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ABSTRACT 

Geotechnical and engineering geology practitioners are always looking out for tools which can help understand 
and reduce the large uncertainty and variations in rock masses after complex geological processes. Relying on traditional 
interpolation techniques for geotechnical variables may lead to large uncertainty and major stability risk in the mining 
phase. The present paper proposes a direct and indirect methodology based on geostatistical estimation and simulation 
techniques to determine the expected Rock Mass Rating (RMR) and its underlying parameters, each geostatistical model 
identifies potential risk-prone areas in which failures could be experienced, superposing the different resulting maps 
allowed us to define low-risk conservative RMR model. A total of 115 underground rock blocks samples from five mining 
openings were examined for the rock mass quality using the RMR, Q and RMi characterization systems. Cross-validation 
and jack-knifing techniques showed that the proposed indirect estimation and simulation methods outperformed the more 
frequently used direct approach and shows a more accurate map with a low error coefficient which makes them adequate 
for RMR modeling. The resulting map of the indirect approach allowed taking into account the nonlinear nature, 
directional behavior of the RMR and its constitutive parameters which can be used to assist engineers in proposing suitable 
excavation techniques and an appropriate support system. The developed model help to assess different geomechanical 
parameters that can use to develop numerical models that explicitly consider the rock mass heterogeneity. 
 
Keywords: geomechanics, rock mass rating, geostatistical analysis. 
 
List of symbols or abbreviations 

 
OK : Ordinary kriging 

SK : Simple kriging 𝑂𝐾𝑖  Indirect ordinary kriging 𝑂𝐾𝑑 Direct ordinary kriging 

OCK : Ordinary co-kriging 

OCK1 : Ordinary co-kriging (Q* as a covariate) 

OCK2 : Ordinary co-kriging (RMi* as a covariate) 

CGS : Conditional Gaussian simulation 𝐺𝐶𝑆𝑖  Indirect Gaussian conditional simulation 𝐺𝐶𝑆𝑑 Direct Gaussian conditional simulation 

IDW : Inverse distance weighting 

v : Spherical variogram model 

Exp : Exponential variogram model 

Gaus : Gaussian variogram model 𝐿𝑠 : Variogram Lag size 𝐶0 : Nugguet semivariance 𝐶00 : Nugget semivariance of the Primary 
variable 𝐶11 : Cross-variogram Nugget semivariance 𝑆𝑖𝑙𝑙00 ∶ The sill of the primary variable variogram 𝑆𝑖𝑙𝑙01 : The sill of the covariate variogram 𝑆𝑖𝑙𝑙11 : Cross-variogram sill 

RMR : Rock mass rating 

RMi : Rock mass index 
Q : Rock mass quality 

UCS : Uniaxial compressive strength 

RQD : Rock quality designation 

Jn : Joint set number 

Jr : Joint roughness number 

Ja : Joint alteration number 

Jw : Joint water reduction factor 

Jc : Joint surface condition 

RSS : Residual sum of squares 

RMSE : Root mean squared error 

MAPE : Mean absolute percent error 

NMAE : Normalized mean-absolute error 𝑆𝑘 : Skewness 𝐾𝑟  : Kurtosis 

GSI : Geological strength index 𝐸𝑚 : Rock mass deformation modulus 𝜎𝑐𝑚 : Rock mass compressive strength 𝜑𝑚 : Internal friction angle of rock mass 𝑐𝑚 : The cohesion of rock mass 

r² : Coefficient of determination 𝑄∗: Q-system transformed covariate variable 𝑅𝑀𝑖∗: RMi transformed covariate variable 𝑝 IDW exponent value 𝛾∗(ℎ) Experimental Semivariogram 

Min Minimum value 

Max Maximum value 
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1. INTRODUCTION  
Geotechnical engineering practitioners are always 

looking out for tools which can improve the design and 
help understand and reduce the large uncertainty and 
variations in rock masses. In the literature, only a few 
applications can be found aiming the estimation of RMR 
(Ferrari et al, 2014) [1] (Marisa Pinheiro et al, 2016) [2] 
(Hesameddin Eivazy, 2017) [3]. These authors have 
concluded that rock mass parameters are reasonably 
predictable in unsampled locations using geostatistical 
interpolation methods. These analyses have been applied 
to specific geotechnical problems on limited area and 
localized sites.  

Rock masses are characterized by uncertainty and 
heterogeneity after complex geological processes. 
Relyingon traditional interpolation methods may lead to 
large uncertainty and major stability risk in the mining 
phase. The tackling of the described problems can be 
made using a sophisticated analysis taking into account the 
spatial relationship of a modeled the rock mass rating 
which is a very significant criterion to evaluate the 
stability of an underground mining area. 

