
 VOL. 13, NO. 17, SEPTEMBER 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4757

ATTACK DATA ANALYSIS TO FIND CROSS-SITE SCRIPTING

ATTACK PATTERNS

Pmd Nagarjun

1, 2
 and Shaik Shakeel Ahamad

1, 3

1Department of Computer Science and Engineering, K L University, Vijayawada, India
2Nagabot Software Development Pvt. Ltd., Nellore, India

3CCIS, Majmaah University, Majmaah, Kingdom of Saudi Arabia

E-Mail: pmdnr@nagabot.com

ABSTRACT

Cross-Site Scripting (XSS) attacks are the most popular web application attacks. In XSS attacks, the attacker

injects malicious code into a web application and execution of that malicious code at the browser side may steal session

tokens, web cookies, or other sensitive information of the user. In this paper, we analysed a large collection of XSS attacks

to find XSS attack patterns. Based on this analysis, we are able to find XSS attacks effects on different programming

languages, domain extensions, and common web pages. Furthermore able to find script tags frequency, keywords

frequency, and special characters frequency in XSS attacks. We also reviewed different prevention techniques of XSS

attacks.

Keywords: web application attacks, cross-site scripting, XSS, malicious code, javascript.

1. INTRODUCTION

Web applications have become part of day-to-day

activities. Most of the web applications are having

vulnerabilities which cause web application attacks. Based

on survey of Open Web Applications Security Project

(OWASP) [1] among all web application attacks Cross-

Site Scripting (XSS) attacks [2] are popular and dangerous

attacks. XSS attacks occur because of improper validation

of user input data. In Cross-Site Scripting attacks attacker

inject malicious code into the web application by

exploiting the vulnerability in the web application.

Execution of that malicious code at web browser by the

user causes stealing of session tokens, web cookies, or

other user’s sensitive information. XSSed Project created

by Kevin and Dimitris [3] contains the largest online

archive of XSS attacks happened on websites.

2. TYPES OF CROSS-SITE SCRIPTING ATTACKS

2.1 Reflected (Non-Persistent)

In this type of attacks [2], website URL request

contains malicious attack code crafted by the attacker.

Web server reflects this malicious code as a response to

users who ever try to access that website URL. Attacker

sends this malicious website URL to victims by email or

messaging and trick victim to click, if the victim clicks on

this malicious URL then the server sends attack code as

response and that attack code will be executed at the

victim’s browser.

Example. Malicious URL.

http://example.com/search.php?keyword=<script>alert

("you are victim");</script>

2.2 Persistent

In this type of attacks [2], injected malicious code

stored at web server's database permanently. If victim

requests stored information at web server then the server

may send malicious code as a response.

Example

The attacker injects malicious code as a comment

in a vulnerable web page.

Comment - Great information, for more related

information, check my site.

<script> alert("you are victim"); </script>

When users visit this attacked web page

malicious code in that comment will be executed in their

browsers.

2.3 DOM-based attacks

In DOM-based XSS attacks [4] malicious code

will stay at the client's side, and there will be no

involvement of server. JavaScript reflect malicious code as

a response to requests handles at the client-side. This

malicious code will modify the DOM environment in the

victim’s browser.

Example

http://example.com/user.html web page contains below

code.

<script>document.write("URL:"+document.location.href);

</script>

Attacker can craft attack URL likes below.

http://example.com/user.html\#<script> alert ("you are

victim"); </script>

We analysed only reflected and DOM-based

Cross-Site Scripting attacks in our study.

3. LITERATURE WORK

 Wurzinger et al. [5] proposed a server-side

reverse proxy technique to mitigate XSS attacks called

SWAP. In this method web application's JavaScript code

is replaced with Script Ids (ex: <script> to <scrip1>) so

executable JavaScript will be converted into

nonexecutable JavaScript. While responding to client,

checks for JavaScript, if there is any JavaScript then it

mailto:pmdnr@nagabot.com

 VOL. 13, NO. 17, SEPTEMBER 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4758

considered an attack, if no JavaScript means safe then

decode all Script Ids and send a response to the client.

