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ABSTRACT 

The effects of Uniform and Non uniform salinity gradients on the onset of Double Diffusive Convection in a  

composite layer, comprising an incompressible two component fluid saturated porous layer over which lies a layer of the 

same fluid are investigated. The upper boundary of the fluid layer and the lower boundary of the porous layer are rigid and 

both the boundaries are insulating to heat and mass.  At the interface, the velocity, shear stress, normal stress, heat, heat 

flux, mass and mass flux are assumed to be continuous conducive for Darcy-Brinkman model. The resulting Eigen value 

problem is solved by Regular perturbation method. The critical Rayleigh number for all the profiles is obtained and the 

effects of different physical parameter on the onset of double diffusive convection are investigated for all profiles. It is 

found that for the stability demanding situations like solar ponds, the parabolic salinity profile is the most conducive where 

in the onset of double diffusive convection in a composite layer can be delayed. For the heat and mass (solute or salt) 

transfer problems like petroleum  and geothermal reservoirs, the inverted parabolic salinity profile is most suitable, where 

in the onset of double diffusive convection is fast. 
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1. INTRODUCTION 
The sun is the largest source of all renewable 

energies on the earth and this energy is abundantly 

available in all parts of the earth. It is in fact one of the 

best alternatives to the non-renewable sources of energy. 

One way to tap solar energy is through the use of solar 

ponds. Solar ponds are large-scale energy collectors with 

integral heat storage for supplying thermal energy for 

process heating, water desalination, refrigeration, drying 

and power generation. The solar pond works on a very 

simple principle well-known that water or air is heated 

they become lighter and rise upward e.g. a hot air balloon. 

Similarly, in an ordinary pond, the sun’s rays heat the 

water and the heated water within the pond rises and 

reaches the top but loses the heat into the atmosphere. The 

net result is that the pond water remains at the atmospheric 

temperature. The solar pond restricts this tendency by 

dissolving salt in the bottom layer of the pond making it 

too heavy to rise. A solar pond has three zones. The top 

zone is the surface zone, or UCZ (Upper Convective 

Zone), which is at atmospheric temperature and has little 

salt content. The bottom zone is very hot, 70°– 85° C, and 

is very salty. It is this zone that collects and stores solar 

energy in the form of heat, and is, therefore, known as the 

storage zone or LCZ (Lower Convective Zone). 

Separating these two zones is the important gradient zone 

or NCZ (Non-Convective Zone). Here the salt content 

increases as depth increases, thereby creating a salinity or 

density gradient. If we consider a particular layer in this 

zone, water of that layer cannot rise, as the layer of water 

above has less salt content and is, therefore, lighter. 

Similarly, the water from this layer cannot fall as the water 

layer below has a higher salt content and is, therefore, 

heavier. This gradient zone acts as a transparent insulator 

permitting sunlight to reach the bottom zone but also 

entrapping it there. The trapped (solar) energy is then 

withdrawn from the pond in the form of hot brine from the 

storage zone. 

In the situation explained above, the occurrence 

of non-uniform gradients of salinity and temperature is a 

reality. With reference to the above  application in mind 

we are investigating the onset of Double diffusive (thermo 

haline) convection in a Composite layer (two layer) 

comprising of an incompressible two component 

(temperature and salt) fluid saturated porous layer  over 

which lies a layer of the same fluid. This composite layer 

is subjected to different salinity gradients in search of the 

most stable gradient suitable for the solar pond. The upper 

boundary of the fluid layer and the lower boundary of the 

porous layer are rigid and are insulating to heat and salt.  

At the interface, the velocity, shear stress, normal stress, 

heat and heat flux, salt and salt flux are assumed to be 

continuous conducive for Darcy-Brinkman model. The 

Eigen value of the problem, the critical Rayleigh number 

is obtained for all the salinity gradients. The effects of the 

various physical parameters on the stability of the system 

are investigated in detail. The problem also finds 

applications in petroleum and geothermal reservoirs, 

underground spreading of fertilizers, growth of crystals 

(isothermal and non - isothermal methods), solidification 

of alloys, materials processing and many more. In these 

situations, presence of non-uniform salinity gradients is a 

reality but the fundamental research in this area is to be 

focused. 

Recently Pranesh et al [1] have investigated the 

effect of non uniform basic concentration gradient on the 
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onset of double diffusive convection in a micro polar fluid 

layer heated and soluted from below and cooled from 

above, using Galerkin method for different velocity 

boundary combinations with isothermal on spin-vanishing 

permeable boundaries. They have observed that the fluid 

layer with suspended particles heated and soluted from 

below is more stable compared to the classical fluid layer 

without suspended particles.   

