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ABSTRACT 

The Polyphase Sequences such as Pn {n=1, 2, 3, 4, x}, Frank, Golomb, and the Chu finds many applications in 
RADAR, SONAR, and Communication by having good autocorrelation properties. Merit Factor (MF), ISL (Integrated 
Sidelobe Level) is the performance measures considers for evaluating the goodness of any sequences. In this paper cyclic 
algorithm approach initialized with these Polyphase sequences for lengths from 102 to 103. These cyclic algorithm 
approaches bring the better merit factor and correlation properties than the standard case. It found that an average of merit 
factor 40.39 and 92.02 is obtained for length 100 & 1000 respectively. Cyclic algorithm approach Polyphase sequences 
correlation plots are compared with the standard case. This approach made possible for P2 sequences that improved merit 
factor for odd integer square length. Four consecutive even and odd integer squared length sequences correlation plots and 
merit factor values compared. Cyclic algorithmic methodology for these Polyphase sequences for obtaining the design 
metrics implemented on MATLAB.   
 
Keywords: merit factor, autocorrelation level, polyphase sequence, cyclic algorithmic. 
 
1. INTRODUCTION 

The main aim of Radar and Sonar is to determine 
properties of the target by transmitting specific waveforms 
towards to the target and analyzing received signal. By 
measuring the round trip time delay, the distance 
technically termed as range, and Doppler frequency shift 
of the received signal is for a speed of the target. Two 
factors are critical and decide the system performances are 
the transmitted waveform and receive filter [1]. A suitable 
and well synthesized transmitted waveform can bring out 
the accurate parameter estimation and reduce the 
computational burden in the receiver part [2]. Merit factor 
is one of the parameters to be improved for a well 
synthesized transmitted waveform or sequence. Binary 
sequences, Barker sequences exist to certain length require 
some search algorithms (Evolutionary search) to obtain 
two digit merit factor [3-4]. Two widely accepted 
sequences Chu and Frank in that, Frank sequence is better 
than the Chu sequence, and additional Polyphase 
sequences such as Pn{n=1,2,3,4} and Golomb[5-7]. 

P. B. Rapajic and R. A. Kennedy [8] the merit 
factor values of P1, P3, P4, Px, Golomb, Frank, and Chu 
found for lengths N=D2 where D is an integer, in that Px 
sequence perform well. Frank, P1 have the same merit 
factor. P3, P4, Golomb, and the Chu obtained same merit 
factor values. R. Frank [9] found that P1 and Frank's 
sequences are identical to each other. W. Roberts et al. 
[10] proposed the necessary cyclic algorithm approach for 
random initialization in the calculation of performance 
parameters. P. Stoica et al. [11], implemented the singular 
value decomposition based cyclic algorithm for obtaining 
the unimodular sequence. 

The objectives of this paper are to compare the 
performance parameters known as merit factor of 
Polyphase sequences P1, P2, P3, P4, Px, Golomb, Frank, 
and the Chu all are exist for square integer length (N=D2). 
Figure. 1 & 2 i.e. (standard case & cyclic algorithm 

approach) the merit factor values for lengths N=D2 here 
D= 100, 162, 172, 182, 192, 1000 on log scale are shown. 
Figures. (3)-(8) shows the compassion correlation plots. 
Table 1 shows the MF values comparison for lengths 100 
and 1000. Table 2 & 3 shows the comparison of MF 
values for 16, 17 & 18, 19 square integer lengths. 
 
2. POLYPHASE SEQUENCES  

The Polyphase sequences named Frank, Golomb, 
Chu, P1, P2, P3, P4, Px possibly exist for square integer 
length N=D2 (where N is sequence Length, D is an 
integer) having elements Sn= (S1, S2, S3,…SN). These 
Polyphase sequences can be defined as follows. P1, P2, 
Px, and Frank denoted by f(n) sequences are defined by 
S(Dn+k+1). P3, P4, Golomb, and Chu defined by S(k+1). 
The P1, P2, P3, P4, Px, Golomb, Frank and Chu sequences 
[8, 12-13]. All the sequences have existed for square 
integer length. The sequences with equal merit factor 
values exhibit the same correlation. Sequences with large 
merit factor values have the lower sidelobes in correlation 
plots. Even though correlation levels are identical but the 
way in which the sequence representation differs from one 
another. The Performance parameters analysis, i.e., MF 
values and plotting the correlation levels are outlined in 
Figure. 1-A. 
 