Rock mass rating was developed by Bieniawski 
[4], it is an index of rock mass competency based on the 
rating of five parameters:  
 A1 Intact rock strength A2 Rock quality designation (RQD)   A3 Joint spacing (Js) A4 Joint surface condition (Jc)   A5 Groundwater condition (Jw) 
 𝑅𝑀𝑅𝑏𝑎𝑠𝑖𝑐 = ∑ 𝐴𝑖5𝑖=1                                                         (1) 
 

This paper focuses on applying and comparing 
different geostatistical techniques to predict basic RMR 
values, directly and indirectly, performs quantifying 
uncertainty prediction taking into account spatial 
variability. The analysis is made in an attempt to use these 
interpolations for assessment of rock mass geomechanical 
parameters.  

The interpolation results obtained by direct and 
indirect approach are statistically compared via cross-
validation and jack-knifing techniques in order to measure 
the benefits of using geostatistics.  
 
2. GEOLOGICAL SETTING AND CASE STUDY 

Imiter silver mine is located on the northern side 
of the Precambrian JbelSaghro inlier (eastern Anti-Atlas, 
Morocco) (Figure-1), north of the West African Craton. 
Two major lithostructural units are recognized: the lower 
complex made of Middle Neoproterozoic detrital 
sediments intruded by ca. 570–580 Ma diorite and 
granodiorite plutons, the upper complex composed by lava 
flows and ash-flow tuffs associated with cogenetic 
granites. The Imiter deposit, localized along N070–090° 
E-trending regional faults system is assumed to be a Late 
Neoproterozoic epithermal deposit, hosted by both lower 
and upper complexes. The ore deposition is genetically 
associated with the felsic volcanic event, dated at 550 Ma, 
and assumed to result from a regional extensional tectonic 
regime. 
The Imiter fault system, 10-km long, is localized at the 
contact between lower and upper complexes (Figure-1b). 
It consists in the association between N090°E and N060–
070 °E faults that define a succession of apparent left-
lateral pull-apart texture, at map scale (Figure-1). At 
Imiter II, the main B3 corps (sampling area) is oriented 
N065 °E with a south dipping and intercepted by four sets 
of discontinuities (Figure-3). 

 

 
 

Figure-1. a) Schematic map of the Moroccan Anti-Atlas and localization of the Imiter silver mine and other mineral 
bearing indices of the JbelSaghro. (b) Simplified geological map of the Imiter silver mine. 
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Figure-2. Flowchart of the research approach. 
 

 
 

Figure-3. Stereonet diagram (lower hemisphere) showing 
the main discontinuities sets of the sampling zone. 

 
The study area is at a depth of 500m is 

characterized by: 
 
 The common rock type are meta-siltstones 

 There are prominent foliations over all the rock mass 

in Est-West direction. 

 There are multiple discontinuity sets, many of which 

intersect each other. 

The underground geotechnical surveys method 
provides a great opportunity for engineers and geologists 
to observe and sample the rock mass on the excavation 
faces. A total of 115 rock blocks samples from five mining 
openings were examined for the rock mass quality using 
the RMR (Figure-4), Rock Quality system (Q) and Rock 
Mass Index (RMi) characterization systems, the outcrop 
mapping was carried out on freshly exposed parallel faces 
in the horizontal south to north direction to simplify 
variables with directional behavior. 
 

 
 

Figure-4. Map of spatial distribution for basic 
RMR values. 

 
3. EXPLORATORY STATISTICAL ANALYSIS 

To provide an overview of the measured selected 
variables data, a basic statistical study was made. Classical 
descriptors were determined, such as mean, maximum, 
minimum, standard deviation and skewness (𝑆𝑘) of data 
distribution. 

The descriptive statistics of the rock mass rating 
data suggested that the RMR may vary from 27 to 74 with 
a mean value of 46.9% and standard deviation of 11,72%, 
the geomechanical quality of the rock mass varies from 
poor to good. The summary of the statistics for rating 
parameters is shown in (Table-1). 

The coefficients of variation of RMR parameters 
ranged from 7% to 43%, It was noted the presence of a 
strong spatial variability of RMi and Q ratings with a 
variation coefficient of 103% and 154% respectively. 

Once the data set was checked, the next step was 
generating the histogram to study the symmetry and 
pattern of the frequency distribution and to determine how 
much percent of the samples are far from the central value. 
The histogram of RMR, RMi and Q values are displayed 
in (Figure-5). 

The uniaxial compressive strength (UCS), Q, and 
RMi data were positively skewed, the rest of other 
parameters 

Data collection

Exploratory statistics

Datasets

Main datasetSub-dataset

Direct approachIndirect approach

Jack-knifing Cross-validation

RMR interpolation Map

Engineering applications
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Table-1. Descriptive statistics of rock mass collected data. 
 