Ray-Yeng Yang et al [2] have investigated the 

overstability analysis on salt-fingers convection with 

parabolic temperature and salinity profiles. They explored 

the influence of parabolic profiles of temperature and 

salinity, as might arise due to local evaporation or 

warming disturbance, on the marginal stability problem in 

a salt fingering regime. They have also investigated the 

Marginal stability analysis on salt-fingers convection with 

parabolic temperature and salinity profiles.   

Giestas et al [3] presented a 2D numerical model 

where the behavior of a salt gradient solar pond (SGSP) is 

described in terms of temperature, salt concentration and 

velocity with the fluid density and viscosity dependent on 

temperature and salt concentration. The discretization of 

the governing equations is based on the respective weak 

formulations. The rectangular geometry allows for spectral 

type Galerkin approximations for with the essential 

homogeneous boundary conditions can easily be imposed. 

Taking into the account the variation of density and 

viscosity with temperature and salinity improved the 

agreement between the numerical and the experimental 

results. 

 

2. FORMULATION OF THE PROBLEM 

We consider a horizontal two - component fluid 

saturated, isotropic, sparsely packed porous layer of 

thickness 
m

d underlying a two component fluid layer of 

thickness d .The lower surface of the porous layer and the 

upper surface of the fluid layer are rigid and are insulating 

to heat and mass.  A Cartesian coordinate system is chosen 

with the origin at the interface between porous and fluid 

layers and the z - axis, vertically upwards. The basic 

steady state is assumed to be the quiescent and the 

governing equations are continuity, momentum, energy 

and concentration equations with Boussinesq 

approximation. 

For fluid layer  

 

0q 
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t
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For the porous layer, 

 

0
m m

q                                      (5) 

 

  2

0 2

1 1 ˆ.m
m m m m m m

q
q q P q q gk

t K

  
 
                 

                                                  

(6) 

 

  2m
m m m m m m

T
A q T T

t


   
      

(7) 
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m m sm m

C
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t
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and the state equation is 

   0 0 01
m t m s m

T T C C           

where  , ,q u v w  is the velocity vector, 0  is the 

constant fluid density, t  is the time, P is fluid pressure, 

 is the fluid viscosity,   is the  fluid density , g  is the 

acceleration due to gravity, 
 
 

0 p m

p f

C
A

C




 is the ratio of 

heat capacities, pC  is the specific heat, K  is the 

permeability of the porous medium, T  is the temperature, 

  is the thermal diffusivity of the fluid, C  is the 

concentration/solute/salt, s
  is the solute diffusivity of the 

fluid,  is the porosity, t
 is the thermal expansion 

coefficient, s
 is the Concentration/solute  expansion 

coefficient and the subscripts m  and  f refer to the 

porous medium and the fluid respectively. 

In order to investigate the stability of the basic 

solution, infinitesimal disturbances are introduced. 

Equations (1) to (8) are linearized and the pressure term is 

eliminated from (2) and (6) by taking curl twice on those 

two equations and only the vertical component is retained. 

The variables are then non-dimensionalised using
2

0, ,m
u

m

d
T T

d




  and 0 u
C C   as the units of time 

velocity, temperature, and the concentration in the fluid 
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layer and

2

0, , ,m m
l

m m

d
T T

d




 , 0l
C C  as the 

corresponding characteristic quantities in the porous layer. 

The separate length scales are chosen for the two layers 

(Chen and Chen [4], D.A Nield [5]), so that each layer is 

of unit depth with ( , , ) ( , , )x y z d x y z   &

( , , ) ( , , 1).
m m m m m m m

x y z d x y z    In this manner the 

detailed flow fields in both the fluid and porous layers can 

be clearly obtained for all the depth ratios ˆ m
d

d
d

 . The 

non dimensionalised basic equations are subjected to 

normal mode expansion and seek solutions for the 

dependent variables in the fluid and porous layers 

(following Venkatachalappa M et al [6]). It is known that 

the principle of exchange of instabilities holds for Double 

Diffusive convection in both fluid and porous layers 

separately for certain choice of parameters. Therefore, we 

assume that the principle of exchange of instabilities holds 

even for the composite layers (following Nield [5]). 

