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ABSTRACT  

Existing code provisions for shear strength prediction of self-compacting concrete (SCC) beams have often fallen 

short of its degree of predictability in relation to experimental responses. The research study seeks to develop a model that 

better predicts the shear capacity of self-compacted concrete beams without shear reinforcement. In addition, the critical 

parameters that influence the shear strength of an SCC beam was also investigated by using varying regression techniques 

(Linear, Stepwise, Lasso, Ridge and Elastic Net regressions). A pooled database having a total of 179 SCC beams without 

shear reinforcement was compiled for the analysis. The Lasso regression was the most effective from statistical analysis 

having the least relative and mean squared errors. In comparison with existing codes: ACI 318-08, AASHTOLRFD Bridge 

Design Specification-2007, Eurocode 2 and BS8110, the Lasso model performed better with least mean percentage error 

(12.23%), least average safety factor(1.1012) and the least coefficient of variation(0.159). The Lasso model also showed 

that compressive strength, height, breadth, depth of beam, shear span to depth ratio, longitudinal reinforcement ratio, 

maximum aggregate size and fine to coarse aggregate ratio were all relevant parameters in shear strength prediction of 

SCC beams without stirrups.  

 
Keywords: RC beams, self-compacting concrete beams, shear strength, Lasso regression and error measures. 

 

INTRODUCTION 

Concrete which is the most widely used 

construction material has been studied extensively in terms 

of aggregate and reinforcement behaviour [31-35]. Self - 

compacting concrete (SCC) is a self-flowing concrete that 

consolidates on its own weight without any form of 

vibration [23, 28-30]. Following the diminution in skilled 

labor in Japan, the need to develop a concrete technology 

that requires less labor was of dire need. Its development 

since its inception has helped solve many issues associated 

with conventional vibrated concrete to the construction 

and design industry. Eliminating the problems associated 

with vibration, SCC also permits for greater freedom and 

flexibility in design without fear of reduced quality and 

durability. Its flow ability allows for a faster construction 

process meaning lesser time period and ease of placement 

resulting in lesser equipment and labor offering lowered 

cost. Time and cost, essentials in construction to that effect 

is curtailed not leaving the added benefit of reduced noise 

pollution often associated with the conventional vibrated 

concrete.  

With such many benefits, the use of SCC 

concrete is disadvantaged with respect to shear strength 

owing from the fact that SCC concrete often have less 

coarse aggregate resulting in reduced aggregate interlock 

and ultimately reduced shear resistance [13]. Just as in 

conventionally vibrated concrete, the accurate prediction 

of the shear strength of a beam is a bit problematic mainly 

due to the reservations associated with shear transfer 

mechanism and unidentifiable parameters, which may 

have significant influence. Unlike the flexural behavior of 

concrete, prediction of the shear strength capacity of 

concrete has been one to which no common grounds has 

been reached. This unsettled grounds gives need for the 

development of a model that can adequately predict the 

shear capacity of concrete, specifically self-consolidated 

beams. 

Methodological approaches like Bayesian and 

regression techniques can be used model the shear strength 

of such members. In an attempt to develop a better 

prediction model, this research study also seeks to identify 

variables that have the strongest influence on the shear 

strength of SCC beams thus providing those parameters to 

which prediction errors would be most minimized. To this 

reason, the various regression models which would 

achieve such objectives that is the Linear regression, 

Stepwise regression, Lasso regression, the Elastic Net 

regressions and Ridge regressions were employed. 

 

DATABASE 
In total, 179 simply supported beams were 

compiled from various sources ( [3], [9], [20], [10], [16], 

[7], [12],[27], [16], [11], [17], [25], [5], [19], [2], [4], [12], 

[1], [18], [26], [22], [14], [15], [24] ). Parameters that were 

commonly provided in the literature sources include the 

width of beam (𝑏), height of depth (ℎ), effective depth (𝑑), 

shear-span to depth ratio (𝑎/𝑑), compressive strength (𝑓𝑐), 

longitudinal reinforcement ratio (𝜌𝑤), coarse to fine 

aggregate ratio, max aggregate size and their 

corresponding ultimate shear force (𝑉𝑢). Table-1 provides 

the summary of the data ranges of the various parameters 

under consideration.  