 
Max Min 

Standard 

deviation 
Median Average Variance Skewness Kurtosis 

R
at

in
gs

 

UCS 4.91 3.63 0.29 3.76 3.87 0.08 1.40 1.49 

RQD 20.00 5.00 4.36 8.00 9.72 19.00 0.41 -1.16 

Js 10.00 5.00 1.70 8.00 7.32 2.88 -0.25 -1.07 

Jc 28.00 2.00 5.55 12.00 13.04 30.77 0.33 -0.45 

Jw 15.00 9.00 2.48 15.00 12.94 6.16 -0.38 -1.87 

RMR 74.91 27.63 11.72 47.78 46.90 137.4 0.08 -0.92 

 

 
 

Figure-5. Frequency distribution for modelling variables. 
 
were normally distributed (skewness of between -1 and 1), 
there are some maxima, but the entire distribution can be 
treated as having a single peak. 
 
4. TREND ANALYSIS 

Many geostatistics techniques assume of spatial 
stationarily, the validity of this property (i.e. The absence 
of regular trends in space) needs to be verified by 
projecting the sample locations on an x, y plane. The RMR 
value of each sample is given in the z dimension (Figure-
6). 
 

 
 

Figure-6. RMR trend analysis projections. 

The Trend Analysis of RMR data does not 
present any systematic trend or change in space, because 
the values cannot be interpolated by a monotone ascending 
or descending function in the studied domain, this leads to 
assume a ‘‘trend’’ free case in this study where stationarily 
condition can be applied and kriging can be allowed. 
 

5. MODEL EVALUATION 

The evaluation of RMR variograms and maps 
accuracy is based on the following parameters: 
 The root-mean-square error (RMSE) : 

𝑅𝑀𝑆𝐸 = √1𝑛 ∑ (𝐴𝑡 − 𝐹𝑡)²𝑛𝑖=1                                            (2) 

 
 The Residual sum of squares (RSS) : 𝑅𝑆𝑆 = ∑ (𝐴𝑡 − 𝐹𝑡)²𝑛𝑖=1                                                      (3) 
 
 The normalized mean-absolute error (NMAE) : 𝑁𝑀𝐴𝐸 = 100% ∑ 𝐴𝑡−𝐹𝑡𝐴𝑡𝑛𝑖=1                                              (4) 

 
 The mean absolute percentage error (MAPE) : 𝑀𝐴𝑃𝐸 = 1𝑛 ∑ |𝐴𝑡−𝐹𝑡𝐴𝑡 |𝑛𝑖=1                                                     (5) 

 
Where, 𝐴𝑡 Is the actual value, 𝐹𝑡 Is the predicted 

value of the output variable and 𝑛 is the number of 
samples. 
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6. SPATIAL ANALYSIS  
 
6.1. Geostatistical estimation 

McDonnell & Burrough (1998) [5] have shown 
that for applications in geosciences, Kriging is the best 
linear unbiased estimator (Journel and Huijbregts, 1978) 
[6] (Isaaks and Srivastava, 1989) [7]. The construction of 
the kriging estimator is done by successively imposing 
these features (linearity, unbiasedness, optimality). 
Variations of the estimate are achieved by imposing a 
known or unknown mean and allowing local variations of 
it (Goovaerts, 1997) [8]. 
 
6.2 Geostatistical simulation 

Geostatistical simulation is a stochastic, nonlinear 
modeling method that obtains multiple plausible 
realizations of spatial variability based on the same input 
data according to the following criteria (Dowd, 1993) [9]: 
 
 At all sampled locations they honor the real values, 
 They have the same spatial dispersion (i.e. same 

variogram, as the true values), 
 They have the same distribution as the true values 
 
6.3 Variography analysis 

Spherical, exponential and Gaussian isotropic 
theoretical functions were fitted to the sample variograms 
depending on the shape using a weighted least squares 
method (Robertson, 1987) [10] procedure and cross-
validation technique. 0The parameters of the model: 
nugget semivariance, range, and sill or total semivariance 
were determined. 

To define different classes of spatial dependence 
for RMR, the ratio between the nugget semivariance and 
the sill was used (Cambardella et al, 1994) [11]. If the 
ratio was ≤25%, the variable was considered to be strongly 
spatially dependent, or strongly distributed in patches, the 
RMR was considered strongly spatially dependent. 
 
7. DIRECT APPROACH 

In the direct approach, the RMR basic values 
were used directly as inputs to inverse Distance 
Weighting, geostatistical estimation, and simulation in 
order to create 2D models of RMR in the mining area. 
This approach neglects the nonlinear nature of RMR 
underlying variables. However, it is considered as a 
simple, quick and practical solution. 
 
