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ABSTRACT  

In this paper, the Burger’s equations have been approximated by using the second-order finite difference scheme 

and the half-sweep nonlocal arithmetic discretization scheme to construct the half-sweep generated linear system. Then, we 

investigate the applicable formulation of Half-sweep SuccessiveOver Relaxation (HSSOR) iterative method for solving 

this linear system.  In order to verify the effectiveness of the HSSOR iterative method, this paper also included the Full-

sweep Successive OverRelaxation (FSSOR) and Full-Sweep Gauss-Seidel (FSGS) iterative methods. The performance 

analysis of these three proposed iterative methods is illustrated by solving four proposed Burger’s problems. The numerical 

results illustrate the great performance of the HSSOR iterative method together with half-sweep nonlocal arithmetic 

discretization scheme to solve the Burger’s equations in senses of execution time and number of iterations. 

 
Keywords: burger’s equations, nonlocal arithmetic mean discretization, HSSOR iteration. 

 

1. INTRODUCTION  

Burger’s equation is categorized as nonlinear 

parabolic partial differential equations. In the last past 

decades, nonlinear Burger’s equation has attracted 

attention of many researchers. They have studied the 

solution of the Burger’s problem using various numerical 

methods in order to prove its effectiveness in solving the 

problems. Hence, Tamsir et al. [1] proposed modified B-

spline cubic differential quadrature method. Moreover, 

Liao [2] used the compact finite difference in fourth-order 

scheme to solve Burger’s problem. Arora et al. [3] 

considered hybrid trigonometric differential quadrature 

method to get a solution of nonlinear Burger’s equation. 

Then, Raslan [4] proposed the quadratic B-spline finite 

elements together with a collocation method to solved 

Burger’s equation. Meanwhile, Biazar and Aminikhah [5] 

used He’s variational iteration method in which this can be 

used for solving fractional partial equations, Helmholtz 

equation, Burger and coupled Burger’s equations. 

Consequently, this study will examine the feasibility of the 

nonlocal arithmetic mean discretization scheme as an 

alternative method to eliminate the nonlinear term for 

solving Burger’s equation. 

To examine the performance of HSSOR iteration 

together with nonlocal arithmetic mean discretization 

scheme, this paper needs to transform the corresponding 

nonlinear implicit approximation equations into the 

corresponding linear system by applying nonlocal 

arithmetic mean discretization scheme to get the 

approximate solution of Burger’s problem. 

To get the numerical solution, we consider the 

Burger’s equation as follows: 

 
2

2
,  ,  t 0

u u u
u v a x b

t x x

  
    

  
                  (1) 

 

Subject to initial condition: 

   ,0 ,   u x f x a x b  
 

 

and boundary conditions: 

       1 2, ,   , ,   t>0.u a t f t u b t f t 
 

 

where u is an unknown function, v is a parameter in which

0v  and 
u

u
x




indicates represents the nonlinear term. 

For simplifying in discretization process, problem (1) 

needs to be rewritten by the following equation 

 

 
2

2
, ,

u u u
F x t u v

t x x

  
 

  
      (2) 
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(a) 

 
(b) 

 

Figure-1. a) and b) illustrate the distribution of mesh points over the solution domain of the problem 

for full- and half-sweep cases, respectively. 

 

To do the discretization process, we need to 

construct the finite grid network as denoted in Figure-1. 

According to Figure-1, these three proposed 

iterative methods used in this paper has be applied against 

• node points until achieved its convergence criterion. We 
let solution domain of problem (1) be divided uniformly 

with grid ∆𝑥 and ∆𝑡 in 𝑥 and 𝑡 directions respectively in 

which each grid of ∆ℎ and ∆𝑡 can be defined as: 

 

,

.

b a
h

m

t
t

n


 

 
        (3) 

 

According to the finite grid network in Figure-1, 

the unknown value of 𝑈(𝑥𝑖 , 𝑡𝑗) = 𝑢𝑖.𝑗 at any node point in 

Figure-1 can be calculated which is solved iteratively via 

three proposed iterative methods which is FSGS, FSSOR 

and HSSOR.  

 

2. FORMULATION OF NONLOCAL ARITHMETIC  

DISCRETIZATION SCHEMES 

In this part, formulation of full- and half-sweep 

nonlocal arithmetic discretization schemes at any time 

level (𝑗 + 1) has been used to remove the nonlinear.  

