EFFECT OF SORET NUMBER AND HEAT SOURCE ON UNSTEADY MHD CASSON FLUID FLOW PAST AN INCLINED PLATE EMBEDDED IN POROUS MEDIUM

V. Manjula and K. V. Chandra Sekhar
Department of Mathematics, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
E-Mail: kasulanati22@rediffmail.com

ABSTRACT
The present paper describes the Soret and heat generation effects on MHD Casson fluid flow past an inclined plate immersed in porous media. The non-dimensional governing equations are solved analytically through Laplace transform technique. Exact solutions for velocity, energy and species concentration are obtained, in terms of exponential and complementary error functions. For better understanding of physical insight of the problem graphical analysis was done under the influence of different critical parameters on fluid flow. Increase in values of Soret number raises the buoyancy force, which in turn results in raise in velocity of the fluid. Increase in thermal radiation results in fall in temperature of the fluid.

Keywords: Soret number, heat source, MHD, Casson fluid, inclined plate, porous medium.

NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_0</td>
<td>uniform magnetic field</td>
</tr>
<tr>
<td>C'</td>
<td>species concentration</td>
</tr>
<tr>
<td>D_M</td>
<td>mass diffusion coefficient</td>
</tr>
<tr>
<td>D_T</td>
<td>thermal diffusion coefficient</td>
</tr>
<tr>
<td>G_m</td>
<td>mass Grashof number</td>
</tr>
<tr>
<td>k</td>
<td>permeability parameter</td>
</tr>
<tr>
<td>k'</td>
<td>permeability of porous medium</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>M</td>
<td>magnetic parameter</td>
</tr>
<tr>
<td>S_c</td>
<td>Schmidt number</td>
</tr>
<tr>
<td>u'</td>
<td>fluid velocity in x direction</td>
</tr>
<tr>
<td>t'</td>
<td>Time</td>
</tr>
<tr>
<td>q_r</td>
<td>radiative heat flux</td>
</tr>
<tr>
<td>R</td>
<td>thermal radiation</td>
</tr>
<tr>
<td>θ</td>
<td>dimensionless fluid temperature</td>
</tr>
<tr>
<td>u</td>
<td>dimensionless fluid velocity in x direction</td>
</tr>
<tr>
<td>C</td>
<td>dimensionless species concentration</td>
</tr>
<tr>
<td>c_p</td>
<td>specific heat at constant pressure</td>
</tr>
<tr>
<td>g</td>
<td>acceleration due to gravity</td>
</tr>
<tr>
<td>G_r</td>
<td>thermal Grashof number</td>
</tr>
<tr>
<td>K_r</td>
<td>chemical reaction parameter</td>
</tr>
<tr>
<td>Q_0</td>
<td>heat absorption/generation coefficient</td>
</tr>
<tr>
<td>T'</td>
<td>fluid temperature</td>
</tr>
<tr>
<td>t</td>
<td>dimensionless time</td>
</tr>
<tr>
<td>H</td>
<td>heat generation parameter</td>
</tr>
<tr>
<td>a</td>
<td>absorption constant</td>
</tr>
<tr>
<td>Greek symbols</td>
<td></td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number</td>
</tr>
<tr>
<td>β_T</td>
<td>volumetric coefficient of thermal expansion</td>
</tr>
<tr>
<td>β_C</td>
<td>volumetric coefficient of species concentration expansion</td>
</tr>
<tr>
<td>$\mu\beta$</td>
<td>plastic dynamic viscosity</td>
</tr>
<tr>
<td>ν</td>
<td>kinematic viscosity coefficient</td>
</tr>
<tr>
<td>ρ</td>
<td>fluid density</td>
</tr>
<tr>
<td>σ</td>
<td>electrical conductivity</td>
</tr>
<tr>
<td>β</td>
<td>Casson parameter</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