7.1 Inverse distance weighting 

Inverse Distance Weighting (IDW) 
interpolation is a deterministic, nonlinear interpolation 
technique that uses a weighted average of the attribute 
values from nearby sample points to estimate the 
magnitude of that attribute at non-sampled locations, 
assuming that each measured point has a local influence 
that diminishes with distance. It weights the points closer 
to the prediction location greater than those farther away. 
IDW is calculated as: 
 𝑍∗(𝑢) = ∑ 𝜆𝑖𝑍(𝑢𝑖)𝑛𝑖=1                                                       (6) 

𝑍(𝑢𝑖) Are the conditioning data  𝑛 is the number of sample points 𝜆𝑖 Are the assigned weights  
The weights are determined as: 

 𝜆𝑖  = 1𝑑𝑖𝑝∑ 1𝑑𝑖𝑝𝑛𝑖=1                                                                       (7) 

 ∑ 𝜆𝑖𝑛𝑖=1 = 1                                                                      (8) 
 𝑑𝑖 Are the Euclidian distances between estimation 

location and sample points 𝑝  is the power or distance exponent value. 
 
 

 
 

Figure-7. RMSE and MAPE plotted for several 
different powers. 

 
The optimal power value is determined by 

minimizing the root mean square error and the mean 
absolute percentage error calculated from RMR cross-
validation. 

Figure-7 shows that IDW with power 10 is an 
optimal distance exponent value that produces the 
minimum RMSE and MAPE. As p increases only the 
immediate surrounding data points will influence the RMR 
prediction. 
 

 
 

Figure-8. IDW interpolation map for RMR data. 
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Table-2. Results of OK variography analysis. 
 

 Variogram parameters Goodness-of-fit Cross-validation 

Models 𝐿𝑠 𝐶0 Range Sill 𝐶0/Sill % RSS R² RMSE 

Sph 1.41 0 11.35 139.15 0 794 0.958 3.912 

Exp 2.76 0 22.12 170.53 0 310 0.995 4.38 

Gaus 1.43 11.42 8 125.49 9 1742 0.964 4.505 

 
7.2 Ordinary kriging 

Ordinary kriging (OK) is the most widely used 
kriging method. It serves to estimate a value at a point of a 
region for which a variogram is known, using data in the 
neighborhood of the estimation location. The spatial 
distribution of the rock mass rating data was analyzed 
using geostatistics. Spatial patterns are usually described 
using the experimental Semivariogram 𝛾∗(ℎ),which 
measures the average dissimilarity between RMR data 
separated by a vector ℎ. 
 𝛾∗(ℎ) = 12𝑁(ℎ) ∑ [𝑧(𝑥𝑖) − 𝑧(𝑥𝑖 + ℎ)]2𝑛(ℎ)𝑖=1                         (9) 

 
where 𝑛 is the number of pairs of sample points 

separated by the distance ℎ. 
Semivariogram sample is calculated from the data 

sample using the following equation: 
 𝑍∗(𝑥) = ∑ 𝜆𝑖𝑧(𝑥𝑖)𝑛𝑖=1                                                     (10) 
 𝑍∗(𝑥)  : prediction location 
 ∑ 𝜆𝑖𝑛𝑖=1 = 1                                                                    (11) 
 𝜆𝑖  : unknown weight of measured value of pairs of 

point 𝑍(𝑥𝑖)  : measured value of pairs of point 𝑛  : number of measured values 
 

The most important step in the use of 
geostatistical methods is to obtain the variogram with high 
correlation. 

This step has a significant impact on the behavior 
and results of the model. Spherical, exponential, Gaussian 
models were fitted to the RMR empirical semivariograms 
assuming isotropic condition.  
 

 
 

Figure-9. OK Experimental Semivariogram and fitted 
model for RMR data. 

 
Figure-9 shows the empirical variogram, which is 

a plot of the values of as a function of h, gives information 
on the spatial dependency of the RMR variable. The 
Spherical model with the smallest RMSE=3.912 (Table-2) 
was selected to describe the RMR spatial dependency 
(Figure-10). 
 

 
 

Figure-10. Ordinary kriging map for RMR data. 
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Table-3. Results of the RMR-Q* cross-variography analysis. 
 

 Variogram parameters 
Goodness-of-

fit 

Cross-

validation 

R
M

R
 x

 Q
* Models 𝑳𝒔 𝑪𝟎𝟎 𝑪𝟏𝟏 Range 𝑺𝒊𝒍𝒍𝟎𝟎 𝑺𝒊𝒍𝒍𝟎𝟏 𝑺𝒊𝒍𝒍𝟏𝟏 𝑹𝑺𝑺𝟏𝟏 𝑹²𝟏𝟏 RMSE 

Sph 1.57 0.078 0.042 12.6 148.71 1.94 13.38 50.1 0.942 3.452 

Exp 2.5 0 0 20.03 166.35 2.37 10.25 6.35 0.967 3.443 

Gaus 1.49 10.93 0.137 7.97 124.58 1.7 13.88 15.1 0.986 4.223 
 

Table-4. Results of the RMR-RMi* cross-variography analysis. 
 