Scholte et al. [6] conducted a study on

vulnerabilities related to input validations and

corresponding attacks like XSS and SQL Injection. They

collected more than 7000 vulnerabilities reports from the

National Vulnerability Database (NVD). They studied 78

popular web frameworks of different programming

languages. Their study states that strongly typed languages

provide more security and 50% of frameworks not

implemented any sanitizing functions for input validations.

Moen et al. [7] conducted a study on

vulnerabilities in Government (.gov) sites and shows that

80% of E-Government websites were vulnerable to either

XSS or SQL Injection attacks.

Chandra and Selvakumar [8] proposed an XSS

sanitization tool named BIXSAN (Browser Independent

XSS Sanitizer) which works on the server-side. This tool

filters static tags and allows the static tags and removes all

dynamic tags. It can prevent reflected and stored Cross-

Site Scripting attacks by creating document DOM on

server-side and use this DOM at the client-side.

Bates, Barth, and Jackson [9] proposed an XSS

filter which works on the client-side. In this method XSS

filter act as mediate between the HTML parser and

JavaScript engine. Compare request and response post

data semantics, if there is any malicious JavaScript then it

will block that script before reaching JavaScript engine.

Kirda et al. [10] developed a client-side web

application firewall named Noxes. This works as a

personal firewall and proxy. If the user requests any URL

then it checks the filter list to validate URL before sending

to the server. There will be an alert box for every new

URL which needed to be validated by the user. To avoid

so many alerts there will be a threshold (k), for each page

can have k external links and these are considered valid

for one click or that session.

Kals et al. [11] proposed and implemented a web

application vulnerability scanner named Secubat. SecuBat

works based on generic attack filtering technique so no

need of large database of known vulnerabilities. Main

modules of SecuBat (Crawl, Attack, and Analysis) can run

independently. According to their testing, almost 5% of

websites are vulnerable to XSS attacks. SecuBat able to

find Reflected XSS attacks, Encoded Reflected XSS

attacks, Form-Redirecting XSS attacks, and SQL Injection

vulnerabilities.

Garn et al. [12] conducted tests on five popular

broken web application projects to find Reflected XSS and

Stored XSS vulnerabilities. The process involves creating

attack vectors (tests) and use those attack vectors as inputs

to penetration testing tools like Burp suite, OWASP ZAP

tool. They stated that the accuracy of penetration tools

depends on encoding techniques used by tools.

Hydara et al. [13] conducted a literature review

on 115 research papers related to XSS attacks from 2004

to 2012. Their study shows that most of the work done on

detecting and preventing XSS attack vulnerabilities. Only

two studies show removing vulnerabilities from source

code. Their study also shows that Reflected XSS attacks

are popular XSS attacks compared to other types of XSS

attacks.

Wassermann and Su [14] proposed a static

analysis process to find XSS vulnerabilities. This process

involves string taint analysis and preventing untrusted

scripts. They stated that improper input validation is one

of the main reason for XSS attacks. They tested their

approach on popular PHP open source web applications

and they are able to detect XSS vulnerabilities in those

applications. Their static analysis method able to detect

only Reflected and Stored XSS attacks.

Gupta et al. [15] proposed a tool named XSSDM

which uses pattern matching methods and static analysis to

detect XSS vulnerabilities in web applications. They stated

that their approach shows promising results to detect XSS

vulnerabilities in various HTML context compared to

popular XSS vulnerability detecting tools like Pixy and

RIPS.

Guo, Jin, and Zhang [16] proposed a method

which uses an optimized repository of XSS attack vectors.