Magnetohydrodynamics is the study of the motion of the fluid in the presence of a magnetic field. Significant research was in progress in Magnetohydrodynamics from the past few years in engineering sciences and natural sciences. This was happened after work done by Hartmann [1] in liquid metal duct flows subjecting to strong external magnetic field. Due to vast research in optimization in solidification process of metals, alloys the study of magnetohydrodynamic flow of non - Newtonian fluid in porous medium got good attention by many researchers. Existence of electromagnetics hydrodynamic waves was studied by Alfven [2], whereas Singh et al. [3] have studied natural convection in different physical conditions in presence of uniform /radial varying magnetic field. MHD Mixed convection flow of Ferrofluid along vertical channel was studied by Khan [4]. Makinde [5] analyzed the Magnetohydrodynamics oblique stagnation point flow of a viscoelastic fluid over a convective surface. Recently Kataria [8] analyzed velocity and temperature distributions of optically thick nano fluid flow past an oscillating plate in presence of Magnetic field and radiation. A good number of applications of MHD non - Newtonian fluids are encountered in biological systems, heat - storage beds, irrigation, petroleum processing, paper, textile industries. Casson fluid is one which never possesses small shear stress. Casson model was first introduced by Casson in 1959 to analyze the flow of pigment - oil suspensions [9]. Dash [10] investigated Casson flow in a pipe with homogeneous porous medium. The analysis of Soret and Dufour effects was done by Hayat [11] on MHD flow of Casson fluid. The MHD flow of casson fluid flow over exponentially stretching sheet was done by Nadeen [12, 13], Hussnan [14, 15] illustrates that free convective flow past an oscillating plate with Newtonian heating. Rashidi [16, 17] has discussed on steady/ unsteady MHD and slip flow over a rotating porous disk. Kataria [18] et al investigated MHD casson fluid flow past an oscillating vertical plate under the influence of Soret and heat generation. In the above discussion it was observed that somehow the presence of inclined plate was neglected. So we included inclined plate for the present analysis.

2. MATHEMATICAL FORMULATION

Consider a plate inclined with an angle of inclination α immersed in porous media. The flow confined to be along $y' > 0$, where y is the coordinate measured normal to the plate and x' axis is taken along the plate in the upward direction. At time $t' = 0$ both the plate and the fluid are having uniform temperature T_∞ and the concentration is assumed to be C'_∞ respectively. At time $t' > 0$, the plate is accelerated in the upward direction opposite to the gravitational forces, with velocity $U_0 e^{at'}$ with constant heat flux $T_\infty' + (T_w' + T_\infty')t'/t_0$ when $t' \leq t_0$ and T_w' when $t' > t_0$ respectively. Thereafter it is maintained constant. Similarly mass transfer at the surface is raised to $C'_\infty + (C_w' + C'_\infty)t'/t_0$ when $t' \leq t_0$, lowered to C_w' when $t' > t_0$ respectively, there after concentration level maintained constant C_w'. A magnetic field of strength B_0 is applied uniformly along y' axis direction. The induced magnetic field is considered negligible. Neglecting rigidity of the plate, incompressibility, on-Newtonian nature, one dimensional flow, free convection, and viscous dissipation term in the energy equation, we considered the following partial differential equations governing the flow with initial and boundary conditions.

Geometry of the problem:
\[u' \rightarrow 0, T' \rightarrow T_0', C' \rightarrow C_0' \text{ as } y' \rightarrow \infty \text{ and } t' \geq 0 \]

Using Roseland approximation

\[\frac{\partial q_r}{\partial y'} = -4a\sigma \left(T_0^4 - T' \right) \quad (6) \]

Using Taylor series expansion expanding \(T'^4 \) linearly about \(T_0' \) by neglecting higher order terms,

\[T'^4 \approx 4T_0'^4 - 3T_0'^2 \quad (7) \]

\[u = \frac{u'}{U_0}, \quad y = \frac{y'}{U_0}, \quad \tau = t' - t_0, \quad \theta = T' - T_0', \quad C' = C - C_0' \]

\[C = \frac{C_0 - C_0'}{\alpha} + \frac{\nu G}{\rho U_0^3} T_0^2, \quad M = \frac{\sigma B_0^2}{\rho U_0^2}, \quad \frac{k}{\nu}, \quad H = \frac{Q \rho U_0^2}{\rho U_0^2}, \quad Sc = \frac{\nu}{\rho U_0^2}, \quad Kr = \frac{\nu k}{\rho U_0^2} \quad (8) \]