The least compressive strength of beams 

considered was 24.81MPa, the highest being 119MPa with 

a greater majority below 66kN, as seen in the box plot 

representation in Figure-3. Depths of beams ranged from 

150-750mm, with predominate depths lying between 150-

250mm, the latter being the median value as shown in 

Figure-1. Effective depths ranged from 100-668mm. Beam 

widths from the data sources compiled largely fell within 
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100-250mm, a width of 400mm as the highest. 

Longitudinal reinforcement ratios mostly fell within 1-2%. 

Shear span to depth ratio ranged from 1.05-5.84 and 2.5 as 

the median value (Figure-2). The least maximum 

aggregate size in the database was 10mm with a large 

chunk of aggregate sizes being either 19 or 20mm and an 

aggregate index lying between 0.33 and 0.92. The 

database showed that the parameters were negatively 

skewed hence a log-normal distribution seemed preferable. 

 

Table-1. Distribution of the various parameters under consideration for the beam database. 
 

 

Range 20-40 41-60 61-80 81-100 101-120 Total 

MPa Beams 40 62 69 6 2 179 

 

Range 100-200 201-300 300-400 401-500 501-750 
 

mm Beams 80 82 3 12 2 179 

 

Range 75-100 101-150 151-200 201-250 >250 
 

mm Beams 96 10 25 28 20 179 

 

Range 100-200 201-300 301-400 401-500 501-750 
 

mm Beams 90 72 12 3 2 179 

 

Range <1 1-1.5 1.51-2 2.1-2.5 > 2.5 
 

% Beams 14 58 73 21 13 179 

 

Range 1-2 2.1-3 3.1-4 4.1-5 5-6 
 

 

 
 

Figure-1. A box plot representation of the total depth, width and effective depth parameters. 

 

 
 

Figure-2. A box plot representation of the longitudinal reinforcement, aggregate index and shear-span to depth. 

 

 
 

Figure-3. Box plot representation of compressive strengths of data. 
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Figure-4. Box plot representation of shear force (output). 

 

REGRESSION MODELS 

From a database of 179, seventy-five percent was 

randomly sampled and used as training data, with the 

remaining twenty-five percent for the test/validation data. 

The regression models used for the analysis of the training 

data are linear regression, stepwise regression, Lasso 

regression, the elastic net regressions and Ridge regression 

model. 

 

Linear regression 
The linear regression model is the simplest and 

most widely used of all regression techniques. It is also 

called the least square fitting in that it provides a line of 

best fit through a set of points. In the shear strength 

prediction model, V, the output function of linear 

regression model used in this assumes the equation, 

 𝑉 =  𝑐 +  ∑ 𝑋𝑗𝛽𝑗𝑝𝑗=1        (1) 

 

where V = shear strength;𝑋𝑗= input variables or 

predictors; p = number of input predictors; c = intercept 

and 𝐵𝑗= uncertain parameters. 

With a set of training data ( 1x , 1v ), …, ( nx , nv ), 

the estimates of the coefficients   are given by 

minimizing the residual sum of squares (RSS), as seen in 

Equation 2. 

 𝑅𝑆𝑆(𝛽) =  ∑ [𝑣𝑖 − 𝑓(𝑥𝑖)]2 =  ∑ [𝑣𝑖 − 𝑐 −𝑁𝑖=1𝑁𝑖=1 ∑ 𝑥𝑖𝑗 𝑝𝑗=1 𝛽𝑗]2
        (2) 

 

Stepwise regression 

Despite the simplicity of linear regression, its low 

bias and high variance often results in inaccurate 

prediction. Secondly the linear regression model includes 

all predictors (there is no variable selection) that result in 

the output. This may not be desirable. Sometimes not all 

parameters may be readily available to the analyst and as 

such a parsimonious model, which is interpretable with 

large predictability is preferred. In this study, the forward 

stepwise approach was used, which starts with the 

intercept, c, and sequentially adds a parameter that most 

improves the fit. By using this approach an expected lower 

variance can be achieved. The better fit is based on the F 

statistic of Equation 3 where variables are added one after 

the other till the largest value of F is reached. 

