7.728 8.028 

Analytical  

Value 
8.0231 7.7247 7.0052 6.2278 5.6766 5.4826 5.6777 6.2296 7.0082 7.7285 8.0284 

Difference 0.0007 0.001 0.0012 0.0011 0.0012 0.0013 0.0015 0.0011 0.001 0.0007 0.0004 

 

The wall shear stress (skin friction) is defined and 

obtained as given below: 
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3 5

383
4 32 16 .

2 147
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w yr R
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  


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(19) 

 

The frictional resistance to flow is defined as  
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3 5

0 0 0 0 0

L L L L Lq z dz dz
dz A B C R dz D dz

Q R R
               (20) 

 

where 

 
3

383
4 ; 32 ; 16 ; .

147

y

y y

RQ
A Q k B Q k C D

k


     

     
(21) 

 

Since the arterial segment under study has 

abnormal segments (stenosis and dilatation) as depicted in 

Figure-1(a) and as mathematically represented in Equation 

(6a), Equation (20) can be re-written as below: 

  1 1 2 2

1 1 2 2

3 3 3 3 3

0 0

L Lq z dz dz dz dz dz
dz A

Q R R R R R

   

   


 

       
  

       

1 1 2 2

1 1 2 2

5 5 5 5 5
0

L
dz dz dz dz dz

B
R R R R R

   

   

 
      

  
      

1 1 2 2

1 1 2 20

L

C R dz R dz R dz R dz R dz DL

   

   

 
       

  
    

         

(21) 

 

On simplifying Equation (21), we get the 

expression for resistance to flow as Equation (22). The 

integrals in Equation (22) are evaluated numerically using 

Quadrature formula. It is noted that when 0y  , the 

expressions obtained in this paper for the flow quantities 

reduces to that of Newtonian fluid which are in good 

agreement with the corresponding expressions obtained 

from Priyadharshini and Ponnalagusamy [35] when 

0y  and 1n  .  
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         

1 2

1 2

2 2 2 2 2 3 3

1 2 1 2

1 1 1 1 1 1

2 1 1 1 1 1

dz dz
A

R RL

 

 


     

            
        

 
 

 

         

1 2

1 2

3 2 3 2 3 2 3 2 3 2 5 5
1 2 1 2

2 1 1 1 1 1

3 1 1 1 1 1

dz dz
B

L R R

 

      

            
        

 
 

 

         
1 2

1 2

1 1 2 2 1 1 2 22 2 2 2 2
2

C
L L R dz R dz DL

 

 

        
 

             
  

                                                   (22) 

 

RESULTS AND DISCUSSIONS 

The objective of this theoretical analysis is to 

study the influence of the physical parameters such as the 

maximum depth of stenosis 
1 and maximum height of 

dilatation 
2 , consistency index k, yield stress y , flow 

rate Q and angle of tapering on the physiologically 

important flow quantities such as the pressure gradient, 

velocity profile, shear stress at the artery wall and 

frictional resistance to flow. To analyze the results 

obtained in this study and also to validate the present study 

with the published results of others, therange of values 

used for the parameters in this study are summarized 

below[22, 35]. 

Consistency index k : 1 - 1.6; Maximum depth of 

the stenoses
1 : 0 - 0.2; Maximum height of dilatation 2 : 

0.2 0  ; Angle of tapering : 0.02 0.02  ; Flow rate 

Q: 1 – 2;  Yield stress: y
 : 0 0.2 .  

 

Pressure gradient 

The axial variation in the pressure gradient for 

different values of angle of tapering  and yield stress y


with k = 1.2, Q = 1, 
1 0.2   and 

2 0.2    is depicted in 

Figure-2. For a given set of values of the parameters, the 

pressure gradient soars (nonlinearly) with the increase of 

the axial variable from z = 2 to z = 2.5 (with the increase 

of the stenosis depth from 0 to 0.2) and then it slumps 

(nonlinearly) with increase of the axial variable from z = 

2.5 to z = 3 (with the decrease of the stenosis depth from 

0.2 to 0) and it decreases very slightly with the increase of 

the  is almost constant with the increase of the axial 

variable from z = 3 to z = 4 (in the non-stenotic tapered 

region) and it decreases significantly with the increase of 

the axial variable from z = 4 to z = 4.5 (with the increase 

of the dilatation height from 0 to 0.2) and it increases 

rapidly with the increase of the axial variable from z = 4.5 

to z = 5 (with the decrease of the dilatation height from 0.2 

to 0).One can also observe that the pressure gradient 

increases considerably with the increase of the yield stress 

y
 when the angle of tapering is fixed and it decreases 

marginally with the increase of the angle of tapering  of 

the artery while the yield stress y
 is held constant. 