This proposed method involves three stages in the first

stage they generated a number of XSS attack patterns

based on XSS attack grammar. In the second stage, they

optimized those XSS attack repository to improve the

efficiency of detection. In the third stage, they used this

optimized attack repository to detect XSS vulnerabilities

dynamically. They claim their method shows a promising

result in detecting XSS vulnerabilities with fewer

performance issues.

Mao [17] provided a security testing framework

which contains different types of tests to conduct proper

web application security testing. They conducted web

application testing in mainly two aspects of static analysis

and dynamic simulation. By using their testing framework

they found some security problems in wecoo.com website.

Shahriar and Zulkernine [18] implemented a tool

named MUTEC in PHP language which performs testing

based on the mutation to find XSS vulnerabilities. 11

mutation operators were proposed by them which will

modify PHP code and JavaScript code. By using MUTEC

tool they are able to find XSS vulnerabilities on 5 open

source applications.

Javed [19] did security analysis on top 25 popular

rich text editors or WYSIWYG editors to find XSS

vulnerabilities. Some of the popular editors involved in

their security analysis were EditLive, TinyMCE,

PHPHTMLEditor etc these editors used by thousands of

websites. They also analysed rich text editors used in

popular websites like Amazon, Yahoo mail, Twitter,

Github etc. They used stepwise systematic attack

methodology to analyse these WYSIWYG editors. They

performed attacks on popular features of these rich text

editors like link insertion, image insertion, video insertion

etc. Their analysis shows that all 25 WYSIWYG editors

were having XSS vulnerabilities.

Kazanavicius et al. [20] proposed the Embedded

Web Application Firewall (EWAF) based on the blacklist

and whitelist filters. Their tests show that whitelist filters

are better compared to blacklist filters at high loading

situations. Based on user request EWAF analyse which

 VOL. 13, NO. 17, SEPTEMBER 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4759

attacks were possible like XSS, SQL Injection, etc. After

analysing possibilities of attacks, the request sent through

corresponding XSS module or SQL Injection or other

modules based on attack type. Then take a decision

whether the request is good or it contains attack string

based on results of corresponding attack module.

Yusof and Pathan [21] tested the effectiveness of

Content Security Policy (CSP) on a prototype website that

runs on Apache web server. They collected XSS attacks

from different XSS cheat sheets and used 50 unique

vectors to simulate all 3 types of XSS attacks. They

conducted these attack tests on four popular browsers

Firefox, Chrome, Opera and OS X Yosemite. Their test

results show that the CSP technique able to prevent all

tested XSS attacks on all four browsers.

Shanmugasundaram, Ravivarman, and

Thangavellu [22] studied different prevention techniques

for XSS attacks. They stated that websites contain XSS

vulnerabilities because developers or users don’t have

sufficient knowledge on XSS problems, developers are

unable to implement existing solutions in their

applications, improper encoding of untrusted data and

most of the existing tools only prevent reflected and stored

XSS attacks they are unable to prevent DOM-based XSS

attacks.

4. OUR ANALYSIS METHOD
We collected Cross-Site Scripting attack URLs

from the XSSed website [3] from 2010 to 2015. All attack

URLs are converted into a readable format. The total

number of Cross-Site Scripting attacks collected were

9421. We collected information related to top 1000

websites from Alexa website [23]. Simple examples of

encoded XSS attack URLs along with their decoded

format are given below.

Example-1.

Attack URL:

https://www.example.edu/psearch.php?page_not_found=

%3Ch1%3EYou%20are%20%3Cbr%3E%20XSS%20Atta

cked%3C%2Fh1%3E%20%3Cscript%3Ealert%20(%22Y

our%20Cookie%20is%3A%22%20%2Bdocument.%20co

okie%20)%20%3C%2Fscript%3E

Decoded Attack URL:

https://www.example.edu/psearch.php?page_not_found=

<h1>You are
 XSS Attacked</h1> <script>alert

("Your Cookie is:" +document. cookie) </script>

Example-2.