Using the above non-dimensional scheme,

\[\frac{\partial u}{\partial \tau} = \left(1 + \frac{1}{\beta} \right) \frac{\partial^2 u}{\partial y'^2} - \left(M^2 + \frac{1}{k} \right) u + Gr \theta \cos \alpha + C'm \cos \alpha - \frac{u}{k} \quad (9) \]

\[\frac{\partial \theta}{\partial \tau} = \frac{1}{Pr} \frac{\partial^2 \theta}{\partial y'^2} \left(H - R \right) \theta \quad (10) \]

\[\frac{\partial C}{\partial \tau} = \frac{1}{Sc} \frac{\partial^2 C}{\partial y'^2} + Sc \frac{\partial \theta}{\partial y'^2} - krC \quad (11) \]

With initial and boundary conditions

\[u = \theta = C = 0, 0 \leq y \leq 0, \quad t \geq 0 \quad (12) \]

\[y = 0, t > 0, \quad \theta = 0, 0 \leq y \leq 1 \quad (13) \]

\[a_\alpha, \quad a_\beta, \quad a_\gamma, \quad a_\delta \quad (14) \]

3 Solution of the Problem

Applying Laplace transform technique exact solutions were obtained from equations (9), (10) and (11) with initial and boundary conditions (12) and (13).

\[u(y, t), \quad \theta(y, t), \quad C(y, t) \]

\[u(y, t) = \frac{1}{4\pi} \left[e^{\alpha^4 \text{erfc}(B1)} + e^{\alpha^4 \text{erfc}(B2)} - e^{\alpha^4 \text{erfc}(B3)} + e^{\alpha^4 \text{erfc}(B4)} \right] \]

\[-e^{\alpha^4 \text{erfc}(B7)} + e^{\alpha^4 \text{erfc}(B8)} \]

\[-e^{\alpha^4 \text{erfc}(B17)} + e^{\alpha^4 \text{erfc}(B18)} \] \[+ \frac{1}{2a_\gamma} \left(e^{\alpha^4 \text{erfc}(E7)} \right) \]

\[+ e^{\alpha^4 \text{erfc}(E8)} - e^{\alpha^4 \text{erfc}(E17)} + e^{\alpha^4 \text{erfc}(E18)} \]

\[+ \frac{1}{2a_\gamma} \left(e^{\alpha^4 \text{erfc}(B17)} + e^{\alpha^4 \text{erfc}(B18)} + e^{\alpha^4 \text{erfc}(B19)} \right) \]

\[\left| \left(e^{\alpha^4 \text{erfc}(E7)} + e^{\alpha^4 \text{erfc}(E8)} \right) \right| - \left| \left(e^{\alpha^4 \text{erfc}(E17)} + e^{\alpha^4 \text{erfc}(E18)} \right) \right| \]

\[+ \frac{1}{2a_\gamma} \left(e^{\alpha^4 \text{erfc}(B17)} + e^{\alpha^4 \text{erfc}(B18)} + e^{\alpha^4 \text{erfc}(B19)} \right) \]

\[\left| \left(e^{\alpha^4 \text{erfc}(E7)} + e^{\alpha^4 \text{erfc}(E8)} \right) \right| - \left| \left(e^{\alpha^4 \text{erfc}(E17)} + e^{\alpha^4 \text{erfc}(E18)} \right) \right| \]

\[+ \frac{1}{2a_\gamma} \left(e^{\alpha^4 \text{erfc}(B17)} + e^{\alpha^4 \text{erfc}(B18)} + e^{\alpha^4 \text{erfc}(B19)} \right) \]

\[\left| \left(e^{\alpha^4 \text{erfc}(E7)} + e^{\alpha^4 \text{erfc}(E8)} \right) \right| - \left| \left(e^{\alpha^4 \text{erfc}(E17)} + e^{\alpha^4 \text{erfc}(E18)} \right) \right| \]