The variation of pressure gradient in the axial 

direction for different values of Q, k, 
1 and 

2 with 

0   and 0.1
y

  is delineated in Figure-3. For a given 

set of values of parameters Q and k, the pressure gradient 

in blood increases significantly with the increase of the 

stenosis depth and it decreases significantly with the 

increase of the dilatation height. It is also clear that the 

pressure gradient in blood flow increases considerably 

with the increase of the consistency index k while the rest 

of the parameters are held constant. Once can also observe 

that the pressure gradient in blood flow increases very 

significantly with the increase of the flow rate Q when all 

the other parameters kept as invariables. Figures 2 and 3 

brings out the effect of the parameters 1 2, , , ,
y

Q k     and 

 on the pressure gradient in blood flow through narrow 

tapered arteries with constriction and dilatation.   

 

 
 

Figure-2. Axial variation in pressure gradient for various 

values of  and y
 with k = 1.2 and 1 0.2  and 2 0.2  

. 
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Figure-3. Axial variation in pressure gradient for different 

values of Q, k, 

 and 


 with  = 0

o

 and 
y
 = 0.1. 

 

Velocity profile 

The velocity profiles of blood flow for different 

values of the consistency index k and yield stress 
y 
with Q 

= 1, 
1
 = 0.1, 

2
 = - 0.1 and  = 0

o

 are sketched in Figure-

4. One can notice the flattened parabolic velocity profile 

of blood as expected for non-Newtonian fluids with yield 

stress. For a given set of values of the parameters Q, 
1
, 

2
 

and , the blood velocity decreases considerably with the 

increase of the yield stress 
y
 of blood and it decreases 

significantly with the increase of the consistency index k. 

The velocity profiles of blood at different locations of 

stenos is and dilatation in the axial direction with k =Q= 1, 


y
 = 

1
 = 0.1, 

2
 = - 0.1and = 0.01

o

are illustrated in Figure-

5. It is clear that the blood velocity decreases with the 

increase of the stenosis depth and an opposite behavior is 

noted when the dilatation height increases.  

 

 
 

Figure-4. Velocity profile for different values of k and 
y
 

with Q = 1, 
1
 = 0.1, 

2
 = - 0.1 and = 0

o

. 

 

 
 

Figure-5. Velocity profiles at different locations in the 

axial direction with k =Q = 1, 
2
 = - 0.1, 

y
  = 

1
 = 0.1 

and = 0.01
o

. 

 

Wall shear stress distribution 

It has been well accepted that the wall shear 

stress plays a vital role in the endothelial homeostasis and 

the focal distribution of atherosclerotic lesions [36 - 38]. 

The axial variation in wall shear stress for different values 

of angle of tapering  and maximum depth of stenosis 


1
and maximum height of dilatation 

2
with 1k Q   and 

0.1
y

  is shown in Figure-6. It is observed that the wall 

shear stress increases rapidly (nonlinearly) with the 

increase of the axial variable from z = 2 to z = 2.5 and then 

it decreases drastically (nonlinearly) with increase of the 

axial variable from z = 2.5 to z = 3 and is almost constant 

with the increase of the axial variable from z = 3 to z = 4 

(in the non-stenotic tapered region) and it falls heavily 

with the increase of the axial variable from z = 4 to z = 4.5 

and it rises rapidly with the increase of the axial variable 

from z = 4.5 to z = 5. For a given set of values of the 

parameters k, Q and y
 , the wall shear stress decreases 

marginally with the increase of angle of tapering of the 

artery . It is also noticed that the wall shear stress 

increases significantly with the increase of the maximum 

height of stenosis and it decreases considerably with the 

increase the dilation height.  

Figure-7 delineates the variation of wall shear 

stress in the axial direction for different values of the 

consistency index k and yield stress y
 with, 

1
 = 0.1 

and 
2
 = -0.1 and Q = 1. It is found that the wall shear 

stress in the blood flow increases significantly with the 

increase of the yield stress y
 of blood when all the other 

parameters kept as invariables. For fixed value of yield 

stress y
 , the wall shear stress increases considerably 

when the consistency index of blood increases. It is of 

important to note that the plot of Newtonian fluid’s wall 

shear stress is in good agreement with the corresponding 

plot in Figure-4 of Priyadharshini and Ponnalagu Samy 
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[35]. Figures-6 and 7 spell out the influence of the 

parameters yield stress, angle of tapering, stenosis depth, 

dilatation height and consistency index on the wall shear 

stress in blood flow through narrow arteries. 

 

 
 

Figure-6. Axial variation in wall shear stress for different 

values of , 
1
 and 

2
 with k = Q = 1, y

  = 0.1. 