Attack URL:

https://www.example.edu/puser/pdata/showuserprofile.php

?WEBID=

r5nrr3wBe7CiV7PxHiU1xcAhmCUvl&PID=P141923&S

SHTOKEN=

9089881&ID=1919&NAME=USER&WELMSG=%3Cscr

ipt%20%3Edocument%20.getElementById%20(%22clickl

ink%22)%20.innerHTML%3D%20%22http%3A%2F%2F

example.net%2Fattackwebsite.php%22%20%3B%3C%20

%2Fscript%3E

Decoded Attack URL:

https://www.example.edu/puser/pdata/showuserprofile.php

?WEBID=

r5nrr3wBe7CiV7PxHiU1xcAhmCUvl&PID=P141923&S

SHTOKEN=

9089881&ID=1919&NAME=USER&WELMSG=<script

>document .getElementById ("clicklink") .innerHTML=

"http://example.net/attackwebsite.php" ;< /script>

Example-3.

Attack URL:

https://www.example.edu/usermsg.asp?user-msg=

%3Cscript%20%3Edocument%20.write%20(%22%3Ca%

20href%3D%27http%3A%2F%2Fexample.edu%2Fsessio

nsteal.asp%27%20%3E%20Songs%3C%2F%20a%3E%2

2)%3B%3C%2Fscript%3E

Decoded Attack URL:

https://www.example.edu/usermsg.asp?user-msg=<script

>document.write("<ahref='http://example.edu/sessionsteal.

asp' > Songs</ a>");</script>

5. RESULTS

We analysed a large collection of XSS attacks to

find XSS attack patterns. Figure-1 shows extracted

information after analysing XSS attacks.

Figure-1. Extracted information from XSS attacks.

5.1 Attacks on websites
Total XSS attacks were 9421. Figure-2 shows

Government and popular websites were attacked 2941

times. Top 1000 websites attacked 882 times.

 VOL. 13, NO. 17, SEPTEMBER 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4760

Figure-2. Total attacks on websites.

Figure-3 shows multiple attacks on the same

websites, 861 websites were affected multiple times, 611

government and popular websites attacked multiple times.

In top 1000 websites, 8 websites were attacked multiple

times.

Figure-3. Multiple attacks on the same website.

5.2 Programming languages analysis

We analysed XSS attacks on web pages

developed with different programming languages. From

Figure-4 shows that almost half of XSS attacks were on

websites developed with PHP language. 82.4% [24] of

websites were developed with PHP. PHP is easy to learn

and easy to develop language so new developers write

insecure PHP applications which cause a lot of

vulnerabilities in those websites [25].

Figure-4. Attacks on web pages developed with different

programming languages.

5.3 Domain extensions analysis

We analysed XSS attacks on different domain

extensions. Figure-5 shows that attackers always try to

attack popular domain extensions like .com, .org, .gov,

.edu etc.

Figure-5. Attacks on domain extensions.

From Table-1 total .gov websites [26] were

<0.1% but total attacks on .gov sites were 6.3%. Similarly

.edu websites were 0.1% but attacks on .edu sites were

4%. It shows that attackers are more focused on exploiting

Government and Educational websites because of weak

security measures were taken by these websites.

 VOL. 13, NO. 17, SEPTEMBER 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4761

Table-1. Top level domain extensions and attacks.

Domain

extension
% of Attacks % of Websites

.com 53.7% 48.5%

.org 8% 4.7%

.gov 6.3% <0.1%

.net 6% 4.6%

.edu 4% 0.1%

5.4 Web pages analysis

Attackers focus on the functionality of different

web pages to find common vulnerabilities to exploit them.

We analysed different web pages based on their

functionality like search, error reporting, login pages etc.,

and a number of attacks occurred on them, see Figure-6.

Coding secure search functionality is one of the

difficult tasks in web application development. Figure-6

shows that almost 30% of attacks were performed on

search pages. Instead of writing own search feature,

developers can use the popular Google custom search [27]

to avoid risk being attacked through vulnerabilities in own

search pages.