 Variogram parameters 
Goodness-of-

fit 

Cross-

validation 

R
M

R
 x

 R
M

i*
 

Models 𝑳𝒔 𝑪𝟎𝟎 𝑪𝟏𝟏 Range 𝑺𝒊𝒍𝒍𝟎𝟎 𝑺𝒊𝒍𝒍𝟎𝟏 𝑺𝒊𝒍𝒍𝟏𝟏 𝑹𝑺𝑺𝟏𝟏 𝑹²𝟏𝟏 RMSE 

Sph 1.49 0 0 11.99 145.62 1 10.51 46.8 0.929 4.506 

Exp 2.34 0 0 18.74 163.46 1.48 8.44 13 0.903 3.723 

Gaus 1 3.54 0.1 6.57 127.21 1.08 11.57 17.4 0.955 3.811 
 
7.3 Ordinary cokriging  

The ordinary cokriging (OCK) procedure is an 
extension of kriging when a multivariate variogram model 
and multivariate data are available. The spatial 
dependence between the RMR and Q-system or RMI was 
estimated by means of a cross-variogram given by the 
following equation (Deutsch and Journel, 1992) [12] 
(Yates and Warrick, 1987) [13]: 
 γAB∗(h) = 12N(h) ∑ ∑{zA(xi) − zA(xj)}m

j
n
i {zB(xi)− zB(xj)}                                                      (12) 

 𝛾𝐴𝐵∗(ℎ) ∶ is the estimated cross-variogram value at 
distance ℎ 
 𝑁(ℎ) is the number of data pairs of 
observations of the first variable 𝑧𝐴 and the second 
variable 𝑧𝐵 at locations 𝑥𝑖and 𝑥𝑗when the distance between 
xi and xj fits in a distance class h. 

The cokriging estimate is a linear combination of 
both the RMR and the secondary variables Q or RMi 
given by: 
 𝑍∗(𝑥) = ∑ 𝑤𝑖𝑧(𝑥𝑖)𝑛

𝑖=1 + ∑ ∑ 𝑣𝑖𝑗𝑢(𝑥𝑖𝑗)    𝑛
𝑖=1

𝑚
𝑗=1                    (13) 

 
Subject to one of the following sets of linear 

constraints: 
 ∑ 𝑤𝑖𝑛
𝑖=1 + ∑ ∑ 𝑣𝑖𝑗𝑛

𝑖=1
𝑚

𝑗=1 = 1                                                      (14) 

 
Where, 𝑤𝑖Are the kriging weights associated with 

the 𝑛-nearest neighbors, 𝑣𝑖𝑖 , are the cokriging weights 
associated with the 𝑚 auxiliary variables, 𝑢𝑖𝑗That are 
spatially correlated to the variable of interest. 

In the present study, we consider the following 
transformation for covariate variables: 
 𝑄∗ = ln (𝑄) + 3.5                                                                (15) 
 𝑅𝑀𝑖∗ = ln(𝑅𝑀𝑖) + 3.5                                                       (16) 
 

Finding cokriging theoretical models that fit best 
the experimental Semivariogram (Figures 11, 12) and 
cross-variograms (Figure-13) with less error coefficient is, 
however, a difficult exercise. The selection was made on 
the basis of cross-validation parameter (RMSE) to assess 
the precision of the interpolation method (Tables 3, 4). 

When models are fitted to the experimental semi-
and cross-variograms, the Cauchy-Schwartz equation must 
be checked to guarantee a correct Cokriging estimation 
variance in all circumstances (Deutsch and Journel 1992) 
(Isaaks and Srivastava 1989) 
 |𝛾𝑅𝑀𝑅−𝑄| ≤ √𝛾𝑅𝑀𝑅. 𝛾𝑄                                                      (17) 
 𝛾𝑅𝑀𝑅−𝑄 is the cross-variogram value 𝛾𝑅𝑀𝑅 is Semivariogram value of RMR 𝛾𝑄 is Semivariogram value of Q-system 
 

 
 

Figure-11. OCK Experimental Semivariogram and 
fitted model for RMR data. 
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Figure-12. OCK Experimental Semivariogram and fitted 
model for Q* data. 

 

 
 

Figure-13. OCK Experimental and fitted cross-
Semivariogram 

 
After evaluating different models, it was 

demonstrated that the exponential model best suited for 
both variables RMR and Q with the lowest RMSE= 3,443 
(Table-3) and therefore, it was selected as a best-fitted 
model for cokriging map (Figure-14). 

 
 

Figure-14. Ordinary cokriging map for RMR data. 
 