Denoting the differential operator 
z




  and 

m
z




 

by D  and m
D  respectively, an Eigen value problem 

consisting of the following ordinary differential equations 

is obtained, 

 

In 0 1z  , 
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s
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where 
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number,  
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s

g C C d
R





 is the solute Rayleigh 

number in the fluid layer
s



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diffusivity ratio, 
2

2

m

K
Da

d
    is the Darcy number,  

ˆ m



  is the viscosity ratio, 
sm

m

m




 is solutal-

thermal diffusivity ratio, 
 0t L m

m

m

g T T d
R

 



  is the 

thermal Rayleigh number, 
 0s L m

sm

m

g C C d
R

 



  

is the solute Rayleigh number, a and m
a are the non-

dimensional horizontal wave numbers,  and m
 are the 

temperature in fluid and porous layers, S and m
S are the 

concentration in fluid and porous layers, and 

 
1

0

1h z dz  and  
1

0

1.
m m m

h z dz   

Thus we have sixteenth order ordinary differential 

equation and which needs sixteen boundary conditions. 

 

3. BOUNDARY CONDITIONS 
The Sixteen boundary conditions after non-

dimensionalised and Normal mode expansion and are 

given by 

 

   
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                                                 (15)
 

 

Where    0 0
ˆ /

L U
T T T T T   ,

   0 0
ˆ /

L U
S C C C C   , and ˆ /md d d  is the 

depth ratio.  We see that ˆ ˆˆ / /m d T    and

ˆ ˆˆ / /s sm s d S    because the steady state heat and 

mass fluxes are continuous across the interface where ̂
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and ˆ
s

  are the thermal diffusivity and the solutal 

diffusivity ratios respectively.  The Energy Equations are 

solved using respective boundary conditions from (15) 

(following Shivakumara I.S et al [7]). 

 

4. SOLUTION BY REGULAR PERTURBATION  

    TECHNIQUE 

For the constant heat and mass flux boundaries, 

convection sets in at small values of horizontal wave 

number ‘a’, accordingly, we expand 

2

0

j

j

j

j

j

W W

a

S S






  
      
     

 And  2

0

ˆ
m mj

j

m mj

j

m mj

w W

da

S S

 




  
      
     

  

 

The equations at first order in 
2

a are 
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The corresponding boundary conditions are  
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The solutions of the Equations. (16) and (19) give 

1W and 1m
W respectively which are important in obtaining 

the Eigen values and they are found to be 
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arbitrary constants given by 
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
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
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
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

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
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
  




  
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   
    
 

  
     

 
  32 2

12ˆ ˆ, 24 24 ˆ
p

b d e
d d


 

 
   
 

  

 

4.1 Compatibility condition 

The boundary conditions involving 

1 1 1 1, , ,
m m

D DS D DS  (23)3, 4, 15 and 16 and the differential 

equations involving
2 2

1 1, ,D D S 2 2

1 1,m mD D S , yield 

the compatibility condition 

 

     
1 1 1 1

2 2 2 2

1 1 1 1

0 0 0 0

ˆ ˆ ˆ ˆˆˆ
pm m m m m m m pmW dz W h z dz d W dz d W h z dz s d T d                                (25) 

 

Thus, by substituting expressions for 1W and 1m
W  

in equation (25) we obtain an expression for critical 

Rayleigh number for different basic salinity profiles in 

both fluid and porous layers. The results thus obtained are 

discussed below. 

 

 

 

 

4.2 Linear salinity profile 

For this     1
m m

h z h z  . The critical 

Rayleigh number 1c
R for this profile is obtained from (26) 

and is solved from the equation 

       2 2

1 1 2
ˆ ˆˆ ˆˆ ˆ 0

c s sm m m
R t R s B R R B S d T d       

 
 

where  
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
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     

 

    
      

 

and the constants
's

i
a and

's

i
b  are defined previously. 

 

4.3 Parabolic salinity profile 

Following Sparrow et al [8],

   2 , 2
m m m

h z z h z z  . The critical Rayleigh 

number 2c
R for this profile is obtained from (26) and is 

solved from the equation 

 

       2 2

2 1 2
ˆ ˆˆ ˆˆ ˆ 0

c s sm m m
R t R s B R R B S d T d       

 
 

where 
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and the constants 
's

i
a and

's

i
b  are defined previously. 

 

4.4 Inverted parabolic salinity profile 

For this case,

       2 1 , 2 1
m m m

h z z h z z    . The critical 

Rayleigh number
3c

R  for this profile is obtained from (26) 

and is solved from the equation  

       2 2

3 1 2
ˆ ˆˆ ˆˆ ˆ 0

c s sm m m
R t R s B R R B S d T d         

where 

 

   
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
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 
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,
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p
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p ep e p dp e

A
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t
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





 



 

              
       

   
 

        
 

 
 

and the constants 
's

i
a and

's

i
b  are defined previously. 

