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ABSTRACT 

In this paper a finite element method involving Petrov-Galerkin method with quintic B-splines as basis functions 
and sextic B-splines as weight functions has been developed to solve a general ninth order boundary value problem with a 
particular case of boundary conditions. The basis functions are redefined into a new set of basis functions which vanish on 
the boundary where the Dirichlet, the Neumann, second order and third order derivative type of boundary conditions are 
prescribed. The weight functions are also redefined into a new set of weight functions which in number match with the 
number of redefined basis functions. The proposed method was applied to solve several examples of ninth order linear and 
nonlinear boundary value problems. The obtained numerical results were found to be in good agreement with the exact 
solutions available in the literature. 
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1. INTRODUCTION 

In this paper, we consider a general ninth order 
linear boundary value problem 
 

(9) (8) (7) (6)
0 1 2 3

(5) (4)
4 5 6 7

8 9

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ,

p t u t p t u t p t u t p t u t

p t u t p t u t p t u t p t u t

p t u t p t u t b t c t d

  

    
    

       (1) 

 
subject to boundary conditions 
 

2 2

(4)
3

0 1

3 4

0 1,

( ) ,

( ) , ( ) , ( ) , ( )

( ) ,

( ) , ( ) , ( )

u c A u d C

u c

u c A u d C u c A u d C

A u d C u c A

  

 

   





  

                  (2) 

 
where A0, C0, A1, C1,  A2, C2, A3, C3, A4   are finite  real 
constants and p0(t), p1(t), p2(t), p3(t), p4(t), p5(t), p6(t), p7(t), 
p8(t), p9(t) and b(t)  are all continuous functions defined on 
the interval [c, d]. 

The ninth-order boundary value problems are 
known to arise in the study of astrophysics, hydrodynamic 
and hydro magnetic stability [1]. A class of characteristic-
value problems of higher order (as higher as twenty four) 
is known to arise in hydrodynamic and hydro magnetic 
stability [1]. The existence and uniqueness of the solution 
for these types of problems have been discussed in 
Agarwal [2]. Finding the analytical solutions of such type 
of boundary value problems in general is not possible. 
Over the years, many researchers have worked on ninth-
order boundary value problems by using different methods 
for numerical solutions. Chawla and Katti [3] developed a 
finite difference scheme for the solution of a special case 
of nonlinear higher order two point boundary value 
problems. Wazwaz [4] developed the solution of a special 
type of higher order boundary value problems by using the 

modified Adomian decomposition method and he 
provided the solution in the form of a rapidly convergent 
series. Hassan and Erturk [5] provided solution of different 
types of linear and nonlinear higher order boundary value 
problems by using differential transformation method. 
Tauseef and Ahmet [6] presented the solution of ninth and 
tenth order boundary value problems by using homotopy 
perturbation method without any discretization, 
linearization or restrictive assumptions. Tauseef and 
Ahmet [7] developed modified variational method for 
solving ninth and tenth order boundary value problems 
introducing He's polynomials in the correction functional. 
Jafar and Shirin [8] presented homotopy perturbation 
method for solving the boundary value problems of higher 
order by reformulating them as an equivalent system of 
integral equations. Tawfiq and Yassien [9] developed 
Semi-Analytic technique for the solution of higher order 
boundary value problems using two-point oscillatory 
interpolation to construct polynomial solution. Hossain 
and Islam [10] presented the Galerkin method with 
Legendre polynomials as basis functions for the solution 
of odd higher order boundary value problems. Samir [11] 
developed spectral collocation method for the solution of 
mth order boundary value problems with help of 
Tchebychev polynomials by converting the given 
differential equation into system of first order boundary 
value problems. Kasi Viswanadham and Reddy [12] 
solved ninth order boundary value problems by Petrov-
Galerkin method with quintic B-splines as basis functions 
and septic B-splines as weight functions. So far, ninth 
order boundary value problems have not been solved by 
using Petrov-Galerkin method with quintic B-splines as 
basis functions and sextic B-splines as weight functions. 
This motivated us to solve a ninth order boundary value 
problem by Pertrov-Galerkin method with quintic B-
splines as basis functions and sextic B-splines as weight 
functions. 
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In this paper, we try to present a simple finite 
element method which involves Petrov-Galerkin approach 
with quintic B-splines as basis functions and sextic B-
splines as weight functions to solve a general ninth order 
boundary value problem of the type (1)-(2). This paper is 
organized as follows. Section 2 deals with the justification 
for using Petrov-Galerkin method. In Section 3, a 
description of Petrov-Galerkin method with quintic B-
splines as basis functions and sextic B-splines as weight 
functions is explained. In particular we first introduce the 
concept of quintic B-splines, sextic B-splines and followed 
by the proposed method with the specified boundary 
conditions. In Section 4, the procedure to solve the nodal 
parameters has been presented. In section 5, the proposed 
method is tested on several linear and nonlinear boundary 
value problems. The solution to a nonlinear problem has 
been obtained as the limit of a sequence of solution of 
linear problems generated by the quasilinearization 
technique [13]. Finally, in the last section, the conclusions 
are presented. 
 