7.4 Sequential Gaussian simulation 

In this paper, geostatistical simulation is used in 
order to give an advantage to spatial correlation of RMR 
data; Sequential Gaussian simulation is the most 
commonly used method to develop conditional 
simulations. 

This method requires a Gaussian transformation 
of the original RMR data set, to accomplish this, the RMR 
sample data were normalized using the two steps 
Approach for Transforming Continuous Variables to 
Normal was conducted (Templeton, 2011) [14], 
histograms, box-plot Q-Q plot was graphical ways to 
judge whether RMR transformed data are normally 
distributed (Figures 15, 16). 
 

 
 

Figure-15. Histogram of RMR original data. 
 

Table-5. Results of simple kriging variography analysis. 
 

 Variogram parameters Goodness-of-fit Cross-validation 

Models 𝑳𝒔 𝑪𝟎 Range Sill 𝑪𝟎/Sill % RSS R² RMSE 

Sph 1.35 0 10.86 138.49 0 323 0.982 4.374 

Exp 2.4 0 19.27 160.53 0 537 0.975 4.495 

Gaus 1 16.3 8.22 140.8 11.5 807 0.959 4.418 
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Figure-16. Q-Q and box plots of RMR original data. 
 

The RMR datain (Figure-15) showsa left-skewed 
histogram has a peak to the right of center, more gradually 
tapering to the left side. In (Figure-16), the left and right 
end of pattern are below and above the line y=x 
respectively, this departure from linearity described by a 
long tails at both ends of the data distribution 
 

 
 

Figure-17. Histogram of RMR transformed data. 
 

 
 

Figure-18. Q-Q and box plots of transformed RMR 
 

Table-6. Normality parameters of RMR data. 
 𝑹𝑴𝑹 Kurtosis Skewness 

Shapiro-

Wilk 

Original data -0.916 0.077 0.007 

Transformed 
data 

-0.302 -0.001 0.998 

 

In order to produce a conditional simulation, a 
new variogram must be developed with the Gaussian 
distribution then fitted (Figure-19) and cross-validated 
(Table-5), Variogram development, and simulations are 
performed on Gaussian transformed data and results must 
be back-transformed. 
 

 
 

Figure-19. Simple Kriging Experimental Semivariogram 
and fitted model for RMR transformed data. 

 
The results of conditional simulation are 

expressed by a number of equally probable maps, each 
realization obtained by using the conditional simulation 
method is equally valid, in this research, the number of 
RMR realizations is set to one thousand, so that the post-
processing outputs (mean of the realizations and 
conditional probabilities) could be calculated with a 
reasonable approximation (Figure-20). 
 

 
 

Figure-20. Conditional simulation map for back 
transformed RMR data. 

 
A major limitation to the previous kriging 

methods that minimize the variance, inherently 
underestimates the variability and smooth out local details 
of RMR spatial variation, this can be a problem when 
trying to map sharp spatial poor-quality zones, therefore, 
conditional simulation is a robust way to create RMR 
exceedance probability maps (Figure-21). 
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Figure-21. Exceedance probability map of RMR>40%. 
 
 

8. INDIRECT APPROACH 
RMR is a sum of ratings assigned non-linearly to 

several geotechnical parameters; the direct use of 
geostatistical techniques to estimate RMR does not 
account for the non-linearity property and may carry some 
estimation errors. However, each of the underlying 
components is an additive variable and therefore, can be 
directly averaged and modeled separately.  

The indirect approach to spatial prediction, in this 
case, would be the following: 

 Gaussian transformation of each RMR parameter 𝑅𝑖 
for conditional simulation, (Table-7) 

 Variography analysis for OK (Table-8) and Simple 
kriging (SK) (Table-9) 

 
Table-7. Normality coefficients of RMR parameters. 

 

 RQD UCS Js Jc Jw 

RMR 𝑺𝒌 𝑲𝒕 𝑺𝒌 𝑲𝒕 𝑺𝒌 𝑲𝒕 𝑺𝒌 𝑲𝒕 𝑺𝒌 𝑲𝒕 
Original data 0.408 -1.163 1.399 1.495 -0.253 -1.073 0.328 -0.448 -0.381 -1.868 

Transformed data 0.265 -1.069 0.028 -0.311 0.255 -0.536 0.136 -0.108 -0.381 -0.582 
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Figure-22. SK and OK Experimental Semivariograms and fitted models for rating data. 
 
 Estimate and simulate each of RMR parameters which 

are linear variables (Figure-22) 

 Assign a rating to the estimated or simulated value of 

each parameter. 

 Back transformation of each simulated parameter 𝑅𝑖 
 Obtain the final estimated (Figure-23) and simulated 

(Figure-24) rating RMR, as the sum of the ratings 

obtained 

Table-8. Results of the indirect ordinary 
krigingvariography analysis for estimation. 