Figure-6. Attacks on particular web pages.

5.5 Script tags analysis (Script word in number of

 attacks)

Among all 9421 XSS attacks, 7632 attacks

contains "script" word, 7226 attacks contains "<script"

word, 6213 attacks contains "</script>" word, 1221

attacks contain only "<script" word, 208 attacks contain

only "</script>" word and 6005 attacks contain both

"<script", "</script>" words. Figure-7 and Figure-8 shows

that script open (<script>) and end (</script>) tags were

involved in almost all attacks.

Figure-7. <script and </script> tags analysis in

total attacks.

Figure-8. Script, <script and </script> tags analysis in

total attacks.

By proper validation of these script tags from

input data, most of the attacks can be avoided.

5.6 Keywords analysis
We analysed different keywords involved in XSS

attacks like document.cookie, iframe, onmouseover etc.

shown in Table-2. Among all keywords after "alert"

keyword, "document.cookie" is a common keyword in

most attacks.

The keywords shown in Table-2 may not be the

original keywords involved in actual attacks. Because

attacks showed by XSSed were validated by them. Instead

of malicious code, they replace with simple alert

examples.

Table-2. Keywords used in XSS attacks.

Keyword Number of occurrences

alert 7707

document.cookie 2503

Iframe 858

onmouseover 110

eval 91

5.7 Characters analysis - Frequency of special

 characters in all attacks

 We analysed how frequently some special

characters involve in XSS attacks. The frequency of

special characters is shown in Table-3.

 VOL. 13, NO. 17, SEPTEMBER 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4762

Table-3. Frequency of special characters in XSS attacks.

Special characters Number of occurrences

> 37248

. 37020

< 30470

“ 11853

) 10066

(9983

‘ 4280

From Figure-9 shows that <, > characters were

involved in almost all attacks. So to perform a successful

Cross-Site Scripting attacks <, > are necessary. This can

be avoided by proper validation of input data.

Figure-9. Frequency of < and > characters in total attacks.

6. XSS PREVENTION TECHNIQUES

6.1 Validating user data
One of the root causes of XSS attacks is an

improper validation of user data [14]. Developers need to

validate user data properly at server-side.

Some of the validation checks on server-side will

be username need to be only alphanumeric, user age needs

to be an integer, etc.

In PHP language developers uses preg_match(),

filter_var() and other functions to validate user data.

preg_match() function uses regular expressions to validate

data.

Example-1. Validate name.

$username = $_POST["username"];
if (!preg_match("/^[a-zA-Z]*$/",$username)) {
 $printError = "Only white space and letters allowed";
}

Example-2. Validate URL.

$useremail = $_POST["useremail"];
if(!filter_var($useremail, FILTER_VALIDATE_EMAIL)) {
 $printError = "Enter Valid Email";
}
Scholte et al. [6] study show that 50% of popular web

frameworks not implemented proper techniques to validate

input data.

6.2 Encoding/Escaping data
Developers need to implement web applications

which will escape untrusted data before displaying in the

browser to the user.

Encoding/Escaping is a primary technique to

defend against XSS attacks [28]. Different escaping

schemes [29] are used based on locations, where untrusted

user data inserted in HTML document. Table-4 shows

different escaping schemes with example locations.

6.3 Content Security Policy (CSP)

CSP restricts browsers to only allow trusted

recourses like scripts, images, videos, etc. Developers or

Server administrators can create a whitelist of trusted

recourses [30]. Those trusted details are sent to the

browser as security policies in HTTP response from web

server. Most of the XSS defense techniques prevent one

or two types of XSS attacks but the CSP method able to

prevent all three types of XSS attacks.

By using CSP rules developer can block

untrusted external recourses, can disable in-line JavaScript

and CSS codes and can disable eval function of

JavaScript.

Table-4. Escaping schemas and corresponding HTML

document locations.