2. JUSTIFICATION FOR USING PETROV- 
    GALERKIN METHOD 

In Finite Element Method (FEM) the 
approximate solution can be written as a linear 
combination of basis functions which constitute a basis for 
the approximation space under consideration. FEM 
involves variational methods like Rayleigh Ritz method, 
Galerkin method, Least Squares method, Petrov-Galerkin 
method and Collocation method etc. In Petrov-Galerkin 
method, the residual of approximation is made orthogonal 
to the weight functions. When we use Petrov-Galerkin 
method, a weak form of approximation solution for a 
given differential equation exists and is unique under 
appropriate conditions [14, 15] irrespective of properties 
of a given differential operator. Further, a weak solution 
also tends to a classical solution of given differential 
equation, provided sufficient attention is given to the 
boundary conditions [16]. That means the basis functions 
should vanish on the boundary where the Dirichlet type of 
boundary conditions are prescribed and also the number of 
weight functions should match with the number of basis 
functions. Hence in this paper we employed the use of 
Petrov-Galerkin method with quintic B-splines as basis 
functions and sextic B-splines as weight functions to 
approximate the solution of ninth order boundary value 
problem. 
 
3. DESCRIPTION OF THE METHOD 

Definition of quintic B-splines and sextic B-
splines:  

The quintic B-splines and sextic B-splines are 
defined in [17-19]. The existence of quintic spline 
interpolate s(t) to a function in a closed interval [c, d] for 
spaced knots (need not be evenly spaced) of a partition c = 
t0 < t1 <…< tn-1 < tn= d     is established by constructing it. 
The construction of s(t) is done with the help of the quintic 
B-splines. Introduce ten additional knots t-5, t-4, t-3, t-2, t-1, 
tn+1, tn+2, tn+3, tn+4 and tn+5 in such a way that t-5<t-4<t-3<t-

2<t-1<t0   and   tn<tn+1<tn+2<tn+3<tn+4<tn+5. 

Now the quintic B-splines ( ) 'iB t s  are defined 

by 
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where {B-2(t), B-1(t), B0(t), B1(t),…,Bn-1(t), Bn(t), Bn+1(t), 

Bn+2(t)} forms a basis for the space 5 ( )S   of quintic 

polynomial splines. Schoenberg [19] has proved that 
quintic B-splines are the unique nonzero splines of 
smallest compact support with the knots at 
t-5<t-4<t-3<t2<t1<t0<t1<...<tn-1<tn 

                                           <tn+1<tn+2<tn+3<tn+4.<tn+5. 
In a similar analogue sextic B-splines Si(t)'s are 

defined  by 
64
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where {S-3(t), S-2(t), S-1(t), S0(t), S1(t),… ,Sn-1(t), Sn(t), 

Sn+1(t), Sn+2(t)} forms a basis for the space 6 ( )S   of 

sextic polynomial splines with the introduction of two 
more additional knots t-6 and tn+6  to the already existing 
knots t-5 to tn+5. Schoenberg [19] has proved that sextic B-
splines are the unique nonzero splines of smallest compact 
support with the knots at 
 
 t-6<t-5<t-4<t-3<t-2<t-1<t0<t1<…<tn-1<tn 

                                                   <tn+1<tn+2<tn+3<tn+4<tn+5<tn+6. 
 

To solve the boundary value problem (1) subject 
to boundary conditions (2) by the Petrov-Galerkin method 
with quintic B-splines as basis functions and sextic B-
splines as weight functions, we define the approximation 
for u(t) as 
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         (3) 

 
where αj’s are the nodal parameters to be determined and 
Bj(t)’s are quintic B-spline basis functions. In Petrov-
Galerkin method, the basis functions should vanish on the 
boundary where the Dirichlet type of boundary conditions 
are specified. In the set of quintic B-splines {B-2(t), B-1(t), 
B0(t), B1(t),…,Bn-1(t), Bn(t), Bn+1(t), Bn+2(t)}, the basis 
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functions B-2(t), B-1(t), B0(t), B1(t), B2(t), Bn-2(t), Bn-1(t), 
Bn(t), Bn+1(t)  and Bn+2(t) do not vanish at one of the 
boundary points. So, there is a necessity of redefining the 
basis functions into a new set of basis functions which 
vanish on the boundary where the Dirichlet types of 
boundary conditions are specified. When the chosen 
approximation satisfies the prescribed boundary conditions 
or most of the boundary conditions, it gives better 
approximation results. In view of this, the basis functions 
are redefined into a new set of basis functions which 
vanish on the boundary where the Dirichlet, the Neumann, 
second and third order derivative types of boundary 
conditions are prescribed. The procedure for redefining of 
the basis functions is as follows. 

