ABSTRACT

Electronic noses are designed to classify odors. It aims to provide remote connectivity, data storage and signal processing. In this research work, an AI technique using ANN through the use of sensor array grid system concerning air pollution monitoring of the carbon monoxide (CO) gas by integration of distributed sensors, data records and configuring ANN model is investigated. The analysis and the characterization acquired by prototype of multi-sensors electronic nose which have TGS 822, TGS 2442, TGS 813, TGS 4160, TGS 2600 sensors along with temperature, humidity and wind speed measurements sensors. Regression and MSE are taken as performance parameter to find best possible ANN model that can correlate in between sensor response and CO concentration as pollutants, evaluated by MatLab software and statistical analysis. The influence of data segment length is taken into account to improve the model. The variation in hidden layer nodes performed and compared using the variable length data then the mean square error (MSE) is calculated.

Keywords: Air Quality, ANN, Electronic Nose

1. INTRODUCTION

1.1 The electronic nose overview

The name “electronic nose” originates from an idea of the instrument and that a part of system use for smelling can also be referred as olfaction. In the latter, upon being sniffed through nasal during the testification of a product, volatile compounds reach the olfactory epithelium. electrical stimuli is produced which are transmitted to the brain due to the Togetherness of odorants with the appropriate chemosensory receptors. A pattern recognition process starts along with the use of all the data in order to identify, classify the odor. A single neuron reacts to several other olfactory odorants so that every single odorant is sensed by various olfactory neurons. In similarly, electronic noses are based on the analysis of the inter reactivity of sensors. Therefore items with different smell show differences of its pattern. The sampling step is carried out either with a syringe, and filling it into the detector, or by taking along with a gas stream. Volatile compounds provoke the series of signals which are further processed by pattern recognition program. A different type of a system called as portable is launching in the market which has an ability to understand new patterns and connect them with new smell via training as humans do. The biological sensitivity can go below the ppb levels with a change in time in the fraction of milliseconds whereas instruments hardly go below the ppb levels with a change in time in the order of seconds.

Solid state metal oxide sensors (MOS) faces non-selectivity and it was considered a severe drawback of this technology intended as analytical tool. Brief description of commercially available sensors given in the next section.

1.2 Metal Oxide Sensor

MOS sensor possesses metal-oxide semiconducting film coated by a ceramic substrate (e.g. Alumina). The sensitivity depends on semiconductor type.

1.2.1 Conducting polymer (CP) sensor

CP sensors are fabricated from conducting material, fragrant or hetero aromatic (e.g. Polypyrrole, polyaniline, polythiophene), collected onto a substrate and among gold-plated electrodes [23]. Although especially fragile to polar unstable compounds, their selectivity and sensitivity may be enhanced via the usage of various functional groups, polymer structure and doping ions [24, 15]. Biomaterials including enzymes, antibodies, and cells may be incorporated into polymer systems [6, 16, 9, 25, 26, 25]

1.2.2 Thickness Shear Mode Sensor

Thick mode sensor consists of piezoelectric quartz crystal, with gold electrodes, covered with a membrane. Selectivity and sensitivity rely on the composition of coating membrane and on the running frequency.

2. REVIEWS

Although evaluation of body liquids (blood, sputum, urine) for disease analysis and tracking is daily scientific work, human breath observations methodologies that make the most the noninvasive nature of these technique are nonetheless under-evolved. Exhaled breath turned into identified as a noninvasive tool to cure sicknesses. Breath measuring devices first seemed in 1784 whilst Lavoisier found Carbon Monoxide in the exhaled breath of guinea pigs [43]. From that time, colorimetric analysis and chromatography is used to investigate VOCs (volatile organic compounds) in human breath in portions various from mill molar to Pico molar mixture [43]. The latter fuel sensitivity restrict became done with the use of Linus Pauling's chromatography-primarily breath analysis.
device in 1971 [44]. In the four hundred compounds of which the human breath included, there are only 30 identified and many of them are indicators (markers) of a couple of type of diseases [45-47]: Nitrogen Oxide which has been extensively researched as a biomarker for oxidative stress [48], exhaled Carbon Monoxide (CO) additionally a mark for cardiovascular sicknesses, diabetes, nephritis, bilirubin production. The little concentrations (ppb) of analyte molecules present the main venture, alongside the specificity to a given analyte. On the opposite hand, the benefit of growing of this generation is extremely good. This paper creates a specialty of the synthesis of a nose sensor which could test concentrations of CO gas in the environment. In the current work, a set of rules has been formed based totally on a Nano sensor and its miles described in the element. Because of the selectivity of the sensor, detection algorithms applied on standard sensor arrays data. To estimate the proportion of an analyate, the resistance of the sensor is transformed to a voltage signal.