Escaping

schemas
HTML document locations

HTML

Escape

<div>

Escaped HTML data here

</div>

Attribute

Escape

<div style="Escaped Attribute data here"

>

text

</div>

JavaScript

Escape

<script>

alert("Escaped JavaScript Data")

</script>

CSS

Escape

<div style="color: Escaped CSS data

here">

text

URL

Escape

<a href="http://www.example.com?data=

Escaped URL data">click here

To enable CSP developer need to include Content

Securit Policy HTTP header.

Example. Content Security Policy HTTP header.

Content‐Security‐Policy:

script‐src 'self' testscripts.example.net;
media‐src 'self';
style-src 'self';

img‐src *;

default‐src 'none';

Above CSP policy restricts scripts loading from

testscripts.example.net or same origin (host), restricts

 VOL. 13, NO. 17, SEPTEMBER 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4763

loading of audio, video files from the same origin, restricts

loading of style sheets to the same origin, images can be

downloaded from any host and all other resources are

restricted to download from any host.

7. CONCLUSIONS

Our results show that websites developed with

PHP language were attacked more frequently with XSS

attacks. Furthermore shows that implementing a search

feature in web applications involve a lot of risk being

attacked, to avoid this developer can use Google Custom

Search module. < and > characters are not common

characters used in user input data. So by properly filtering

special characters mainly < and > can avoids 90% of

Cross-Site Scripting attacks. Compared to normal websites

more XSS attacks happening on government and

educational websites so these sites maintainers need to

follow proper security measures. Developers need to

properly validate user input data, escape untrusted data

and implement Content Security Policy to avoid Cross-

Site Scripting attacks.

REFERENCES

[1] OWASP. 2016. Owasp top ten project,

https://www.owasp.org/index.php/Category:

OWASP_Top_Ten_Project

[2] Grossman J. 2007. XSS Attacks: Cross-site scripting

exploits and defense. Syngress.

[3] Fernandez K. & Pagkalos D. 2007. XSSed Project.

[4] OWASP. 2015. DOM Based XSS,

https://www.owasp.org/index.php/DOM_Based_XSS

[5] Wurzinger P., Platzer C., Ludl C., Kirda E. & Kruegel

C. 2009, May. SWAP: Mitigating XSS attacks using a

reverse proxy. In Proceedings of the 2009 ICSE

Workshop on Software Engineering for Secure

Systems (pp. 33-39). IEEE Computer Society.

[6] Scholte T., Robertson W., Balzarotti D. & Kirda E.

2012, March. An empirical analysis of input

validation mechanisms in web applications and

languages. In: Proceedings of the 27
th

 Annual ACM

Symposium on Applied Computing (pp. 1419-1426).

ACM.

[7] Moen V., Klingsheim A. N., Simonsen K. I. F. &

Hole K. J. 2007. Vulnerabilities in e-governments.

International Journal of Electronic Security and

Digital Forensics. 1(1): 89-100.

[8] Chandra V. S. & Selvakumar S. 2011. Bixsan:

Browser independent XSS sanitizer for prevention of

XSS attacks. ACM SIGSOFT Software Engineering

Notes. 36(5): 1-7.

[9] Bates D., Barth A. & Jackson C. 2010, April. Regular

expressions considered harmful in client-side XSS

filters. In: Proceedings of the 19
th

 international

conference on World wide web (pp. 91-100). ACM.

[10] Kirda E., Kruegel C., Vigna G. & Jovanovic N. 2006,

April. Noxes: a client-side solution for mitigating

cross-site scripting attacks. In Proceedings of the 2006

ACM symposium on Applied computing (pp. 330-

337). ACM.

[11] Kals S., Kirda E., Kruegel C. & Jovanovic N. 2006,

May. Secubat: a web vulnerability scanner. In:

Proceedings of the 15
th

 international conference on

World Wide Web (pp. 247-256). ACM.