Using the definition of quintic B-splines, the 
Dirichlet, the Neumann, second and third order derivative 
boundary conditions of (2), we get the approximate 
solution at the boundary points as 
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Eliminating α-2, α-1, α0, α1, αn-1, αn, αn+1 and αn+2 

from the equations (3) to (11), we get 
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The new set of basis functions in the 

approximation u(t) is {  ˆ
jR t , j=2,…,n-2}. Here w(t) takes 

care of given set of Dirichlet, Neumann, second and third 
order derivative type of boundary conditions and  ˆ

jR t 's 

and its first, second and third order derivatives vanish on 
the boundary. In Petrov-Galerkin method, the number of 
basis functions in the approximation should match with 
the number of weight functions. Here the number of basis 
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functions in the approximation for u(t) defined in (12) is  
n-3, where as the number of weight functions is n+6. So, 
there is a need to redefine the weight functions into a new 
set of weight functions which in number match with the 
number of basis functions. The procedure for redefining 
the weight functions is as follows:                                                             

Let us write the approximation for v(t) as 
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where ( )jS t 's are sextic B-splines and here we assume that 

above approximation v(t) satisfies the conditions 
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Applying the boundary conditions (22) to (21), 

we get the approximate solution at the boundary points as  
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Eliminating β-3, β-2, β-1, β0, βn-2, βn-1, βn, βn+1 and 

βn+2 from the equations (21) and (23) to (31), we get the 
approximation for v(t) as  
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Now the new set of weight functions for the 

approximation v(t) is {  ˆ
jV t , j=1, 2,…,n-3}. Here  ˆ

jV t

's and its first, second and third order derivatives vanish on 
the boundary. Also fourth order derivative of  ˆ

jV t ’s at 

right boundary also vanish. 
Applying the Petrov-Galerkin method to (1) with 

the new set of basis functions {  ˆ
jR t , j=2,…,n-2} and 

with the new set of weight functions {  îV t , i=1,2,…,n-

3}, we get 
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Integrating by parts the first five terms on the left 

hand side of (38) and after applying the boundary 
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0

0

0

4
(9)

0 04

(4)
0

4

5

5
                                

ˆ ˆ( ) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )

[ ]

[ ] 

n

n

t

i

i

t

t

t

i t

d
t u t V t dt t V t

dt

d
t V t u t dt

dt

p p A

p

 







 (39) 

 

 

0 0

4
4(

1 4
8)

1
ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )[ ] 

n nt t

t

i

t

i

d
t u t V t dt t V t u t dt

d
p p

t
        (40) 

 

0 0

4

2 24
(7) ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )[ ] 

n nt t

t t

i i

d
t u t V t dt t V t u t dt

dt
p p         (41) 

 

0 0

4

3 34
(6) ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )[ ] 

n nt t

t t

i i

d
t u t V t dt t V t u t dt

dt
p p         (42) 

 

0 0

4

4 44
(5) ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )[ ] 

n n

i i

t t

t t

d
t u t V t dt t V t u t dt

dt
p p         (43) 

 
Substituting (39) to (43) in (38) and using the 

approximation for u(t) given in (12), and after rearranging 
the terms for resulting equations, we get a system of 
equations in the matrix form as 
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i i i it
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i i

d d
b b t V t p t V t p t V t

dt dt

d
p t V t w t p t V t p t V t w t

dt

d
p t V t p t V t w t

dt

d
p t V t p t V t

dt

         

     

    

   



0

4

9 0 44

)] ( )

ˆ ˆ( ) ( ) ( )}} ( ) ( )i i
t

w t

d
p t V t w t dt p t V t A

dt



    

          

 
for i=1, 2, ....., n-3.                                                         (46) 

 and 31 2 .[ ]T

n       

 
4. PROCEDURE TO FIND THE SOLUTION FOR  
     NODAL PARAMETERS 

A typical integral element in the matrix A  is 
1

0

n

m
m

I



  

where 
1

( ) ( ) ( )
m

m

t

jtm iI tv r t Z t dt
  , ( )jr t  are the 

quintic B-spline basis functions or their derivatives, ( )iv t  

are the sextic B-spline weight functions or their 
derivatives. It may be noted that Im = 0 if 