\[+ \frac{1}{2a_\gamma} \left(e^{\alpha^4 \text{erfc}(B17)} + e^{\alpha^4 \text{erfc}(B18)} + e^{\alpha^4 \text{erfc}(B19)} \right) \]
\[
\frac{1}{2a_1} \left(e^{D_3 \text{erfc}(E_{16})} H(t-1) - e^{D_3 \text{erfc}(E_{31})} \right) + e^{D_3 \text{erfc}(E_{32})} H(t-1) - \frac{1}{2a_1} \left[e^{D_3 \text{erfc}(E_{15})} + e^{D_3 \text{erfc}(E_{16})} H(t-1) - e^{D_3 \text{erfc}(E_{31})} \right] + e^{D_3 \text{erfc}(E_{32})} H(t-1) - \frac{1}{2a_1} \left[e^{D_3 \text{erfc}(E_{15})} + e^{D_3 \text{erfc}(E_{16})} H(t-1) - e^{D_3 \text{erfc}(E_{31})} \right]
\]

\[
\frac{1}{2a_1} \left[e^{D_3 \text{erfc}(E_{13})} + e^{D_3 \text{erfc}(E_{34})} H(t-1) + e^{D_3 \text{erfc}(E_{13})} + e^{D_3 \text{erfc}(E_{34})} H(t-1) + e^{D_3 \text{erfc}(E_{13})} + e^{D_3 \text{erfc}(E_{34})} H(t-1) + e^{D_3 \text{erfc}(E_{13})} + e^{D_3 \text{erfc}(E_{34})} H(t-1) \right]
\]

\[\theta(y, t) = \frac{1}{2} \left[\left(L e^{D_1 \text{erfc}(N_1)} \right) + \left(L e^{D_1 \text{erfc}(N_2)} \right) - \left(L e^{D_1 \text{erfc}(N_3)} \right) + \left(L e^{D_1 \text{erfc}(N_4)} \right) \right] \frac{H(t-1)}{2}
\]

\[c(y, t) = \frac{1}{2} \left[\left(P e^{D_1 \text{erfc}(R_1)} + S e^{D_1 \text{erfc}(U_1)} \right) - P e^{D_1 \text{erfc}(R_2)} + S e^{D_1 \text{erfc}(U_1)} \right]
\]

\[
\begin{align*}
&\frac{s_s(R-H)}{2a} - \frac{1}{a_2} \left[e^{D_3 \text{erfc}(Q_{17})} + e^{D_3 \text{erfc}(S_{17})} \right] + \frac{1}{a_2} \left[e^{D_3 \text{erfc}(Q_{18})} + e^{D_3 \text{erfc}(S_{19})} \right] + \frac{1}{a_2} \left[e^{D_3 \text{erfc}(Q_{20})} + e^{D_3 \text{erfc}(S_{20})} \right] + \frac{1}{a_2} \left[e^{D_3 \text{erfc}(Q_{21})} + e^{D_3 \text{erfc}(S_{21})} \right] \end{align*}
\]

4 RESULTS AND DISCUSSIONS

For better understanding of the problem influence of different physical parameters, exact solutions were found using the technique of Laplace transform. Increase of angle of inclination causes decrease in velocity which was shown in Figure-1. Figure-2 depicts that rise in Soret number causes a raise in velocity. This is due to the fact increase of Soret number causes a raise in mass buoyancy force, which results in raise in velocity profiles. The falling velocity of the fluid is caused by the increase of Casson parameter which was shown in Figure-3. Figure-4 shows that increase in magnetic parameter causes in fall in velocity of the fluid. Because magnetic force opposes the fluid flow. Increase of chemical reaction parameter accelerates the fluid particles and hence increases fluid velocity, which was shown in Figure-5. Increase of Schmidt number lowers mass diffusion and hence decreases in velocity. This was shown in Figure-6. Figure-7 reveals that increase in Prandtl number decreases fluid velocity.

Figure-1. Contribution of angle of inclination on velocity.
Figure-2. Influence of Soret number on velocity.

Figure-3. Influence of Casson parameter on velocity.

Figure-4. Effect of M on velocity.

Figure-5. Effect of chemical reaction parameter on velocity.

Figure-6. Variation in velocity profiles with respect to Schmidt number.

Figure-7. Influence of Prandtl number on velocity profiles.