 

 
 

Figure-7. Axial variation in wall shear stress for different 

values of k and y
 with , 

1
 = 0.1 and 

2
 = -0.1 

and Q = 1. 

 

Frictional resistance to flow 

Frictional resistance to flow is an important 

rheological measurement in the investigation of blood 

flow through arteries in the abnormal state, like 

constriction, dilation, catheterization etc. Figure-8 shows 

the axial variation in frictional resistance to flow for 

different values of consistency index k and angle of 

tapering  with y
 = 

1
, 


= - 0.1 and Q = 1. For a 

given value of the consistency index k, the frictional 

resistance in blood flow increases slightly with the 

increase of the angle of tapering (i.e. when the artery 

narrows in diameter) and it increases considerably with the 

increase of the consistency index k while rest of the 

parameters held constant. The variation of frictional 

resistance to blood flow with axial distance for various 

values of flow rate Q and yield stress y
 with , 

1
 

= 0.1 and 
2
 = -0.1 and k = 1 is depicted in Figure-9. One 

can notice that the frictional resistance to flow increases 

rapidly when the yield stress y
 of blood increases and the 

flow rate Q is constant, whereas an opposite behavior is 

observed when the flow rate Q increases and the yield 

stress y
 of blood is treated as invariable. Figures 8 and 9 

propounded the influence of the parameters consistency 

index, angle of tapering, flow rate and yield stress on 

frictional resistance to blood flow through narrow arteries 

with constriction and dilation.     

 

 
 

Figure-8. Axial variation in longitudinal impedance to 

flow for different values of k and with 
1
, 



= - 0.1 and Q = 1. 

 

 
 

Figure-9. Axial variation in longitudinal impedance to 

flow for Q and y
 with , 

1
 = 0.1 and 

2
 = -0.1 

and k = 1. 

 

The percentage of increase in the frictional 

resistance to flow due to the increase in the maximum 

depth of stenosis 1 and yield stress y
 with z = 2.5, k = Q = 

1 and  = 0.01 is computed in Table-3. It is found that 

the percentage of increase in the frictional resistance to 

flow increases rapidly (nonlinearly) with the increase of 

the maximum depth of stenosis and it increases marginally 
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with the increase of the yield stress y
 of blood. Note that 

in the case of Newtonian fluid flow, these increases are 

20.23, 46.05, 79.13, 122.27 and 179.64 when the values of 

the maximum depth of stenosis 
1 are 0.05, 0.1, 0.15 and 

0.2 respectively. Table-4 computes the percentage of 

increase in the frictional resistance to flow due to the 

increase in the maximum height dilatation 
2 and yield 

stress y
 with z = 2.5, k = Q = 1 and  = 0.01. One can 

observe that the percentage of increase in the frictional 

resistance to flow increases significantly with the increase 

of the maximum depth of stenosis and it increases slowly 

with the increase of the yield stress y
 of blood.  

 

Table-3. Percentage of increase in frictional resistance to 

flow due to the increase in the maximum depth of stenosis

1 and yield stress y
 with z = 2.5, k = Q = 1and  = 0.01. 

 

1      y  0 0.05 0.1 0.15 0.2 

0.05 20.23 20.25 20.51 20.81 21.95 

0.1 46.05 46.15 46.53 47.18 50.26 

0.15 79.13 79.17 79.92 81.03 87.3 

0.2 122.3 122.53 123.42 125.01 136.51 

0.25 179.6 180.18 181 183.36 203.03 

 

Table-4. Percentage of increase in frictional resistance to 

flow due to the increase in the height of dilatation 
2 and 

yield stress y
 with z = 4.5, k = Q = 1 and  = 0.01. 

 

2      y  0 0.05 0.1 0.15 0.2 

- 0.05 16.11 16.2 16.38 16.62 17.22 

- 0.1 29.07 29.24 29.59 30.02 26.17 

- 0.15 39.6 39.86 40.34 40.93 41.17 

- 0.2 48.24 48.6 49.18 49.9 50.71 

- 0.25 55.38 55.8 56.49 57.32 57.94 

 

Streamlines 

The streamlines of the blood flow pattern for the 

yield stress values 0
y

  , 0.15
y

  , 0.05
y

   and 

0.1
y

  are illustrated in Figures 10(a), 10(b), 10(c) and 

10(d) respectively. One can visualize the widening of the 

plug flow region around the axis of the artery when the 

yield stress of blood increases. It is of interest to note that 

the streamlines of Newtonian fluid flow (when 0
y

  ) is 

in good agreement with the corresponding plot in Figure-

14(a) of Priyadharshini and Ponnalagu Samy [35]. From 

the streamlines, one can easily observe the considerable 

changes in the in the direction of flow in the constriction 

(stenosis) region and dilatation region. Figure-11(a) - 

11(d) depicts the streamlines pattern in blood flow for the 

consistency index k values 0.75, 1, 1.25 and 1.5 

respectively. It is seen that the increase in the consistency 

index value increases the width of the plug flow region. 