4 4 3 3 1( , ) ( , ) ( , )i i j j m mt t t t t t       . To evaluate each Im, 

we employed 7-point Gauss-Legendre quadrature formula. 
Thus the stiffness matrix A  is a twelve diagonal band 
matrix. The nodal parameter vector   has been obtained 
from the system  A B   using the band matrix solution 
package. We have used the FORTRAN-90 program to 
solve the boundary value problems (1) - (2) by the 
proposed method. 
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5. NUMERICAL RESULTS 
To demonstrate the applicability of the proposed 

method for solving the ninth order boundary value 
problems of the type (1) and (2), we considered three 
linear and two nonlinear boundary value problems. The 
obtained numerical results for each problem are presented 
in tabular forms and compared with the exact solutions 
available in the literature. 
 

Example 1: Consider the linear boundary value 
problem 
 

(9) 9 , 0 1t tu u e                                           (47)                                                                                              

subject to  

(4)

(0) 1, (1) 0, (0) 0, (1) ,

(0) 1, (1) 2 ,

(0) 2, (1) 3 , (0) 3.

u u

u u

u u e

e

u eu u

    
   

   

 
 

   

 

 
The exact solution for the above problem is 

(1 ) .tu t e   

The proposed method is tested on this problem 
where the domain [0, 1] is divided into 10 equal 
subintervals. The obtained numerical results for this 
problem are given in Table-1. The maximum absolute 
error obtained by the proposed method is 5.778670x10-5. 
 

Table-1. Numerical results for Example 1. 
 

t 
Absolute error by the 

proposed method 

0.1 1.668930E-06 

0.2 2.324581E-06 

0.3 1.460314E-05 

0.4 5.525351E-05 

0.5 1.055002E-05 

0.6 1.339912E-05 

0.7 1.159906E-05 

0.8 5.778670E-05 

0.9 6.243587E-06 

 
Example 2: Consider the linear boundary value 

problem 
 

(9) (4)sin  u (2 sin ) ,   0  1tt t e tu u           (48)  

                                                                
subject to  

(4)

(0) 1,  (1) , (0) 1, (1) ,

(0) 1, (1) , (0) 1, (1) , (0) 1.

u u

u u u

u u e

u

e

u e e

   

  

 

    
 

 
The exact solution for the above problem is  

.tu e  

The proposed method is tested on this problem 
where the domain [0, 1] is divided into 10 equal 
subintervals. The obtained numerical results for this 
problem are given in Table-2. The maximum absolute 
error obtained by the proposed method is 1.764297x10-5. 
 

Table-2. Numerical results for Example 2. 
 

t 
Absolute error by the 

proposed method

0.1 1.549721E-06 

0.2 6.198883E-06 

0.3 9.894371E-06 

0.4 1.299381E-05 

0.5 5.125999E-06 

0.6 7.629395E-06 

0.7 1.764297E-05 

0.8 1.716614E-05 

0.9 1.120567E-05 

 
Example 3: Consider the linear boundary value 

problem 
(9) (7) (4)

2 2

sin  u

5 sin cos cos sin

  sin cos cos , 0 1

u tu u t u

t t t t t t t

t t t t t

u      

   
   

                      (49) 

 
subject to  

(4)

(0) 0,  u(1) cos1, (0) 1, (1) cos1 sin1,

(0) 0, (1) 2sin1 cos1,

(0) 3, (1) 3cos1 sin1, (0) 0.

u u

u

u u u

u

u

 


 

    
   

     

 

 
The exact solution for the above problem is  

cos .u t t  
The proposed method is tested on this problem where the   
domain [0, 1] is divided into 10 equal subintervals. The 
obtained numerical results for this problem are given in 
Table-3. The maximum absolute error obtained by the 
proposed method is 1.686811x10-5. 
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Table-3. Numerical results for Example 3. 
 

t 
Absolute error by the 

proposed method 

0.1 2.905726E-07 

0.2 1.296401E-06 

0.3 4.142523E-06 

0.4 9.804964E-06 

0.5 1.510978E-05 

0.6 1.686811E-05 

0.7 1.370907E-05 

0.8 6.318092E-06 

0.9 5.960464E-08 

 
Example 4: Consider the nonlinear boundary 

value problem 
 

(9) (1 ) , 0 1
te tu teu e u u u e e t            (50)  

subject to  
 

 
 

The exact solution for the above problem is 

.tu e  
The nonlinear boundary value problem (50) is 

converted into a sequence of linear boundary value 
problems generated by quasilinearization technique [13] as  
 