Practically, for solving one-dimensional nonlinear steady-

state problems, the several formulations of the nonlocal 

arithmetic discretization schemes for full- and half-sweep 

cases can be stated respectively as follows: 

 

a) Full-sweep case (Moaddy et al. [6]) 

2

1i i i
U U U 

      (4a) 

2 1 1
1

2

i i
i i

U U
U U 



   
 

                               (4b) 

b) Half-sweep case (Alibubin et al. [7,8]) 

2

2i i i
U U U   (5a) 

 

2 2 2
2

2

i i
i i

U U
U U 



   
 

                               (5b) 

 

By using the same concept for derivation of 

equations (4) and (5), we need to derive the formulation of 

the full- and half-sweep nonlocal arithmetic discretization 

schemes at any time level (𝑗 + 1) for solving Burger’s 

equation via two level approach. This means that 

equations (4) and (5) at any time level  (𝑗 + 1) can be 

rewritten as follows: 

 

a) Full-sweep case  

2

, 1 , 1 1, 1i j i j i j
U U U   

                                (6a) 

 

1, 1 1, 12

, 1 , 1
2

i j i j

i j i j

U U
U U

   
 

 
  
                             

(6b) 

 

b) Half-sweep case  

2

, 1 , 1 2, 1i j i j i j
U U U   

                                (7a) 

 

2, 1 2, 12

, 1 , 1
2

i j i j

i j i j

U U
U U

   
 

 
  
 

                          (7b) 

 

Actually, equations (4) to (7) are categorized as a 

family of non-standard finite difference (NSFD) methods. 

By referring to equations (6b) and (7b), clearly the 

formulation of these nonlocal arithmetic discretization 

schemes for the internal node point  1ji t,x  involves the 

two neighboring node points. Based on both equations, the 
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nonlinear term of the generated nonlinear approximation 

equation of problem (1) can be eliminated. 

 

3. DERIVATION OF HALF-SWEEP NONLINEAR  

IMPLICIT FINITE DIFFERENCE  

APPROXIMATION EQUATION 

In getting the finite difference solution, actually, 

problem (1) can be approximated at a reference node point 

 1ji t,x by using several different finite differences 

schemes. According to Figure 1(b), we restrict our 

discussion on derivation of the second-order half-sweep 

nonlinear implicit approximation equation for 

approximating problem (1). It means that the second-order 

implicit finite difference discretization scheme has been 

required to discretize over problem (1), therefore the 

second-order half-sweep nonlinear implicit finite 

difference approximation equation for approximating 

problem (1) can be easily given as 

 

 

 
 

. 1 2. 1 2. 1

. 1

2. 1 . 1 2. 12

2 2

2
2

i j i j i j

i j

i j i j i j

U U U
G

t x

v
U U U

x

    


    

 
     

  


      (8) 

 

where 

 

 . 1 1 . 1, , .
i j i j i j

G F x t U         (9) 

 

Since, the expression 

 
2. 1 2. 1

. 1
2 2

i j i j

i j

U U
G

x

   


 
   

is 

denoted as the nonlinear term of problem (1), the half-

sweep nonlocal arithmetic mean discretization scheme in 

equation (7b) can be imposed into equation (8) to 

construct the corresponding linear system. By considering 

a group of two neighboring node points,  12  ji t,x   and 

 12  ji t,x and applying equation (7b), equation (9) can 

be easily expressed as 

 

2. 1 2. 1

. 1 1, , .
2

i j i j

i j i j

U U
G F x t

   
 

 
  

 
                (10) 

 

Referring to equation (8), the half-sweep three 

point implicit approximation equation at any time level  (𝑗 + 1)  for the entire interior node points  1ji t,x  of 

type • as depicted in Figure-1(b) can be rewritten as, 

 

2. 1 . 1 2. 1 . ,   

2,4,6,..., 2

i i j i j i i j i j
aU bU BU F

i m

       

 
              (11) 

 

where, 

 

 

 

. 1 2

2
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. 1 .2

1
,

4 2
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2

1
,    .
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v t
b

x
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


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
 



      

 

 

 
 

Figure-2. Labeling the computational molecule for 

equation (11) 

 

As can be seen in equation (11), the 

computational molecule for equation (11) is depicted in 

Figure-2. Considering the approximation equation (11), 

the corresponding system of three point linear implicit 

approximation equations at any time level (𝑗 + 1) for each 

interior node point of the solution domain in Figure-1 can 

be expressed by using a matrix representation as 

 

1j j
AU F                     (12) 

 

where, 

 

2

4 4

6 6

4 4

2 1 1
2 2

m m

m mm

b B

b B

b B
A

b B

b







 

         
   

 
   
  

  
 
  
 

  

 

1 2. 1 4. 1 6. 1 2. 1

2. 2 0. 1 4. 6. 4.