Figure-8 depicts variation in temperature profiles with respect to Prandtl number. Increase of prandtl number decreases the thermal boundary layer thickness of the fluid and hence decreases in temperature. The increase of heat source parameter rises temperature of the fluid. That was shown in Figure-9. Figure-10 shows that increase of Radiation parameter causes a fall in temperature profiles. This is due to decrease in Roseland absorption.

Figure-8. Influence of Prandtl number on temperature profiles.
Figure-9. Variation of temperature profiles with respect to Heat source.

Figure-10. Influence of Radiation parameter on temperature profiles.

Figure-11 shows the influence of chemical reaction parameter on concentration profiles. When chemical reaction increases distribution of concentration decreases, which in turn results in increase in transport phenomena and hence reduction in concentration distribution. Schmidt number gives the relative effectiveness of momentum to the mass diffusion of species concentration, which gives a decrease in concentration. This was shown in Figure-12. Increase in Soret number causes raise molecular diffusion and hence rise in concentration of the fluid. This was depicted in Figure-13.

Figure-12. Variation in Concentration profiles With respect to Schmidt number.

Figure-13. Variation in Concentration profiles With respect to Soret number.

The physical quantities of engineering interest are Skin friction, Nusselt number and Sherwood number.
Skin friction

Skin friction is rate of shear stress at the plate due to the flow, given by

\[\text{sf} = \left(1 + \frac{1}{\beta} \right) \frac{\partial u}{\partial y} \mid_{y=0} \]

Nusselt number

Rate of heat transfer at the plate is Nusselt number, described by

\[Nu = \frac{\nu}{U_0 (T' - T_{\infty})} \frac{\partial T'}{\partial y} \mid_{y=0} \]

Sherwood number

Sherwood number gives the rate of mass transfer given by

\[sh = -\frac{\partial C}{\partial y} \]

The influence of different physical parameters on Skin friction, Nusselt number and Sherwood number were shown in Table-1, Table-2 and Table-3.

Table-1.

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(kr)</th>
<th>(sc)</th>
<th>Sr</th>
<th>t</th>
<th>(\beta)</th>
<th>M</th>
<th>R</th>
<th>sf</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\pi}{3})</td>
<td>0.8</td>
<td>0.22</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
<td>2</td>
<td>0.152908</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>0.9</td>
<td>0.22</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
<td>2</td>
<td>0.139809</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>1</td>
<td>0.22</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
<td>2</td>
<td>0.128184</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0.22</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
<td>2</td>
<td>0.142919</td>
</tr>
<tr>
<td>(\frac{\pi}{6})</td>
<td>1</td>
<td>0.22</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
<td>2</td>
<td>0.127949</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>1</td>
<td>0.22</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
<td>2</td>
<td>0.114559</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>1</td>
<td>0.22</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
<td>2</td>
<td>1.646373</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>1</td>
<td>0.22</td>
<td>1</td>
<td>1</td>
<td>0.3</td>
<td>0.2</td>
<td>2</td>
<td>1.528085</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>1</td>
<td>0.22</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.2</td>
<td>2</td>
<td>1.419823</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>1</td>
<td>0.21</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.2</td>
<td>2</td>
<td>0.151664</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>1</td>
<td>0.22</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.2</td>
<td>2</td>
<td>0.136160</td>
</tr>
<tr>
<td>(\frac{\pi}{3})</td>
<td>1</td>
<td>0.23</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>0.2</td>
<td>2</td>
<td>0.122258</td>
</tr>
</tbody>
</table>

Table-2.

<table>
<thead>
<tr>
<th>t</th>
<th>R</th>
<th>Pr</th>
<th>Nu</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0.70</td>
<td>0.028204</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.80</td>
<td>0.028168</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1.00</td>
<td>0.028098</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0.70</td>
<td>0.117124</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>0.70</td>
<td>0.101708</td>
</tr>
</tbody>
</table>

Table-3.