 𝐹 =  𝑅𝑆𝑆(𝛽̂)− 𝑅𝑆𝑆(𝛽̃)𝑅𝑆𝑆(𝛽̃) (𝑁−𝑘−2)⁄                     (3) 

 

Where the estimate 𝛽̂ is with k inputs and the 

estimate 𝛽 is with the addition of a predictor. 

 

Ridge regression  

As with all shrinkage (regularization) methods, 

the ridge model addresses the issue of high variability that 

arise from the discrete process of the stepwise method 

with a process that is continuous. The model shrinks 

coefficients by imposing a penalty on their size. The ridge 

coefficients minimize a penalized residual sum of squares, 

RSS(Friedman et al 2008). The Ridge estimate in its 

Lagrangian form is defined as, 

 𝛽̂𝑅𝑖𝑑𝑔𝑒 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗𝑝𝑗=1 )2𝑁𝑖=1 + 𝜆 ∑ 𝛽𝑗2𝑝𝑗=1 }                                                              (4) 

 

where 𝜆 corresponds to the shrinkage parameter; 

a larger value resulting in greater shrinkage of 

coefficients(approaching zero), 𝑥𝑖𝑗= input variables or 

predictors; p= number of input predictors; c= intercept and 𝛽𝑗=uncertain parameters.  

 

Lasso regression 

The Lasso as a shrinkage method transforms by 

translating each coefficient by a constant factor, 𝜆 trimming at zero, a process known as “soft 

thresholding”. Comparing with the ridge regression 

technique, the lasso differs with a replaced penalty of ∑ |𝛽𝑗|𝑝𝑗=1  ≤ 𝑡  making its solutions nonlinear. The Lasso 

regression model does variable selection eliminating the 

least significant parameters. The Lasso estimate in 

Lagrangian form is Equation. 5 where 𝜆 corresponds to the 

shrinkage parameter; a larger value resulting in greater 

shrinkage of coefficients (approaching zero), 𝑥𝑖𝑗= input 

variables or predictors; p= number of input predictors; c= 

intercept and 𝛽𝑗=uncertain parameters.  

 𝛽̂𝐿𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗𝑝𝑗=1 )2𝑁𝑖=1 + 𝜆 ∑ |𝛽𝑗|𝑝𝑗=1 }                     (5) 

 

Elastic net 

The elastic net is a compromise between the 

Lasso and the Ridge regression techniques. The parameter,   

determines the mix of the penalties, and is often pre-

chosen on qualitative grounds. The elastic net can yield 

more N non-zero coefficients when p> N, a potential 

advantage over the Lasso[8].The elastic net model is 

defined by 
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𝛽̂𝐿𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑖𝑛 {∑ (𝑦𝑖 − 𝛽0 − ∑ 𝑥𝑖𝑗𝛽𝑗𝑝𝑗=1 )2𝑁𝑖=1 + 𝜆 ∑ (𝛼𝛽𝑗2 +  (1 − 𝛼)|𝛽𝑗|)𝑝𝑗=1 }      (6) 

 

where 𝛼 corresponds to parameter that 

determines mix of the penalties. 

 

PERFORMANCE MEASURES 
Mean squared error and root mean squared error 

Mean-squared error is the primary and most often used 

measure. Where outliers (instances when the prediction 

error is larger than the others) exist, the mean squared 

error tends to overstate its effect. The mean squared error 

is equal to 

  𝑀. 𝑆. 𝐸 =  1𝑛 ∑ (𝑝𝑖 −  𝑎𝑖)2𝑝𝑖=1       (7) 

 

where M.S.E is the mean squared error, n is the 

number of predictors, 𝑝𝑖  is the predicted value and 𝑎𝑖 is 

the actual value. In order for dimensional equality to be 

achieved, the relative mean squared error which is the root 

of the mean squared error is found. It is defined as  

 𝑅. 𝑀. 𝑆. 𝐸 = √1𝑛 ∑ (𝑝𝑖 − 𝑎𝑖)2𝑝𝑖=1    (8) 

 

Relative squared error 

Though the mean square error is often used, it 

tends to exaggerate the effect of outliers especially when 

prediction error is large, the relative squared error can be 

used relating the error to the average of the actual values 

of the data. The relative squared error is represented in 

Eqn. 9 where R.S.E is the relative squared error, 𝑝𝑖  is the 

predicted value and𝑎𝑖 is the actual value, 𝑎̅is the mean 

value of the actual values of number. 