2. 2 . 1

,  ,  ,  ... ,  

,  ,  ,  ... ,  ,  

 

T

j j j j m j

T

j j j j m j

j

m j m m j

U U U U U

F a U F F F
F

F B U

     

 

  

   

 
  

  

 

 

4. FORMULATION OF SUCCESSIVE OVER  

RELAXATION ITERATION FAMILY 

Based on the tridiagonal linear system in 

equation. (12), it can be revealed that the coefficient 

matrix, A in equation (12) are sparse and large scale. In 

the effort of getting the numerical solution of the sparse 

and large linear system, many studies on various iterative 

methods had been proposed to get the approximate 

solution of this linear system. Based on the literature 

review, Connolly et al. [6] proposed Gauss-Seidel iterative 

method and Young [9,10,11] has proposed the SOR 

iterative method. 
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Based on the half-sweep three-point implicit 

approximation equation in equation (11), the general 

formulation of the HSSOR iterative method at any time 

level (𝑗 + 1), can be stated as [9,10,11] 

 
     

    

1

. 1 . 1

1

. 2. 1 2. 1

1
k k

i j i j

k k

i j i i j i i j

U U

F aU BU
b






 


   

  

 
                 (13) 

 

for 𝑖 = 2,4, … , 𝑚 − 2 where 𝜔 represents as a relaxation 

factor in which this parameter can be calculated practically 

by selecting values periodically until the optimum value of 𝜔 is obtained among the range 1 ≤ 𝜔 < 2. The 

approximate value of ω is considered optimal where its 

iteration number is the smallest. Hence, based on equation 

(13), the general implementation of HSSOR iterationfor 

solving the linear system (12) can generally be explained 

in Algorithm 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 : HSSOR iterative method 

i. Initialize
 0 10

1 0 and 10
j

U  
    

ii. Assign the optimal value ofω 

iii. For 1,2,...,  n,i  perform 

     

    

1

. 1 . 1

1

. 2. 1 2. 1

1
k k

i j i j

k k

i j i i j i i j

U U

F aU BU
b






 


   

  

 
 

iv. Perform the convergence test, 

   1 10

. 1 . 1 10 .
k k

i j i j
U U  

      If yes, 

proceed to step (v). Otherwise go back to 

step (iii). 

v. State finite difference solutions 

approximate solutions. 

 

5. NUMERICAL EXPERIMENTS 

In this section, we attempt to examine the 

effectiveness of the HSSOR iterative method compared to 

FSSOR and HSGS iterative methods, we proposed four 

examples of problem (1). There are three criteria that will 

be used for numerical comparison. The following 

abbreviation are used to indicate three parameter, number 

of iterations (Iter.), time (T) and maximum absolute error 

(MaxEr) to be recorded in Table-1. 

 

Table-1. Numerical results of FSGS, FSSOR and HSSOR iterative methods. 
 