( )

( )

( )

( ) ( 1) ( ) ( ) ( 1)

( ) (

(9)
( 1

) ( )

) ( 1)

(51)

( )

( )

                        

(1 )

0,1, 2,...                f  or

n

n

n

t

n n

e t t

u u
n n n n n

u
n n n

u u u u u ee

e e e

n

u u

u e u u

       









          

 
subject to  

( 1) ( 1) ( 1) ( 1)

( 1) ( 1) ( 1) ( 1)

(4)
( 1)

(0) 1, (1) , (0) 1, (1) ,

(0) 1, (1) , (0) 1, (1) ,

(0) 1.

n n n n

n n n n

n

u e u u e

u u e u e

u

u

u

   

   



    

      



 

 

Here ( 1)nu   is the ( 1)thn   approximation for 

( ).u t  The domain [0, 1] is divided into 10 equal 

subintervals and the proposed method is applied to the 
sequence of linear problems (51). The obtained numerical 
results for this problem are presented in Table-4. The 
maximum absolute error obtained by the proposed method 
is 9.799004x10-5. 
 
 
 
 

Table-4. Numerical results for Example 4. 
 

t 
Absolute error by the 

proposed method 

0.1 2.384186E-06 

0.2 1.132488E-05 

0.3 3.564358E-05 

0.4 7.295609E-05 

0.5 9.799004E-05 

0.6 9.047985E-05 

0.7 5.459785E-05 

0.8 1.358986E-05 

0.9 6.914139E-06 

 
Example 5: Consider the nonlinear boundary 

value problem 
 

2(9) 3cos , 0 1u u u t t                                   (52)      

 
subject to  

(4)

(0) 0,  (1) sin1, (0) 1, (1) cos1,

(0) 0, (1) sin1, (0) 1, (1) cos1,

(0) 0.

u u

u

u u

u u u

u

   


 
        



 

The exact solution for the above problem is 
sin .u t  

The nonlinear boundary value problem (52) is 
converted into a sequence of linear boundary value 
problems generated by quasilinearization technique [13] as  
 

2
( ) ( 1) ( ) ( ) (

(9)
( 1)

3 2
( ) (

1)

)cos 2 , 0,1, 2, .

2

..

n n n

n n

n n nu

t u n

u

u

u u u u 



 






                     (53) 

 
 subject to  

( 1) ( 1)

( 1) ( 1)

( 1) ( 1)

(4)
( 1) ( 1) ( 1)

(0) 0, (1) sin1,

(0) 1, (1) cos1,

(0) 0, (1) sin1,

(0) 1, (1) cos1, (0) 0.

n n

n n

n n

n n n

u

u u

u u

u u u

u  

 

 

  

 

  

   

     

 

 

Here ( 1)nu   is the ( 1)thn  approximation for 

( ).u t  The domain [0, 1] is divided into 10 equal 

subintervals and the proposed method is applied to the 
sequence of linear problems (53). The obtained numerical 
results for this problem are presented in Table-5. The 
maximum absolute error obtained by the proposed method 
is 9.059906x10-6. 
 
 
 
 



                                VOL. 14, NO. 3, FEBRUARY2019                                                                                                             ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                 637 

Table-5. Numerical results for Example 5. 
 

t 
Absolute error by the 

proposed method 

0.1 3.054738E-07 

0.2 1.415610E-06 

0.3 4.023314E-06 

0.4 7.897615E-06 

0.5 9.059906E-06 

0.6 5.722046E-06 

0.7 5.960464E-07 

0.8 2.801418E-06 

0.9 2.861023E-06 

 
6. CONCLUSIONS 

In this paper, we have employed a Petrov-
Galerkin method with quintic B-splines as basis functions 
and sextic B-splines as weight functions to solve ninth 
order boundary value problems with special case of 
boundary conditions. The quintic B-spline basis set has 
been redefined into a new set of basis functions which 
vanish on the boundary where the Dirichlet, the Neumann, 
second and third order derivative types of boundary 
conditions are prescribed. The sextic B-splines are 
redefined into a new set of weight functions which in 
number match the number of redefined set of basis 
functions. The solution to a nonlinear problem has been 
obtained as the limit of a sequence of solution of linear 
problems generated by the quasilinearization technique 
[13]. The proposed method has been tested on three linear 
and two nonlinear ninth order boundary value problems. 
The numerical results obtained by the proposed method 
are in good agreement with the exact solutions available in 
the literature. The strength of the proposed method lies in 
its easy applicability, accurate and efficient to solve ninth 
order boundary value problems.  
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