 𝑅. 𝑆. 𝐸 = √∑ (𝑝𝑖− 𝑎𝑖)2𝑃𝑖=1∑ (𝑎𝑖−𝑎̅)2𝑃𝑖=1        (9) 

 

NUMERICAL MODELLING AND DEMAND 

PARAMETERS 

In finding a model to predict the shear capacity of 

self-compacting concrete a multiple linear regression 

model in the logarithmic space was used. The functional 

form of the regression model is given in Eqn. (10)where Y 

is the output (shear capacity) of vector dimension N×1, 𝛽0 

is the intercept, X is the input predictor of vector 

dimension N×1 and 𝛽𝑛 is the uncertain parameter. 

 𝐿𝑛(𝑌) =  𝛽0 + 𝛽1𝐿𝑛(𝑋1) +  𝛽2𝐿𝑛(𝑋2) + 𝛽3𝐿𝑛(𝑋3) +⋯ + 𝛽𝑛𝐿𝑛(𝑋𝑛)                                              (10) 

 

In the parameter selection, different uncertainties 

in geometric, material properties and test set-up 

orientation were considered. Table-2 gives the standard 

deviations (σ), the mean value (μ), and the probability 
distribution input variables of the database used. 

 

 

COMPARISON OF REGRESSION MODELS  
Multiple regression models implies multiple 

outputs. In the best model selection, factors considered 

include accuracy in predicting outputs (shear capacity of 

beams), simplicity and ease in output prediction 

(interpretability). To adequately do that, certain error 

measures were used to selecting the best choice of 

regression technique. Table. 3 gives the coefficients of the 

different regression models in predicting shear capacity of 

self-consolidating concrete beams. The error measures 

used in this model were the mean squared error and the 

relative squared error. In checking the performance 

accuracy of models, prediction errors were calculated 

based on the test data instead of the trained data. 

 

Table-2. Uncertain parameters considered in the model. 
 

  
Distribution 

Parameter Unit Type 𝝁 𝝈 𝑓𝑐 MPa Lognormal 0.286 3.983 ℎ mm Lognormal 0.373 5.391 𝑏 mm Lognormal 0.467 4.976 𝑑 mm Lognormal 0.365 5.241 𝜌𝑤 % Lognormal 0.423 0.445 𝑎 𝑑⁄  - Lognormal 0.286 0.901 𝐼𝑎 - Lognormal 0.288 -0.636 

 

The numeric analysis software used was the Math 

laboratory software with Monte-Carlo replications for the 

Lasso and Elastic net models, in order to identify the 

shrinkage parameter, 𝜆 with the least error rate. The mean 

squared error and the relative squared error were the 

performance measures used to evaluate the predictability 

of the regression techniques. For Lasso regression 

technique, the optimal lambda (shrinkage parameter) used 

was 0.002, largest value that would result in the greatest 

shrinkage of coefficients. For the Elastic net regression 

technique the optimal lambda was 0.2 with the optimal 

alpha being 0.13. Using the test data, assessing the various 

regression models by mean squared error, relative squared 

error and root mean squared error, the Lasso regression 

model was the best. 

The Lasso model equation of the shear capacity 

of a self - compacted beam is given in Eqn. 11 where  𝑉𝑐 = 

Shear capacity(N); 𝑓𝑐 = compressive strength of 

concrete(MPa); h = the total height of beam(mm); b = 

breadth of beam(mm); d = effective depth of beam(mm); 𝜌𝑤 = longitudinal reinforcement ratio expressed as a 

percentage(%); 𝑎 𝑑⁄  = shear span to depth ratio; 𝐼𝑎 is the 

aggregate index= ( 𝑑𝑎/12.5)(1 − 𝑓 𝑡⁄ ) where 𝑑𝑎 = the 

maximum aggregate size; 𝑓 𝑡⁄ = fine aggregate to total 

aggregate ratio. 