 𝑹𝒊 Variogram parameters 

Mod 𝑳𝒔 𝑪𝟎 Range Sill 𝑪𝟎/Sill 𝑅𝑄𝐷 

S
ph

er
ic

al
 

1.26 1.6 10.02 15.89 10% 𝑈𝐶𝑆 1.05 0.005 10.16 0.086 6% 𝐽𝑆 2.98 0.001 8.42 2.48 0% 𝐽𝐶 1.89 3.17 9.46 32.52 10% 𝑊𝑖 1.93 0.78 6.38 5.85 13% 

 
Table-9. Results of indirect simple kriging variography 

analysis for simulation. 
 𝑹𝒊 Variogram parameters 

Mod 𝑳𝒔 𝑪𝟎 Range Sill 𝑪𝟎/Sill 𝑅𝑄𝐷 Sph 1.59 0.61 12.74 12.24 5% 𝑈𝐶𝑆 Sph 1.21 0.002 9.72 0.089 2% 𝐽𝑆 Sph 1.06 0.208 8.52 1.93 11% 𝐽𝐶 Exp 1.64 0.51 13.17 33.77 2% 𝑊𝑖 Sph 1.23 0.81 9.89 2.23 36% 

 

 
 

Figure-23. Indirect OK map for RMR data. 
 

 
 

Figure-24. Indirect conditional simulation map 
for RMR data. 

 
9. VALIDATION  

 
9.1 Cross-validation 

Several authors recommend the cross-validation 
technique for evaluating the accuracy of an interpolation 
technique (Webster and Oliver, 2001) [15] (Kravchenko 
and Bullock, 1999) [16]. Cross-validation is a leave-one-
out technique that uses all of RMR data to estimate the 
autocorrelation models by removing data from 115 
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locations, taken all of the available data from other 
locations and then estimating the value of the removed 
locations data using those remaining data(Olea, 1999) 
[17]. 

In cross-validationanalysis, a graph can be 
constructed between the estimated and actual values for 
each sample location in the domain. 

The cross-correlation plots showed that ordinary 
cokriging with the transformed Q covariate outperforms 
other direct predictions (Figure-27). 
 

 
 

Figure-25. Scatter plots of IDW cross-validation results. 
 

 
 

Figure-26. Scatter plots of direct OK cross-validation 
results. 

 

 
 

Figure-27. Scatter plots of OCK (RMR-Q*) cross-
validation results. 

 
 

Figure-28. Scatter plots of OCK (RMR-RMi*) cross-
validation results. 

 
For all points, cross-validation compares the 

measured and predicted values. In this research, RMSE, 
MAPE, and NMAE are used to evaluate predicted value 
with IDW, okd,and OCK and helps us for determination 
the best RMR model. 
 

 
 

Figure-29. Error coefficients of cross-validation results. 
 

The overall performance of RMR co-kriging with 
the transformed Q covariate was outstanding with 
exponential semi-variogram which gave the lowest error 
coefficients in all the cases (Figure-29). 
 
9.2 Jack-knifing validation 

With the aim of comparing results and selecting 
the most suitable interpolation technique out of above 
mentioned seven different methods, the jack-knifing 
process has been performed, using new samples. An 
independent data set of 13 RMR surveys have been carried 
out in the research area to be compared with the estimated 
data point (Figure-30). 

IDW OKd OCK1 OCK2

RMSE 4.333 3.918 3.452 3.723

MAPE 7.03% 6.58% 6.06% 6.85%

NMAE 6.76% 6.41% 5.06% 6.52%
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Figure-30. Scatter plots between RMR true values and 
interpolated results. 

 
The RMSE, MAPE, and NMAE were employed 

as criteria to evaluate the accuracy and effectiveness of 
RMR prediction maps via jack-knifing data points. 
 

 
 

Figure-31. Error coefficients of jack-knifing data. 
 

Comparingthe predicted values of all previous 
methods with the new sampling results showed that the 
indirect approach gives more accurate results (Figure-31). 
 
10. ENGINEERING POST-PREDICTION 

APPLICATIONS 
Each geostatistical model identifies some 

potential risk-prone areas, with the aim of reducing the 
conceptual model uncertainty and risks in geotechnical 
design and underground mining operations, each grid 
point in the study area is given a minimum RMR value 
based on the previous interpolation maps considering the 
possible worst scenario (Figure-32): 
 RMR = Min  { IDW, OKi, OKd, OCK1, OCK2, GCSD, GCSi}       (18) 

 
 

Figure-32. RMR resulting map. 
 

The RMR resulting map can be a useful tool to 
derive rock mass geomechanical parameters such as 
uniaxial compressive strength (𝜎𝑐𝑚) and equivalent young 
modulus (𝐸𝑚) that can be used for further numerical 
simulation and engineering work as if it were an 
equivalent continuous medium. 