2.1 P1, P2, Px sequences 

These sequences defined as S(Dn+k+1) = e
iⱷn,k 

for 0≤ k ≤ D and  0≤ n ≤ D, here the phase elements of the 
sequences [8, 13] defined as shown below.  
 

))(12)(/(, knDnDDkn                       (1) 

 

))2/()1)((12)(/(, kDnDDkn        (2) 

 

)12](2/)1)[(/(,  nDkDDkn             (3) 
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)12](2/)2)[(/(,  nDkDDkn            (4)  

 
Equations (1) and (2) are the phase elements of 

P1, P2 sequences respectively. Phase elements in 
Equations (3) and (4) of Px sequence of D even and odd 
integers. 
 
2.2 P3, P4 sequences 

The Polyphase sequence elements Sn for 
n=1….N of integer length M for P3 and P4 sequence [8] 
defined as S(k+1) = eiⱷk+1 here 0≤ k ≤ D.  
 

2
1 kk           (5) 

 

kNkk )(1          (6) 

 
Equations (5) and (6) are phase elements of P3 

and P4 sequences respectively. The mathematical equation 
of these two sequences exhibits the identical MFs and 
correlation levels. 
 
2.3 Golomb sequence 

The Golomb sequence [8, 11] of Polyphase 
sequence elements Sn for n=1,…, N of an integer length D 
defined as S(k+1) = e

iⱷk+1 here 0≤ k ≤ D. the phase 
elements defined as 
 

kkk )1(1          (7) 

 
Another way of Golomb sequence [9] represented 

as g (n) of length N for a positive integer.  
 

Nnnj
eng

/)1()(  
      (8) 

 
Equations (7) and (8) shows the Golomb 

sequence g(n) for n=1…, N. these two mathematical 
representations bring out the same response. 
 
2.4 Frank sequence 

These sequences can be defined as S(Dn+k+1) = 

e
iⱷk+1 for 0≤ k ≤ D and  0≤ n ≤ D, here the phase elements 

of the sequence [8] defined as  
 

Dnkk /21          (9) 

 
Another way of Frank sequence [10] represented 

as f (n) of length N is given by 
 

1,.,0,,)1( /2  MnkekDnf
Dnkj 

   (10) 

 
Equations (9) and (10) demonstrates the f(n) for 

n=1… N. these two draw out a similar result. 
 
 

 
2.5 Chu sequence 

The Chu sequence [5, 8], phase elements Sn for 
n=1…N of a positive integer length N as S (k+1) = eiⱷk+1 
here 0≤ k ≤ D  
 

kqkk )2(1       (11) 

 

kqkk )21(1       (12) 

 
Equation (11) and (12) are the phase elements of 

Chu sequence for even and odd integers respectively.  
 
3. PERFORMANCE PARAMETERS 

The elements of the Polyphase sequence Sn = S1, 

S2, S3….SN that exist for square integer Length (N=D
2
). 

Some parameters define the ability for improving the 
characteristics of the radar system. Some parameters, i.e., 
Merit Factor increasing in nature defines the performance 
improvement, and some are integrated sidelobe level 
decreasing in nature also defines the same. The sequences 
with good correlation properties and MF values helped in 
radar and sonar applications. 
 