 𝑉𝑐 =  4.1745𝑓𝑐0.1888ℎ−0.0794𝑏0.7899𝑑0.9894𝜌𝑤0.3564  × (𝑎𝑑)−0.4246 𝐼𝑎−0.1856                                (11) 
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For the equivalent shear stress, 𝑣𝑐 is the shear 

stress of the self-compacting beam in Equation. 12 

 

𝑣𝑐 =  4.1745𝑓𝑐0.1888ℎ−0.0794𝑏−0.2101𝑑−0.0106𝜌𝑤0.3564 (𝑎𝑑)−0.4246 𝐼𝑎−0.1856                                                    (12) 

 

Table-3. Estimated coefficients and test errors of the various regression techniques. 
 

Parameters Linear Stepwise Ridge Lasso Elastic net 

Intercept 1.361 1.361 1.361 1.429 1.554 𝑓𝑐 0.189 0.189 0.189 0.189 0.160 

h -0.091 -0.091 -0.091 -0.079 0.263 

b 0.790 0.790 0.790 0.790 0.755 𝑑 1.001 1.001 1.001 0.989 0.655 𝜌𝑤 0.356 0.356 0.356 0.356 0.349 𝑎 𝑑⁄  -0.425 -0.425 -0.425 -0.425 -0.398 𝐼𝑎 -0.186 -0.186 -0.186 -0.186 -0.162 

MSE(test error) 92159244 92159244 92159243.95 86133737 4182745023 

RMSE(test error) 9599.961 9599.961 9599.961 9280.826 64674.145 

RSE(test error) 0.057 0.057 0.057 0.053 2.593 

 

EXISTING CODE BASED PREDICTIONS 
 

ACI 318-08 

As per the ACI, in members without shear 

reinforcement, the shear stress is carried by the concrete 

cross section and longitudinal reinforcement within the 

web. The predicted ultimate shear force, Vuof beams 

without stirrups is evaluated in Equation. 13 by, 

 𝑉𝑢 = 0.158𝜆√𝑓𝑐𝑏𝑑 + 17.24𝜌𝑤 𝑉𝑓𝑀𝑓 𝑏𝑑 <  0.29√𝑓𝑐𝑏𝑑   (13) 

 

where 𝜆 is the concrete modification factor,𝑓𝑐 is 

the concrete compressive strength, b and d as beam width 

and effective depth of beam cross section, respectively. 𝑉𝑓is the factored shear force at section, 𝑀𝑓 the factored 

moment at section, 𝜌𝑤is the ratio of longitudinal 

reinforcement, 
𝐴𝑠𝑏𝑑.  𝐴𝑠 equals the area of non-prestressed 

tension reinforcement in the beam. 

 

AASHTO-LRFD Bridge Design Specification -2007 

As stated in the AASHTO-LRFD, the shear force 

of a beam without stirrups is given in Equation. 14 by 

 𝑉𝑢 = 0.083𝛽√𝑓𝑐𝑏𝑣𝑑𝑣                  (14) 

 

where 𝑏𝑣is the effective web width taken as the 

minimum web width within the depth 𝑑𝑣. 𝛽 is the factor 

indicative of the ability of diagonally cracked concrete to 

transmit tension. For lightweight concrete, if the average 

splitting tensile strength is lacking, the term shall be 

replaced by 0.75√𝑓𝑐 for all lightweight concrete and 0.85√𝑓𝑐 for sand-lightweight concrete.  