The streamlines pattern in blood flow for the flow rate Q 

values 0.75, 1, 1.5 and 2 are sketched in Figures 12(a) - 

12(d) respectively. These plots indicate that the increase of 

the flow rate enhances the volume of fluid passing the 

around the artery axis where maximum velocity occurs. 

Figures 13(a) - 13(d) delineates the streamlines of blood 

flow when (a) 
1 20, 0   ; (b) 

1 20.05, 0.05    ; 

(c) 
1 20.1, 0.1    and (d) 

1 20.1, 0.1   
respectively. One can clearly see the changes in streamline 

pattern in the stenos is and dilation region due to the 

increase in the maximum depth of stenos is and maximum 

height of dilation. 

 

 
(a) y = 0. 

 

 
(b)  y = 0.05. 
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cy = 0.1. 

 

 
(d) y = 0.15. 

 

Figure-10. Stream lines pattern of the flow field for 

different values of yield stress y with   = 0.01, 

1 2 0.1   and k = Q = 1. 

 

 
(a)k = 0.75. 

 

 
(b)k = 1. 

 

 
(c)k = 1.25. 

 

 
(d)k = 1.5. 

 

Figure-11. Stream lines pattern of the flow field for 

different values of consistency index k with 

1 2 0.1y     ,   = 0.01 and k = Q = 1. 
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(a) Q = 0.75. 

 

 
(b)  Q = 1. 

 

 
(c) Q = 1.5. 

 

 
(d)  Q = 2. 

 

Figure-12. Stream lines pattern of the flow field for 

different values of flow rate Q with
1 2 0.1y     , 

  = 0.01 and k = 1. 

 

 
(a) 1 2 0   . 

 

 
(b)  1 20.05, 0.05    . 
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(c)   1 20.1, 0.1   

 
 

 
(d) 1 20.15, 0.15    . 

 

Figure-13. Stream lines pattern of the flow field for 

different values of stenosis depth 1 and dilatation height 

2 with 0.1y  ,   = 0.01 and k = Q = 1. 

 

CONCLUSIONS 

This mathematical investigation brings out 

several useful rheological characteristics of blood when it 

flows in a tapered narrow artery with mild axi-symmetric 

stenosis and dilatation. Blood is represented by non-

Newtonian Casson fluid and the flow is considered as 

steady, axi-symmetric, laminar, fully developed and uni-

directional in the axial direction. The influence of various 

rheological parameters on the physiologically useful flow 

quantities is discussed. The major findings of this 

mathematical analysis are listed below: 

 

 The pressure gradient increases considerably with the 

increase of the yield stress y
 and consistency index k 

of blood and, it decreases marginally with the increase 

of the angle of tapering  of the artery. 

 The pressure gradient increases significantly with the 

increase of the stenosis depth 1 and flow rate Q and, 

it decreases significantly with the increase of the 

dilatation height. 

 The blood velocity decreases considerably with the 

increase of the yield stress 
y
 of blood and it decreases 

significantly with the increase of the consistency 

index k. 

 The wall shear stress decreases considerably with the 

increase of angle of tapering of the artery, 

maximum height of stenosis 
1 , consistency index k 

and yield stress y
 of blood and, it decreases 

considerably with the increase the dilatation height.  

 The frictional resistance in blood flow increases 

slightly with the increase of the angle of tapering and 

it increases considerably with the increase of the 

consistency index k. 

 The frictional resistance to flow increases rapidly 

when the yield stress y
 of blood increases, but an 

opposite behavior is found when the flow rate Q 

increases. 

 The percentage of increase in the frictional resistance 

to flow increases rapidly with the increase of the 

maximum depth of stenosis and maximum height of 

dilatation and, it increases marginally with the 

increase of the yield stress y
 of blood. 

 

The results of this mathematical analysis bring 

out several salient features which may be useful to the 

clinicians and medical surgeons in analyzing the 

consequences of the constrictions and protuberance that 

are developed in the lumen of the artery. Hence, it is 

concluded that the present study may be considered as 

advancement in the mathematical analysis of blood flow in 

tapered narrow blood vessels with constriction and 

dilatation. Since, the pulsatile flow of blood flow is more 

realistic in nature, the pulsatile flow of blood in tapered 

artery with different geometries of constrictions and 

dilations in the presence of magnetic field and body 

acceleration would be studied in the near future.  
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