 

4.5 Piecewise linear salinity profile with salting from  

      below 
For this case, following Currie [9],

   
11 , 0, 0

,
0, 10, 1

m m m

m m

m m

zz
h z h z

zz

  


    
  

   
 

where   is the solutal depth in the fluid layer and m
  is 

the solutal depth in the porous layer. The critical Rayleigh 

number 4c
R  for this profile is obtained from (26) and is 

solved from the equation

       2 2

4 1 2
ˆ ˆˆ ˆˆ ˆ 0

c s sm m m
R t R s B R R B S d T d       

 
where 
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and the constants 
's

i
a and

's

i
b  are defined previously. 

 

4.6 Piecewise linear salinity profile with desalting  

      above 

In this case, following Vidal and Acrivos [10],  
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where   is the solutal depth in the fluid layer and m
  is 

the solutal depth in the porous layer.  The critical Rayleigh 

number 5c
R for this profile is obtained from (26) and is 

solved from the equation 

       2 2

5 1 2
ˆ ˆˆ ˆˆ ˆ 0

c s sm m m
R t R s B R R B S d T d       

 
 

where 
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and the constants 
's

i
a and

's

i
b  are defined previously. 

 

4.7 Step function salinity profile 

Here for this profile the basic 

concentration/solute/salt drops suddenly by an amount 

S  at z  and 
m

S at
m m

z   otherwise uniform. 

Accordingly,

       ,
m m m m

h z z h z z        where   

is the solutal depth in the fluid layer and m
  is the solutal 

depth in the porous layer.  The critical Rayleigh number 

6c
R for this profile is obtained from (26) and is solved 

from the equation 

       2 2

6 1 2
ˆ ˆˆ ˆˆ ˆ 0

c s sm m m
R t R s B R R B S d T d       

 
Where 
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and the constants 
's

i
a and

's

i
b  are defined previously. 

 

5. RESULTS AND DISCUSSIONS 

 

5.1 For linear, parabolic and inverted parabolic  

      salinity profiles 

 

 
 

Figure-1. Variation of critical Rayleigh number
cR  for 

linear, parabolic and inverted parabolic profiles with 

respect to depth ratio d̂ . 

 

Figure-1 shows the variation of critical Rayleigh 

number 
cR for Linear, Parabolic and Inverted Parabolic 

profiles with respect to depth ratio d̂ for fixed values of
ˆ ˆ0.001, 1, 1, 0.75, 0.5, 1000, 2.5, 1.pm sDa S T R          

The critical thermal Rayleigh number cR  for the profiles 

differ only for values of depth ratio ˆ0 5d  .  

Graphically it is evident that the parabolic salinity profile 

is the most stable one and the inverted parabolic salinity 

profile is the unstable one, so by choosing the appropriate 

salinity profile one can control the onset of double 

diffusive convection in a composite layer.  

 

 
                                      (a)                                (b)                                                       (c) 
 

Figure-2. Effects of the thermal diffusivity ratio ̂ in linear, parabolic and inverted parabolic 

profiles on the critical thermal Rayleigh number 1c
R , 2c

R and 3c
R . 

 

The effects of the thermal diffusivity ratio

ˆ 1, 1.397, 2.259  , are displayed in Figures 2 (a), (b) 

and (c) respectively for fixed values of 
ˆ ˆ ˆ0.001, 1, 1, 0.5, 0.75, 1000, 2.5, 1.pm s mDa S T R          

. The curves in all the profiles are converging at both the 

ends that is, we can see the effect of the thermal diffusivity 

ratio only for the values of depth ratio ˆ0.5 5d   , so 

the effect of the thermal diffusivity is limited to this range 

of depth ratio. In this range, for a fixed value of depth 

ratio, the increase in the value of  decreases the critical 
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Thermal Rayleigh number. So thus destabilizes the system 

and hence the onset of the double diffusive convection is 

earlier.   

 

 
                                        (a)                                 (b)                                                 (c) 
 

Figure-3. Effects of  in linear, parabolic and inverted parabolic profiles on the critical thermal 

Rayleigh number 1c
R , 2c

R and 3c
R . 