Example M 
Number of iterations Execution time Maximum absolute error 

FSGS FSSOR HSSOR FSGS FSSOR HSSOR FSGS FSSOR HSSOR 

1 

256 

512 

1024 

2048 

4096 

113 

392 

1402 

5015 

17757 

26 

48 

89 

163 

315 

14 

26 

48 

89 

163 

0.14 

0.91 

6.27 

44.96 

323.16 

0.08 

0.15 

0.51 

1.90 

7.20 

0.05 

0.09 

0.29 

1.05 

4.03 

1.6029E-04 

1.6335E-04 

1.6446E-04 

1.6614E-04 

1.7215E-04 

1.6027E-04 

1.6324E-04 

1.6399E-04 

1.6417E-04 

1.6422E-04 

1.8541E-04 

2.0014E-04 

2.0380E-04 

2.0471E-04 

2.0494E-04 

2 

256 

512 

1024 

2048 

4096 

9391 

34224 

123648 

441778 

1556249 

317 

633 

1328 

2446 

4913 

161 

324 

633 

1249 

2446 

10.12 

73.85 

535.63 

3851.61 

30095.34 

0.43 

1.55 

6.38 

24.28 

94.12 

0.20 

0.70 

2.84 

10.99 

43.97 

2.3109E-04 

2.2921E-04 

2.2171E-04 

1.9182E-04 

7.7759E-05 

2.3172E-04 

2.3172E-04 

2.3171E-04 

2.3171E-04 

2.3171E-04 

2.3171E-04 

2.3171E-04 

2.3172E-04 

2.3171E-04 

2.3172E-04 

3 

256 

512 

1024 

2048 

4096 

1092 

3986 

14490 

52197 

185762 

143 

274 

530 

1020 

2143 

74 

143 

274 

530 

1020 

1.20 

8.72 

63.59 

459.38 

3310.30 

0.20 

0.68 

2.54 

9.72 

41.59 

0.12 

0.34 

1.42 

5.30 

20.65 

7.3955E-04 

7.3717E-04 

7.3217E-04 

7.1332E-04 

6.3840E-04 

7.3993E-04 

7.3873E-04 

7.3841E-04 

7.3830E-04 

6.3834E-04 

7.4479E-04 

7.3993E-04 

7.3873E-04 

7.3841E-04 

7.3830E-04 

4 

256 

512 

1024 

2048 

4096 

30 

89 

304 

1076 

3818 

22 

41 

80 

154 

300 

12 

22 

41 

79 

154 

0.11 

0.24 

1.33 

9.24 

65.28 

0.08 

0.13 

0.40 

1.46 

5.63 

0.06 

0.08 

0.22 

0.77 

2.99 

1.0436E-08 

4.6473E-08 

1.8519E-07 

7.6008E-07 

3.0478E-06 

8.0134E-10 

4.8389E-04 

2.3627E-08 

4.4701E-08 

8.6651E-08 

5.3303E-09 

1.3597E-09 

4.2066E-09 

1.8720E-08 

4.1099E-08 

 

Example 1 [1] 

Let the initial value equation as follows: 

 
2

,1 ,   
1 1

1 exp
4 4

for  0.

x
u x

x
v

t


       



                      (14) 
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with exact solution of problem (14) is given by 

 

  1

22

0

, ,   

1 exp
4

1
where  exp .

8
o

x

tu x t

t x

t vt

t
v


   

    
  

   
                             

(15) 

 

Example 2 [5] 

Let the initial value equation as follows: 

 

 ,0 2 ,   for  0.u x x t                   (16) 

 

with exact solution of problem (16) is given by 

 

  2
, .

1 2

x
u x t

t



                  (17) 

 

 

Example 3 [12] 
Let the initial value equation as follows: 

 

   
 

sin
,0 2 ,   for  0.

cos

x
u x v t

x

 
 

 
                 (18) 

 

with exact solution of problem (18) is given by 

 

   
 

2

2

2 sin
, .

cos

vt

vt

v e x
u x t

e x





 

 







                 (19) 

 

Example 4 [3] 

Consider problem (1) with initial value equation 

are taken from the exact solution [4]: 

 

 ,0 tan ,   
1 2 2

0.5 1.5,   0.

v x
u x x

vt vt

x t

         
  

                (20) 

Table-2. Reduction percentages of the number of iterations and execution time for FSSOR and HSSOR iterative methods 

compared with FSGS iterative method. 
 

Methods 
Number of iterations 

Example 1 Example 2 Example 3 Example 4 

FSSOR 77.0% − 98.2% 96.6% − 99.7% 86.9% − 98.9% 26.7% − 92.1% 

HSSOR 87.6% − 99.1% 98.3% − 99.8% 93.2% − 99.5% 60.0% − 96.0% 

Methods 
Execution time 

Example 1 Example 2 Example 3 Example 4 

FSSOR 42.9% − 97.8% 95.8% − 99.7% 83.3% − 98.7% 27.3% − 91.4% 

HSSOR 64.3% − 98.8% 98.0% − 99.9% 90.0% − 99.4% 45.5% − 95.4% 

 

4. CONCLUSIONS 

This paper has been successfully generateda 

system of linear equation as shown in equation (11) based 

on the formulation of approximation equations using the 

nonlocal arithmetic discretization scheme. By referring to 

the numerical result obtained in Table-1, it clearly showed 

that HSSOR iterative method is better than FSGS and 

FSSOR iterative methods in terms of number of iterations 

and the execution time. HSSOR iterative method requires 

less number of iterations approximately by 87.6%-99.1%, 

98.3%-99.8%, 93.2%-99.5% and 60.0%-96.0% 

respectively compared to FSGS iterative method. 