<table>
<thead>
<tr>
<th>t</th>
<th>sc</th>
<th>kr</th>
<th>sr</th>
<th>sh</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.20</td>
<td>0.1</td>
<td>0.01</td>
<td>0.025233</td>
</tr>
<tr>
<td>1</td>
<td>0.22</td>
<td>0.1</td>
<td>0.01</td>
<td>0.025155</td>
</tr>
<tr>
<td>1</td>
<td>0.20</td>
<td>0.1</td>
<td>0.01</td>
<td>0.022667</td>
</tr>
<tr>
<td>1</td>
<td>0.20</td>
<td>0.1</td>
<td>0.02</td>
<td>0.022607</td>
</tr>
<tr>
<td>1</td>
<td>0.20</td>
<td>0.1</td>
<td>0.01</td>
<td>0.022258</td>
</tr>
<tr>
<td>1</td>
<td>0.20</td>
<td>0.2</td>
<td>0.01</td>
<td>0.022104</td>
</tr>
</tbody>
</table>

REFERENCES

APPENDIX

\(A_1 = -y\sqrt{a_5 \sqrt{a_4 + iw}} + (a_4 + iw)t, \quad B_1 = y\sqrt{a_5 \sqrt{a_4 + iw}} - \sqrt{(a_4 + iw)t} \)

\(A_2 = y\sqrt{a_5 \sqrt{a_4 + iw}} + (a_4 + iw)t, \quad B_2 = y\sqrt{a_5 \sqrt{a_4 + iw}} + \sqrt{(a_4 + iw)t} \)

\(A_3 = -y\sqrt{a_5 \sqrt{a_4 - iw}} + (a_4 - iw)t, \quad B_3 = y\sqrt{a_5 \sqrt{a_4 - iw}} + \sqrt{(a_4 - iw)t} \)

\(A_4 = y\sqrt{a_5 \sqrt{a_4 - iw}} + (a_4 - iw)t, \quad B_4 = y\sqrt{a_5 \sqrt{a_4 - iw}} - \sqrt{(a_4 - iw)t} \)

\(A_5 = -y\sqrt{a_5 \sqrt{a_4 + a_7 + (a_4 + a_7)}} \)

\(B_5 = y\sqrt{a_5 \sqrt{a_4 + a_7 + (a_4 + a_7)}} - \sqrt{(a_4 + a_7)t} \)

\(D_5 = y\sqrt{a_5 \sqrt{a_4 + a_7}} + (a_4 + a_7)(t - 1) \)

\(E_5 = y\sqrt{a_5 \sqrt{a_4 + a_7}} - (a_4 + a_7)(t - 1) \)

\(A_6 = y\sqrt{a_5 \sqrt{a_4 + a_7}} + (a_4 + a_7)t \)

\(B_6 = y\sqrt{a_5 \sqrt{a_4 + a_7}} + \sqrt{(a_4 + a_7)t} \)

\(D_6 = y\sqrt{a_5 \sqrt{a_4 + a_7}} + (a_4 + a_7)(t - 1) \)

\(E_6 = y\sqrt{a_5 \sqrt{a_4 + a_7}} - (a_4 + a_7)(t - 1) \)

\(A_7 = -y\sqrt{a_5 \sqrt{a_4 + a_7}} + a_4t \)

\(B_7 = -y\sqrt{a_5 \sqrt{a_4 + a_7}} - \sqrt{a_4t} \)

\(A_8 = y\sqrt{a_5 \sqrt{a_4 + a_9}} + (a_4 + a_9)t \)

\(B_8 = y\sqrt{a_5 \sqrt{a_4 + a_9}} + \sqrt{a_4t} \)

\(A_9 = -y\sqrt{a_5 \sqrt{a_4 + a_9}} + a_9(t - 1) \)

\(A_{10} = e^{y\sqrt{a_5 \sqrt{a_4 + a_9}}} \)

\(C_{10} = -y\sqrt{a_5 \sqrt{a_4 + a_9}} \)

\(F_{10} = t - 1 + y\sqrt{a_5 \sqrt{a_4 + a_9}} \)

\(A_{11} = -y\sqrt{a_5 \sqrt{a_4 + a_9 + (a_4 + a_9)t}} \)

\(B_{11} = y\sqrt{a_5 \sqrt{a_4 + a_9}} - (a_4 + a_9)t \)

\(D_{11} = y\sqrt{a_5 \sqrt{a_4 + a_9 + (a_4 + a_9)(t - 1)}} \)