 

The effects of the diffusivity ratio
s




 , which 

is the solutal to thermal diffusivity  ratio of the fluid in the 

fluid layer, are displayed in Figures 5(a), (b) and (c) for 

linear, parabolic and inverted parabolic salinity profiles 

respectively for fixed values of
ˆ ˆ ˆ ˆ0.001, 1, 1, 1000, 0.75, 1, 2.5, 1s pm mDa S T R           

.The curves in all the profiles are converging as the depth 

ratio increases, that is,   the effect of the diffusivity ratio is 

only up to the depth ratio ˆ 3d  .For a fixed value of d̂  

the increase in the values of  ,decreases the value of the 

Thermal Rayleigh number c
R .Thus destabilizes the system 

and hence the onset of the double diffusive convection is 

quicker. Thus the system can be stabilized by decreasing 

this ratio that is, increasing the thermal diffusivity of the 

fluid layer or by decreasing the solute diffusivity of the 

fluid  in the fluid layer. 

 

5.2 For salting below, desalting above and step  

      function salinity profiles 

 

 

 
 

Figure-4. The variation of critical Rayleigh number cR for 

salting below, desalting above and step function profiles 

with respect to the saline depth . 

 

Figure-6 displays the variation of critical thermal 

Rayleigh number cR for Salting below, Desalting above 

and Step function salinity profiles with respect to the 

saline depth  for fixed values of 
ˆ ˆ ˆˆ0.001, 1, 1, 0.5, 0.75, 1000, 2.5, 1, 1.pm s mDa S T R            

From the above graph it is clear that, step function salinity 

profile is stable for the solutal depth 0 0.05  and 

0.5 0.9  . Desalting above profile is stable for the 

solutal depth 0.05 0.5  and for the solutal depth 

0.9 1  salting below and desalting above salinity 

profiles are stable also desalting above salinity profile is 

unstable for the solutal depth 0 0.05  , salting 

below profile is unstable for the solutal depth 

0.05 0.9  and for the solutal depth 0.9 1  step 

function salinity profiles is unstable. Thus we choose 

appropriate salinity profile to control the onset of double 
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diffusive convection in a composite layer. It can be understood easily from the following table. 

 

Table-1. Salinity profile to control the onset of double diffusive convection. 
 

Solutal depth   Stable profile Unstable profile 

0 0.05   Step function salinity profile Desalting above salinity profile 

0.05 0.5   Desalting above salinity profile Salting below salinity profile 

0.5 0.9   Step function salinity profile Salting below salinity profile 

0.9 1   Salting and desalting salinity profile Step function salinity profile 

 

 
                                        (a)                                (b)                                                  (c) 
 

Figure-5. Effect of thermal diffusivity ratio  in salting below, desalting above and step function 

profiles on the critical thermal Rayleigh number 4c
R , 5c

R and 6c
R . 

 

The effects of the thermal diffusivity ratio 

1,1.397,2.259  , are displayed in Figures 5(a), (b) 

and (c) respectively for fixed values of

ˆ ˆ ˆ0.001, 1, 1, 0.5, 0.75, 1000, 2.5, 1.pm s mDa S T R           . 

The curves are diverging in desalting above profile where 

the curves are converging for salting below and step 

function salinity profiles. For a fixed value of , with the 

increase in the value of   the critical Thermal Rayleigh 

number decreases. This destabilizes the system and hence 

the onset of the double diffusive convection is rapidly.  

 

 
                                       (a)                    (b)                                                    (c) 
 

Figure-6. The effects of 0.25, 0.5, 0.75   in salting below, desalting above and step function 

profiles on the critical thermal Rayleigh number 4c
R , 5c

R and 6c
R . 

 

The effects of the diffusivity ratio
s




 , which 

is the ratio of saline to thermal diffusivity of the fluid are 

displayed in Figures 6 (a), (b) and (c) respectively for 

fixed values of
ˆ ˆ ˆˆ0.001, 1, 1, 2.5, 0.75, 1000, 1, 1.pm s mDa S T R           . 

The curves in desalting above are diverging i.e., the effect 

is more for greater values of solutal depth    and it is 

reverse for Step function salinity profile.From the graph it 
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can be seen that with the increase in the value of    

decreases the critical Thermal Rayleigh number
c

R . Thus 

destabilizes the system and hence the onset of the double 

diffusive convection is earlier.   

 

6. CONCLUSIONS 

a) For the stability demanding situations like solar 

ponds, the parabolic salinity profile is the most 
conducive where in the onset of double diffusive 

convection in a composite layer can be deferred. 

b) For the heat and mass (solute or salt) transfer 

problems like petroleum and geothermal reservoirs, 

the inverted parabolic salinity profile is most suitable, 
where in the onset of double diffusive convection can 

be quicker. 

c) Increasing the parameters viscosity ratio and solute 

Rayleigh number and decreasing the parameters 

thermal diffusivity ratio and the solute to thermal 

diffusivity ratio the onset of double diffusive 

convection in a composite layer can be delayed for all 

the salinity profiles. 
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