3.1 Correlation function & correlation level 

The autocorrelation r=ρ(S) of a sequence Sn = 

(S1, S2, S3….SN) is a sequence length of 2K-1 defined as 
ρ(S) = v(s, s) the main lobe ck, of the autocorrelation c, is 
given by ck = s s

T and complex conjugates and transpose 
denoted by (.)T denotes the complex conjugate, conjugate 
transpose for scalars and vectors, matrices respectively [8]. 
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1
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c

c
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   (14) 

 
Equation (13) is the autocorrelation function and 

Equation (14) defines the correlation level in dB, in 
Equation (13) correlation function is shown.  
 
3.2 Integrated side-lobe level 

The integrated sidelobe level from Equation (13) 
is defined as follows.  
 

1,....,1,
1

1

2






Nk
k

ISL
N

k

c    (15) 

 
Equation (15) defines that c0, c1, c2 ….cN-1 square 

modulus.        
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3.3 Merit factor 
The merit factor is an essential measure of the 

collective smallness of the aperiodic autocorrelations of a 
sequence length N named by M. J. E Golay [11].  

ISL

N
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c
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N

k
Nk

k

2

2

1

0
)1(

2

2
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    (16) 

 
Equation (16) shows the Merit Factor and 

correlation levels in the denominator consider all except at 
k=0. From Equation. (16) multiplication by 2 in 
denominator shows the symmetry of the correlation 
function at zero.  
 
4. CYCLIC ALGORITHMIC APPROACH 

This approach in the following works based on 
singular value decomposition method is accurate in 
computation and simpler than applying fewer optimization 
techniques for the Polyphase sequence [14] and [15]. It 
influences plausible to work with very substantial 
estimations of N (in some radar and imaging applications 
we to can pick N~1000), P is chosen from reasonable 
thought and select P≥N on computational and down to 
earth activity accounts. Let Cbe the following block-
Toeplitz matrix 
 

PXPP

N
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   (17) 

 
Minimization criterion of minimizing the 

autocorrelation terms of {|C (k)|k=1}
P-1 can be achieved is 

shown below.  
 

2
* NICC                                               (18) 

 
To make computationally less complex the 

minimization problem can be represented as  
 

 
2

,

~

)(
min

1

UKC
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                (19) 

 
Where U is the semi-unitary matrix, i.e., UU

*
=I 

and satisfied the following equation. 
 

UKC 
~

)
1

1
(





N

K
Pconditon                    (20) 

 
The minimization criterion in Equation (19) is 

iteratively minimized by fixing C to compute U, then 
fixing Uto compute C and so on until the stop criterion is 
satisfied. During this computation, both U and C are 

closed form upgrading. This whole process meant for 
minimizing the ISL metric which intern improve the Merit 
Factor. This cyclic algorithmic approach is singular value 
decomposition based but not FFT.  
 

 
 

Figure-A-1. Flow chart for MFs and correlation plots. 
 
Cyclic algorithmic approach 
 

Step 1: Initialize the U possibly with the known 
existing sequence such as (Golomb, Frank, Chu, Pn {n=1, 
2, 3, 4, x} implies P1, P2, P3, P4, Px. 

Step 2: Compute the semi-unitary matrix U& 
minimize the (19) with respect to {x (n)k=1}

N, U. 
Step 3: by setting the {x (n)k=1}

N, U. to the most 
recent values computing Equation (20) vice versa. 
Iteration: repeat step 2 & 3 until a practical convergence 
criterion is satisfied.  

The derivation for the Cyclic Algorithmic 
approach is relatively uncomplicated can be referred in 
[16][17]. Even then it does not mean that criterion in (18) 
is implacable. The cyclic algorithmic approach consider in 
Equation (17) considers all correlation lags {|C (k)|k=1}

N-1 
increases the computational complexity. The duration of 
the emitted sequence is much larger than interference and 
arrival times the maximum difference is the prime interest 
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[18] [19]. In such cases making the {|C (k)|k=1}
P-1small i.e. 