[12] Garn B., Kapsalis I., Simos D. E. & Winkler S. 2014

July. On the applicability of combinatorial testing to

web application security testing: a case study. In

Proceedings of the 2014 Workshop on Joining

AcadeMiA and Industry Contributions to Test

Automation and Model-Based Testing (pp. 16-21).

ACM.

[13] Hydara I., Sultan A. B. M., Zulzalil H. &

Admodisastro N. 2015. Current state of research on

cross-site scripting (XSS)–A systematic literature

review. Information and Software Technology. 58,

170-186.

[14] Wassermann G. & Su Z. 2008 May. Static detection

of cross-site scripting vulnerabilities. In Proceedings

of the 30th international conference on Software

engineering (pp. 171-180). ACM.

[15] Gupta M. K., Govil M. C., Singh G. & Sharma P.

2015, August. XSSDM: Towards detection and

mitigation of cross-site scripting vulnerabilities in

web applications. In Advances in Computing,

Communications and Informatics (ICACCI), 2015

International Conference on (pp. 2010-2015). IEEE.

[16] Guo X., Jin S. & Zhang Y. 2015, September. XSS

vulnerability detection using optimized attack vector

repertory. In Cyber-Enabled Distributed Computing

and Knowledge Discovery (CyberC), 2015

International Conference on (pp. 29-36). IEEE.

[17] Mao C. 2009, November. Experiences in security

testing for web-based applications. In Proceedings of

the 2nd International Conference on Interaction

 VOL. 13, NO. 17, SEPTEMBER 2018 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2018 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 4764

Sciences: Information Technology, Culture and

Human (pp. 326-330). ACM.

[18] Shahriar H. & Zulkernine M. 2009 May. Mutec:

Mutation-based testing of cross site scripting. In

Proceedings of the 2009 ICSE Workshop on Software

Engineering for Secure Systems (pp. 47-53). IEEE

Computer Society.

[19] Javed A. 2014. Revisiting XSS Sanitization,

http://www.blackhat.com/docs/eu-14/materials/eu-14-

Javed-Revisiting-XSS-Sanitization-wp.pdf

[20] Kazanavicius E., Kazanavicius V., Venckauskas A. &

Paskevicius R. 2012. Securing web application by

embedded firewall. Elektronika ir Elektrotechnika.

119(3): 65-68.

[21] Yusof I. & Pathan A. S. K. 2016. Mitigating Cross-

Site Scripting Attacks with a Content Security Policy.

Computer. 49(3): 56-63.

[22] Shanmugasundaram G., Ravivarman S. &

Thangavellu P. 2015, April. A study on removal

techniques of Cross-Site Scripting from web

applications. In: Computation of Power, Energy

Information and Communication (ICCPEIC), 2015

International Conference on (pp. 0436-0442). IEEE.

[23] Alexa. 2017. Alexa top 1 million sites,

http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

[24] W3techs.com. 2016. Usage statistics and market share

of php for websites,

https://w3techs.com/technologies/details/pl-php/all/all

[25] OWASP. 2016. Php security cheat sheet,

https://www.owasp.org/index.php/PHP_Security_Che

at_Sheet

[26] W3techs.com. 2016. Usage of top level domains for

websites, https://w3techs.com/technologies/

overview/top_level_domain/all

[27] Google. 2017. Google custom search engine,

https://cse.google.co.in/cse/

[28] Cross-site scripting. 2017. Wikipedia, the Free

Encyclopedia. https://en.wikipedia.org /w/index. php?

title=Cross-site_scripting&oldid= 783156453

[29] OWASP. 2017. XSS (Cross Site Scripting) Prevention

Cheat Sheet,

https://www.owasp.org/index.php/XSS_(Cross_Site_

Scripting)_Prevention_Cheat_Sheet

[30] Mozilla. 2017. Content Security Policy (CSP),

https://developer.mozilla.org/en-US/docs/Web/

HTTP/CSP.