\(E_{11} = y\sqrt{a_5 \sqrt{a_4 + a_9}} - (a_4 + a_9)(t - 1) \)

\(F_{11} = t - 1 - y\sqrt{a_5 \sqrt{a_4 + a_9}} \)

\(A_{12} = y\sqrt{a_5 \sqrt{a_4 + a_9 + (a_4 + a_9)t}} \)

\(B_{12} = y\sqrt{a_5 \sqrt{a_4 + a_9 + (a_4 + a_9)t}} + (a_4 + a_9)t \)
C12 = \(t + \frac{y^{\sqrt{P}}}{2\sqrt{t}} \)

D12 = \(y^{\sqrt{a_5}} \sqrt{a_4 + a_9 + (a_4 + a_9)(t-1)} \)

E12 = \(\frac{y^{\sqrt{a_5}}}{2\sqrt{(t-1)}} + \sqrt{a_4 + a_9}(t-1) \)

F12 = \(t + \frac{y^{\sqrt{P}}}{2\sqrt{t}} \)

A13 = \(y^{\sqrt{a_5}} \sqrt{a_2 + a_4} + (a_2 + a_4)t \)

B13 = \(\frac{y^{\sqrt{a_5}}}{2\sqrt{t}} - (a_2 + a_4)t \)

D13 = \(-y^{\sqrt{a_5}} \sqrt{a_2 + a_4} + (a_2 + a_4)(t-1) \)

E13 = \(\frac{y^{\sqrt{a_5}}}{2\sqrt{t}} - \sqrt{a_2 + a_4} (t-1) \)

A14 = \(y^{\sqrt{a_5}} \sqrt{a_2 + a_9 + \sqrt{a_2 + a_9}t} \)

B14 = \(\frac{y^{\sqrt{a_5}}}{2\sqrt{t}} + (a_2 + a_9)t \)

D14 = \(y^{\sqrt{a_5}} \sqrt{(a_2 + a_4) + (a_2 + a_4)(t-1)} \)

E14 = \(\frac{y^{\sqrt{a_5}}}{2\sqrt{t}} + \sqrt{(a_2 + a_4) (t-1)} \)

A15 = \(-y^{\sqrt{a_5}} \sqrt{(a_4 + a_11) + (a_4 + a_11)t} \)

B15 = \(\frac{y^{\sqrt{a_5}}}{2\sqrt{t}} - \sqrt{(a_4 + a_11) (t-1)} \)

D15 = \(-y^{\sqrt{a_5}} \sqrt{(a_4 + a_11) + (a_4 + a_11)(t-1)} \)

E15 = \(\frac{y^{\sqrt{a_5}}}{2\sqrt{t-1}} - \sqrt{(a_4 + a_11) (t-1)} \)

A16 = \(y^{\sqrt{a_5}} \sqrt{a_4 + a_11} + (a_4 + a_11)t \)

B16 = \(\frac{y^{\sqrt{a_5}}}{2\sqrt{t}} + (a_4 + a_11)t \)

D16 = \(y^{\sqrt{a_5}} \sqrt{(a_4 + a_11) + (a_4 + a_11)(t-1)} \)

E16 = \(\frac{y^{\sqrt{a_5}}}{2\sqrt{t}} + \sqrt{(a_4 + a_11) (t-1)} \)

A17 = \(-y^{\sqrt{Pr}} \sqrt{a_1 + a_1t} \)

B17 = \(\frac{y^{\sqrt{Pr}}}{2\sigma_l} - \sqrt{a_1} t \)

D17 = \(y^{\sqrt{Pr}} \sqrt{a_1 + a_1(t-1)} \)

E17 = \(\frac{y^{\sqrt{Pr}}}{2\sqrt{t-1}} - \sqrt{a_1(t-1)} \)

A18 = \(y^{\sqrt{Pr}} \sqrt{a_1 + a_1t} \)

B18 = \(\frac{y^{\sqrt{Pr}}}{2\sqrt{t}} + \sqrt{a_1} t \)

D18 = \(y^{\sqrt{Pr}} \sqrt{a_1 + a_1(t-1)} \)