When numerical models are used as a tool of 
mining stability analysis, rock mass strength is defined in 
terms of a strength envelope that may be the linear case, 
like Mohr-Coulomb or non-linear like that suggested by 
Hoek. 
 
10.1 Generalized Hoek-Brown parameters 

In most cases, it is not practically possible to 
carry out triaxial tests on rock masses at a large scale 
which is necessary to obtain direct values of Generalized 
Hoek-Brown parameters. The Hoek–Brown criterion 
relates the strength envelope to the rock mass 
classification through the Geological strength index (GSI) 
or RMR indexes and allows strength assessment based on 
the previous interpolated maps. The Generalized Hoek-
Brown criterion parameters (Hoek, Carranza-Torres, 
Corkum, 2002) [18], are given by the following equations: 
 𝑚𝑏 = 𝑚𝑖 . exp(𝐺𝑆𝐼 − 10024 − 14𝐷 )                                                 (19) 

 
For 𝑅𝑀𝑅76 < 18 (Hoek, Kaiser, and Bawden, 

1995) [19]: 
 𝐺𝑆𝐼 = 𝑅𝑀𝑅76                                                                        (20) 
 

S and a are constants for the rock mass given by 
the following relationships: 
 𝑠 = Exp(𝐺𝑆𝐼 − 1009 − 3𝐷 )                                                           (21) 

 𝑎 = 12 + 16 (𝑒−𝐺𝑆𝐼15 − 𝑒−203 )                                                  (22) 
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𝑚𝑏 : Reduced value of the material 𝑚𝑖 : Intact rock constant 𝐺𝑆𝐼 : Geological Strength Index 𝐷  : Disturbance Factor. 
 

 
 

Figure-33. 2D map of mb parameter. 
 

 
 

Figure-34. 2D map of s parameter. 
 

 
 

Figure-35. 2D map of a parameter. 
 

The deformation modulus is a required input 
parameter for different types of numerical analyses; 
therefore it is necessary to obtain realistic values of rock 

mass young modulus using the previously calculated 
parameters. 

The generalized equation (Hoek, Diederichs, 
2006) [20]: 
 𝐸𝑚(𝑀𝑃𝑎) = 𝐸𝑖 (0.02 + 1 − 𝐷21 + 𝑒(60+15𝐷−𝐺𝑆𝐼11 ))                (23) 

 
Using the version 2002 of the Hoek-Brown 

equation, the ratio of the strength of the rock mass and the 
intact rock is: 𝜎𝑐𝑚 = 𝑠𝑎𝜎𝑐                                                                             (24) 
 

 
 

Figure-36. 2D map of rock mass young modulus. 
 

 
 

Figure-37. 2D map of rock mass UCS. 
 
10.2 Mohr-coulomb parameters 

In case of using the Mohr-Coulomb failure 
criterion, it is necessary to estimate the cohesion (𝜑𝑚) and 
the friction angle(𝑐𝑚) parameters of the rock masses 
which are related to the RMR value according to 
Bieniawski [21] 

Aydan and Kawamoto [22] proposed a linear 
relationship between the internal friction angle and the 
RMR value: 
 𝜑𝑚 = 20 + 0.5𝑅𝑀𝑅                                                            (25) 
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In this case, the cohesion can be calculated from 
the friction angle and the rock mass strength by the 
following equation: 
 𝑐𝑚 = 𝜎𝑐𝑚2 1 − 𝑠𝑖𝑛𝜑𝑚𝑐𝑜𝑠𝜑𝑚                                                           (26) 

 

 
 

Figure-38. 2D map of rock mass friction angle. 
 

 
 

Figure-39. 2D map of rock mass cohesion. 
 
11. CONCLUSIONS  

The accurate prediction of geotechnical variables 
and the risk level is very important for any underground 
mining project, in this paper, we presented an alternative 
of traditional approaches, methodologies based on 
geostatistical estimation and simulation techniques were 
carried out to determine the expected RMR and its 
underlying parameters and provides a risk failure analysis 
with a measure of the uncertainty at any target location. 

The proposed indirect estimation and simulation 
methods outperformed the more frequently used direct 
approach and shows a more accurate map with low error 
coefficients which makes them adequate for RMR 
modeling. However, it should be noted that is high 
computational and more pre-processing time needed. 

This research showed that each geostatistical 
model identifies potential risk-prone areas in which 
failures could be experienced, superposing the different 

resulting maps allowed us to define low-risk conservative 
RMR model. 

The resulting map of the indirect approach 
allowed taking into account the nonlinear nature, 
directional behavior of the RMR constitutive parameters 
which can be used to assist engineers in proposing suitable 
excavation techniques and an appropriate support system. 
The developed model help to assess different 
geomechanical parameters that can use to develop 
numerical models that explicitly consider the rock mass 
heterogeneity. 
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