P≥N in place of considering all correlation lags {|C 
(k)|k=1}

N-1. 
The Merit Factors of the Polyphase sequences in 

session 2 shown in Figure-1 in log scale using 
performance parameters equations in session 3. Cyclic 
algorithm initialized with Polyphase sequences denoted as 
CA(G), CA(F), CA(Chu), CA(P1), CA(P2), CA(P3), 
CA(P4) and CA(Px) respectively shown in Figure-2. Merit 
factors of above sequences computed for the lengths N= 
100, 162, 172, 182, 192 and 1000 are implemented in 

MATLAB [20]. The cyclic algorithmic approach 
initialized with all above sequences in step 1. Also, 
standard case correlation levels in dB from Equation (14) 
shown in Figures 3 to 8 for above said lengths. 

Table-1 shows the merit factor values comparison 
of standard and cyclic algorithm approach for lengths 100 
and 1000. For 100 length case, all cyclic algorithm 
approach sequences exhibit the average merit factor of 
40.391. However, for 1000 length case 92.027average 
merit factor value is obtained. 

 
Table-1. Merit factor values comparison of polyphase sequences standard and 

cyclic algorithm approach for lengths N=100 & 1000. 
 

Parameter Merit Factor 

Length N=100 N= 1000 

Approach standard CA standard CA 

P1 23.099 40.410 78.145 92.839 

P2 18.722 40.447 75.041 92.876 

P3 15.873 40.365 50.316 91.209 

P4 15.873 40.365 50.316 91.209 

Px 25.124 40.404 79.241 92.828 

Golomb 15.873 40.365 50.316 91.209 

Frank 23.099 40.410 78.145 92.839 

Chu 15.873 40.365 50.316 91.209 

 
Tables (2) & (3) are MF values comparison 

between standard and cyclic algorithm approach of 
Polyphase sequences for lengths 162, 172, 182, 192. P3, P4, 
CA(Golomb) and CA(Chu) exhibit the merit factor values 
of 46.095, 45.232, 46.591 and 55.402 for 16, 17, 18, 19 
square integer lengths in cyclic algorithm approach. 
CA(P1), CA(Px) and CA(Frank) exhibit the same merit 

factor values of 46.494, 47.100, 47.164 and 56.100 with 
same consecutive even and odd integer square lengths. For 
even integer square lengths CA(P2) exhibits the highest 
merit factor among all cyclic algorithm Polyphase 
sequences. However, for odd integer square length P1 and 
Frank exhibit the highest.   

 
Table-2.Merit factor values comparison of polyphase sequences normal and 

cyclic algorithm approach for lengths N=162& 172. 
 

Parameter Merit Factor 

Length N=16
2
 N=17

2
 

Approach Standard CA Standard CA 

P1 38.230 46.494 41.077 47.100 

P2 34.067 46.499 7.781 35.672 

P3 25.235 46.095 26.800 45.232 

P4 25.235 46.095 26.800 45.232 

Px 39.875 46.494 42.701 47.096 

Golomb 25.235 46.095 26.800 45.232 

Frank 38.230 46.494 41.077 47.100 

Chu 25.235 46.095 26.800 45.232 
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Table-3. Merit factor values comparison of polyphase sequences normal and 
cyclic algorithm approach for lengths n=182& 192. 

 

Parameter Merit Factor 

Length N=18
2
 N=19

2
 

Approach Standard CA Standard CA 

P1 43.245 47.164 46.054 56.100 

P2 39.225 46.896 8.319 44.423 

P3 28.365 46.591 29.932 55.402 

P4 28.365 46.591 29.932 55.402 

Px 44.791 47.990 47.578 56.062 

Golomb 28.365 46.591 29.932 55.402 

Frank 43.245 47.164 46.054 56.100 

Chu 28.365 46.591 29.932 55.402 

 
Figures (1) and (2) are the MF values for 100, 

162, 172, 182, 192 and 1000 integer lengths for standard 
and cyclic approach. It is observed that from Figure-1 P2 
sequence has decidedly fewer values say 7.781 & 8.319 
for 172& 192 lengths respectively. However, from the 
Figure-2 this cyclic algorithmic P2 sequence exhibits the 
35.672 & 44.423. This cyclic algorithm approach 
improves merit factor for odd integer square lengths. 
 