E18 = \(\frac{y^{\sqrt{Pr}}}{2\sqrt{t-1}} + \sqrt{a_1(t-1)} \)

A19 = \(-y^{\sqrt{Pr}} \sqrt{a_1} \)

A20 = \(y^{\sqrt{Pr}} \sqrt{a_1} \)

A21 = \(-y^{\sqrt{Pr}} \sqrt{(a_1 + a_1t) + (a_1 + a_1t)t} \)

B21 = \(\frac{y^{\sqrt{Pr}}}{2\sqrt{t}} - \sqrt{(a_1 + a_1t) t} \)

E21 = \(\frac{y^{\sqrt{Pr}}}{2\sqrt{t-1}} - \sqrt{(a_1 + a_1t) (t-1)} \)

D21 = \(-y^{\sqrt{Pr}} \sqrt{(a_1 + a_1t) + (a_1 + a_1t)(t-1)} \)

A22 = \(y^{\sqrt{Pr}} \sqrt{(a_1 + a_1t) + (a_1 + a_1t)t} \)

B22 = \(\frac{y^{\sqrt{Pr}}}{2\sqrt{t}} - \sqrt{(a_1 + a_1t) t} \)

D22 = \(y^{\sqrt{Pr}} \sqrt{(a_1 + a_1t) + (a_1 + a_1t)(t-1)} \)

E22 = \(\frac{y^{\sqrt{Pr}}}{2\sqrt{t-1}} + \sqrt{(a_1 + a_1t) (t-1)} \)

A23 = \(e^{-\sqrt{\sigma_c} \sqrt{k_r t}} \)

B23 = \(y^{\sqrt{c}} \sqrt{k_r t} \)

D23 = \(e^{-\sqrt{\sigma_c} \sqrt{k_r t}} \sqrt{(k_t + t) - (t - 1)} \)

E23 = \(\frac{y^{\sqrt{c}}}{2\sqrt{t-1}} - k_r (t - 1) \)

A24 = \(e^{-\sqrt{\sigma_c} \sqrt{k_r t}} \sqrt{(k_t + t) - k_r (t - 1)} \)

B24 = \(\frac{y^{\sqrt{c}}}{2\sqrt{t-1}} + \sqrt{k_r t} \)

D24 = \(e^{-\sqrt{\sigma_c} \sqrt{k_r t}} \sqrt{(k_t + t) - k_r (t - 1)} \)

E24 = \(\frac{y^{\sqrt{c}}}{2\sqrt{t-1}} + k_r (t - 1) \)

A25 = \(e^{-\sqrt{\sigma_c} \sqrt{k_r t}} \sqrt{(k_t + t) - k_r (t - 1)} \)

B25 = \(\frac{y^{\sqrt{c}}}{2\sqrt{t-1}} - \sqrt{k_r t} \)

D25 = \(e^{-\sqrt{\sigma_c} \sqrt{k_r t}} \sqrt{(k_t + t) - k_r (t - 1)} \)

E25 = \(\frac{y^{\sqrt{c}}}{2\sqrt{t-1}} + k_r (t - 1) \)

A26 = \(e^{-\sqrt{\sigma_c} \sqrt{k_r t}} \sqrt{(k_t + t) - k_r (t - 1)} \)

B26 = \(\frac{y^{\sqrt{c}}}{2\sqrt{t-1}} - \sqrt{k_r t} \)

D26 = \(e^{-\sqrt{\sigma_c} \sqrt{k_r t}} \sqrt{(k_t + t) - k_r (t - 1)} \)

E26 = \(\frac{y^{\sqrt{c}}}{2\sqrt{t-1}} + k_r (t - 1) \)

A27 = \(e^{-\sqrt{\sigma_c} \sqrt{k_r t}} \sqrt{(k_t + t) - k_r (t - 1)} \)

B27 = \(\frac{y^{\sqrt{c}}}{2\sqrt{t-1}} - \sqrt{k_r t} \)

D27 = \(e^{-\sqrt{\sigma_c} \sqrt{k_r t}} \sqrt{(k_t + t) - k_r (t - 1)} \)

E27 = \(\frac{y^{\sqrt{c}}}{2\sqrt{t-1}} + k_r (t - 1) \)