However, in terms of execution time, HSSOR are faster 

about 64.3%-98.8%, 98.0%-99.9%, 90.0%-99.4% and 

45.5%-95.4% as compared with FSGS iterative methods. 

In terms of the accuracy of numerical solution obtained, 

all result of the proposed iterative methods gives in a good 

agreement. Finally, we concluded that HSSOR iterative 

method is better than other SOR iterative family. 

 

REFERENCES 

 

[1] M. Tamsir, N. Dhiman and V. K. Srivastava. 2016. 

Extended modified cubic B-spline algorithm for 

nonlinear Burger’s equation. Beni-Suef University 

Journal of Basic and Applied Sciences. 5: 244-254. 

[2] W. Liao. 2008. An implicit fourth-order compact 

finite difference scheme for one-dimensional Burger’s 

equation. Applied Mathematics and Computation. 

206: 755-764. 

[3] G. Arora and V. Joshi. 2017. A computational 

approach using modified trigonometric cubic B-spline 

for numerical solution of Burgers equation in one and 

two dimensions, Alexandria Engineering Journal. 



                                VOL. 14, NO. 3, FEBRUARY2019                                                                                                             ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                 621 

[4] K. R. Raslan. 2003. A collocation solution for Burgers 

equation using quadratic B-spline finite elements, 

International Journal of Computer Mathematics. 80, 

931-938. 

[5] J. Biazar and H. Aminikhah. 2009. Exact and 

numerical solutions for non-linear Burger’s equation 

by VIM. Mathematical and Computer Modelling. 49: 

1394-1400. 

[6] K. Moaddy, I. Hashim, A. K. Alomari and S. 

Momani. 2011. SainsMalaysian. 40: 515-519. 

[7] M. U. Alibubin, A. Sunarto and J. Sulaiman. 2016. 

Performance analysis of half-sweep SOR iteration 

with rotated nonlocal arithmetic mean scheme for 2D 

nonlinear elliptic problems. Global Journal of Pure 

and Applied Mathematics. 12: 3415-3424. 

[8] N. F. A. Zainal, J. Sulaiman and M. U. Alibubin. 

2018. Application of SOR iteration with nonlocal 

arithmetic discretization scheme for solving Burger’s 

equation. International Conference on Mathematics, 

Engineering and Industrial Applications.  

[9] D. M. Young. 1954. Iterative methods for solving 

partial difference equations of elliptic type. Trans. 

Amer. Math. Soc.76: 92-111. 

[10] D. M, Young. 1971. Iterative solution of large linear 

systems. London Academic Press. 

[11] D. M, Young. 1972. Second-degree iterative methods 

for the solution of large linear systems.Journal of 

Approximation Theory. 5: 37-143. 

[12] D.J. Evans & M.S. Sahimi. 1987. The alternating 

group explicit (AGE) iterative method for solving 

parabolic equations 1-2- Dimensional problems. 

International Journal of Computational and Applied 

Mathematics.24. 311-341. 

[13] A. A. Soliman. 2012. A galerkin solution for Burgers’ 
equation using cubic B-spline finite element. Abstract 

and Applied Analysis. 

[14] S. Kutluay, A. R. Bahadir and A. Ozdes. 1999. 

Numerical solution of one-dimensional Burgers 

equation: explicit and exact-explicit finite difference 

methods. 103: 251-261. 

[15] T. Ozis, E. N. Aksan and A. Ozdes. 2003. A finite 

element approach for solution of Burgers equation. 

Applied Mathematics and Computation. 139: 417-

428. 

[16] F. A. Muhiddinand J. Sulaiman. 2011. Fourth-order 

Crank-Nicolson solution for solving diffusion 

equation using MSOR iteration. Advance Science 

Letter. 4: 400-407. 

 

 

 

 

 

 

 

 

 

 

 