 
 

Figure-1. The merit factors of the P1, P2, P3, P4, Px, 
Golomb, Frank, Chu sequences of lengths 100, 162, 172, 

182, 192, 1000. 
.  
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Figure-2. The merit factors of the CA(P1), CA(P2), CA(P3), CA(P4), CA(Px),CA(Golomb),  
CA(Frank), CA(Chu) sequences of lengths 100, 162, 172, 182, 192, 1000. 

 
 

 
 

Figure-3. Correlation levels of the of the normal polyphase sequences and cyclic algorithm applied polyphase 
sequences of length N=100 (a) P1, CA(P1) (b) P2, CA(P2) (c) P3, CA(P3) (d) P4, CA(P4)  (e) Px, CA(Px 

 (f) Golomb,CA(Golomb) (g) Frank, CA(Frank) (h) Chu, CA(Chu). 
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Figure-4. Correlation levels of the of the normal polyphase sequences and cyclic algorithm applied polyphase 
sequences of length N=1000 (a) P1, CA(P1) (b) P2, CA(P2) (c) P3, CA(P3) (d) P4, CA(P4)  (e) Px, CA(Px) 

(f) Golomb, CA(Golomb) (g) Frank, CA(Frank) (h) Chu, CA(Chu). 
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Figure-5. Correlation levels of the of the normal polyphase sequences and cyclic algorithm applied polyphase 
sequences of length N=256(162) (a) P1, CA(P1) (b) P2, CA(P2) (c) P3, CA(P3) (d) P4, CA(P4)   

(e) Px, CA(Px)(f) Golomb, CA(Golomb) (g) Frank, CA(Frank) (h) Chu, CA(Chu). 
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Figure-6. Correlation levels of the of the normal polyphase sequences and cyclic algorithm applied polyphase 
sequences of length N=249(172) (a) P1, CA(P1) (b) P2, CA(P2) (c) P3, CA(P3) (d) P4, CA(P4)  

(e) Px, CA(Px) (f) Golomb, CA(Golomb) (g) Frank, CA(Frank) (h) Chu, CA(Chu). 
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Figure-7. Correlation levels of the of the normal polyphase sequences and cyclic algorithm applied polyphase 
sequences of length N=364(182) (a) P1, CA(P1) (b) P2, CA(P2) (c) P3, CA(P3) (d) P4, CA(P4) 

 (e) Px, CA(Px) (f) Golomb, CA(Golomb) (g) Frank, CA(Frank) (h) Chu, CA(Chu) . 
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Figure-8. Correlation levels of the of the Normal Polyphase sequences and cyclic algorithm applied polyphase 
sequences of length N=391(192) (a) P1, CA(P1) (b) P2, CA(P2) (c) P3, CA(P3) (d) P4, CA(P4) 

(e) Px, CA(Px) (f) Golomb, CA(Golomb) (g) Frank, CA(Frank) (h) Chu, CA(Chu). 
 
5. CONCLUSIONS 

The effect of Polyphase sequences of square 
integer length N=D2 from 100 to 1000 case for both3is 
obtained for the standard case and Cyclic algorithmic 
approach. This approach is on SVD for larger values of 
N>103 computational complexities get increases so that it 
becomes difficult to run on standard PC. P value can be 
chosen to obtain the larger merit factor values it also 
increases the number of multiplications so that complexity 
gets increases. Some concluding observations are, more 
than cent percentage of improvement in merit factor 
achieved for cyclic algorithm approach compared to the 
standard case for length 100. However, for 1000 length 
only 30.47 % improvement only achieved. The ascending 
order of merit factor values are CA (P3, P4, Golomb, Chu) 
< CA (P1, Frank) < CA (Px)< CA (P2) for both lengths 
100 & 1000. The P value must choose to make execution 

time should be less. In standard case P2 sequence exhibit 
very less value for odd integer square length, but for CA 
approach P2 sequence exhibit good merit factor. 
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