 

 

Eurocode 2 
The shear force of a beam in the Eurocode 2 is 

given in Equation. 15 by, 

 𝑉𝑟𝑑.𝑐 = [(0.18 𝛾⁄ ) 𝐾 (100𝜌𝑤𝜂√𝑓𝑐)1 3⁄ ] 𝑏𝑤𝑑 >  (𝑣𝑚𝑖𝑛 + 𝑘1𝜎𝑐𝑝)𝑏𝑤𝑑                   (15) 

 

where 𝛾 = the concrete partial safety factor and 

equals 1.5; K = the size effect factor (𝐾 = 1 + √200/𝑑 < 2); 𝜌𝑤= the longitudinal reinforcement ratio, 𝜂 = the factor to account for lightweight concrete(𝜂 =0.4 + 0.6 𝜌/2,200); 𝜌 = concrete density; 𝑓𝑐= 

compressive strength; 𝑏𝑤 = beam width and 𝑑= effective 

depth of the beam; 𝑣𝑚𝑖𝑛= minimum shear stress equal to 

0.035𝑘3 2⁄ √𝑓𝑐; 𝑘1 = 0.15; 𝜎𝑐𝑝 = axial stress on the stress on 

the cross section equal to 𝑁𝑒𝑑/𝐴𝐶 where 𝑁𝑒𝑑 is the axial 

force due to loading or prestressing. Due to the data under 

consideration 𝑘1𝜎𝑐𝑝 = 0, reducing the minimum value to 𝑣𝑚𝑖𝑛𝑏𝑤𝑑 and 𝜂 for the purposes of the research was taken 

to be 1. 

 

BS 8110 

The ultimate shear resistances of concrete beams 

without shear reinforcement per BS 8110 is given in 

Equation. 16 by 

 

VC = [0.79(100ρw)1 2⁄ (400/d)1 4⁄ γmc⁄ ] [fc 25⁄ ]1 3⁄ bvd  (16)   

 

*If 𝑓𝑐is more than 40MPa then denominator to 

which 𝑓𝑐 is divided is 40 instead of 25. 
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Where 𝜌𝑤 is the longitudinal reinforcement ratio 

(𝜌𝑤 = 𝐴𝑠/𝑏𝑣𝑑); where 𝐴𝑠= area of steel reinforcement; 𝑏𝑣= effective breadth; 𝑑 is the effective depth; 𝛾𝑚𝑐 is the 

partial safety factor of concrete in shear strength without 

shear reinforcement which equals 1.25; 𝑓𝑐 is the concrete 

compressive strength. For beams without shear 

reinforcement (400/𝑑)0.25 ≥ 0.67 and 0.15 ≤ 100𝜌𝑤 ≤3. 

 

COMPARISON OF EXPERIMENTAL SHEAR 

CAPACITY WITH CODE PREDICTIONS AND 

PROPOSED MODEL 

To contrast experimentally measured shear 

strength capacities,𝑉𝐸𝑋𝑃 with code based predictions 𝑉𝐶𝑜𝑑𝑒  

a relation known as the safety factor or margin of safety is 

defined in Equation. 17, where 𝛾𝐶𝑠 is the safety factor. 

 𝛾𝐶𝑠 =  𝑉𝐸𝑋𝑃 𝑉𝐶𝑜𝑑𝑒⁄                   (17) 

 

The safety factor can then be used to predict the 

accuracy and safety of a model. In shear strength 

prediction, a 𝛾𝐶𝑠< 1 implies a more conservative 

prediction which is safer for design. To further assess the 

prediction performance, the average safety factor and the 

coefficient of variation are stated in figures 5, 6, 7, 8 and 9 

representing a graphical representation of the safety 

factors of the ACI 318-08, AASHTOLRFD Bridge Design 

Specification -2007, Eurocode 2, BS8110 and the Lasso 

based model developed respectively. A scatter plot of the 

shear strength capacities of the various models is 

illustrated in Figure-10. 

The charts indicatively show that AASHTO was 

the most conservative with average safety factor of 2.796 

standard deviation of 2.482 and a coefficient of variation 

of 0.314. Among the existent codes the ACI was the least 

conservative with an average safety factor of 1.311, 

standard deviation of 1.041 and a coefficient of variation 

of 0.271. The lasso based strength formula gave an 

average safety factor of 1.009, standard deviation of 0.846 

and a coefficient of variation of 0.162. 

As seen in Figure-11 the Lasso model showed 

that the shear strength prediction tended to be more un-

conservative when the compressive strength was less than 

60MPa with effective depths lesser than 200mm. Figure-

12 shows that the prediction tends to be conservative when 

greater than 60MPa for shear span-to-depth ratio greater 

than 3. The same also showed that for compressive 

strengths greater than 60MPa and shear span to depth 

ratios between 2 and 3, predictions were more un-

conservative. 

This implies that for high strength SCC beams, 

shear strength capacity is more likely to be conservative if 

shear span to depth ratios were greater than 3. Similarly a 

very low strength SCC beam of low depth (< 200mm) 

would be un-conservative. 

 
 

Figure-5. Margin of safety-ACI 318-08. 

 

 
 

Figure-6. Margin of safety -Eurocode 2. 

 

 
 

Figure-7. Margin of safety-BS 8110. 
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Figure-8. Margin of safety - AASHTO LRFD bridge 

design specification -2007. 

 

 
 

Figure-9. Margin of safety - Lasso prediction model. 

 

 
 

Figure-10. Scatter plot of shear strength capacities of the 

various models. 

 

As seen in Figure-11 the Lasso model showed 

that the shear strength prediction tended to be more un-

conservative when the compressive strength was less than 

60MPa with effective depths lesser than 200mm. Figure-

12 shows that the prediction tends to be conservative when 

greater than 60MPa for shear span-to-depth ratio greater 

than 3. The same also showed that for compressive 

strengths greater than 60MPa and shear span to depth 

ratios between 2 and 3, predictions were more un-

conservative. 

This implies that for high strength SCC beams, 

shear strength capacity is more likely to be conservative if 

shear span to depth ratios were greater than 3. Similarly a 

very low strength SCC beam of low depth (< 200mm) 

would be un-conservative. 

 

 
 

Figure11. Influence of 𝑓𝑐 on 𝑉𝑒𝑥𝑝 / 𝑉 𝑢 with varying 

depths. 

 

 
 

Figure12. Influence of𝑓𝑐 on 𝑉𝑒𝑥𝑝 / 𝑉 𝑢with varying depths. 
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with various uncertain parameters. Various regression 

techniques (Linear, Stepwise, Ridge, Lasso, and Elastic 

Net regressions) used in developing an equation that more 

accurately predicts the shear strength of SCC beams were 

analyzed. Existing code based equations for shear strength 

prediction and the most preferred model equation were 

compared, analyzed and discussed. Based on the results 

obtained, the following conclusions can be drawn. 

 

a) All parameters: compressive strength, height, breadth, 

depth of beam, shear to depth ratio, longitudinal 

reinforcement ratio, maximum aggregate size and fine 

to coarse aggregate ratio considered for the purposes 

of the research were relevant. The parameters that 

were of stronger influence on the shear strength 

include the compressive strength, breadth, effective 

depth, shear span to depth ratio and the longitudinal 

reinforcement ratio. The compressive strength, 

effective depth, breadth and the longitudinal 

reinforcement ratio all had a positive association to 

the shear strength capacity. A negative correlation 

however existed between the shear span to depth ratio 

and the shear strength.  

b) The Lasso modelled equation performed better 

compared to code based equations with the least 

average margin of safety (1.009) and coefficient of 

variation (0.162) and can be used to determine the 

shear capacity of SCC beams. In ascending order the 

average safety margin for the ACI, BS 8110, 

Eurocode 2 and AASHTO were 1.303, 1.726, 2.425 

and 2.76 respectively, a lower average safety margin 

implying a higher prediction accuracy. Although an 

increasing margin safety means an increasing 

conservativeness, prediction tendency decreases also 

with increasing safety margins. With the proposed 

model producing the highest prediction tendency and 

a fairly satisfactory average safety margin, the model 

in effect becomes most preferable.  

c) The proposed model tends to be conservative when 

compressive strength exceeds 60MPa and beams are 

tested at a shear span-to-depth ratio greater than 3, 

indicating that the model would perform best for high 

strength SCC beams. The proposed model on the 

other hand, tends to be un-conservative for 

compressive strengths lesser than 60MPa having 

effective depths lower than 200mm. The proposed 

model prediction would be unsafe for low and normal 

strength concrete of very low depths. 
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