3. METHODOLOGY - ACQUISITION AND ANALYSIS OF THE OLFACTORY SIGNAL

An e-nose is Gas Acquisition System that used an array of multiple sensors. The sensors react to gases with a version of resistance [49, 50]. In Figure 2, it is far viable to look a typical reaction of a sensor S1 (Tin Oxide) and Carbon monoxide level. After the sensor response recording the second factor issue is the pre-processing and dimensionality reduction segment. Each measure includes three principal phases: before every measure the tool inhales the analyzed gas CO, producing response of the sensors as a resistance; finally the instrument returns to the reference line, prepared for a new measure. After pre-processing, feature extraction executed using the most suitable statistics from the signal. Here few descriptors are defined from the sensors responses that are able to represent information characteristics inside the maximum efficient way. Considering that we used four sensors, each measure might be defined by 2 functions. Among all features it's been necessary to find the ones capable of maximizing the informative components and, therefore, to make contributions to improve the accuracy of the classifier. It is discovered that the most discriminative functions between the 2 training ‘high’ and ‘low’ Carbon Monoxide concentration had been the subsequent descriptors (R (t) is the curve representing the resistance version all through the size and Rmin is the resistance at the beginning of the measure indicated as Rbase and other is Rmax taken as divergence.

3.1 Artificial Neural Network (ANN)

ANN is a modelling tools used to find complex relationships among inputs and outputs [51]. In particular, we selected to use a feed-forward neural network with one hidden layer, wherein inputs are the bottom and divergence value of sensor resistance for a precise segment and the output is an unmarried neuron assuming the level 1 if the presence of the CO is detected and zero in any other case. Finally, we set a distinctive number of neurons within the hidden layer from 2 to 16. Since ANNs outcomes depend on the values of the initialization, we trained the network 5 times and we pick the quality

![Figure-1. CO concentration and sensor response plot.](image1)

![Figure-2. Sensor response at segment 1 with Rmin and Rmax features.](image2)
configuration. Additionally, a few variances are discovered inside the complexity of the specified data evaluation and statistics algorithms at special segment lengths; as a result, we additionally trained the phase interval of five hours.

Figure-3. The schematic diagram of the E-nose system.

3.2 Data

The dataset is taken from the University of California (UCI) machine learning repository (Air exceptional records set documents). This fact is from a singular multi-sensor device developed with the aid of Pirelli Labs for pollutants monitoring. The tool turned into constructed up by a 31 cm×26 cm×12 cm metallic case web hosting the strength management unit, signal conditioning and acquisition electronics, a microcontroller board web hosting a microprocessor finally capable to run simple sensor fusion algorithms, a GSM (Global System for Mobile Communications) records transmission unit and of course a sensor array sub device. Total weight was 2.5 kg. The proposed multi-sensor device has a hosting of metal oxide chemo resistive sensors whose short characteristics are shown in Table-1. Linear correlation coefficients computed amongst analyzed species the use of on field recorded facts rNMHC-C₆H₆, 0.98, rCO-NOx, 0.78, rCO-NO₂, rC₆H₆-NOx, 0.72 rC₆H₆-NO₂, 0.60, NOx-NO₂, 0.76, CO-C₆H₆,0.90 As regard as Benzene, Non-Methanic Hydrocarbon(NMHC) coefficient. Table2 documents the linear correlation coefficients computed for analyzed species [52-56]. The hidden neuron switch feature changed into the MATLAB tansig feature. Networks had been educated the usage of the resilient again-propagation set of rules [57] and early stopping as a degree to save you over-training problems [52].
Figure-4. Neural Network Setup.

Table-1. Mean squared Error at Different Node and Segment Length.

<table>
<thead>
<tr>
<th>Segment Length L:</th>
<th>No. of Nodes N</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.1379</td>
<td>0.1608</td>
<td>0.1312</td>
<td>0.131</td>
<td>0.1345</td>
<td>0.1404</td>
<td>0.1332</td>
<td>0.1491</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.1348</td>
<td>0.1505</td>
<td>0.1689</td>
<td>0.1585</td>
<td>0.1113</td>
<td>0.1432</td>
<td>0.1331</td>
<td>0.1288</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.1182</td>
<td>0.1734</td>
<td>0.123</td>
<td>0.1257</td>
<td>0.1328</td>
<td>0.1428</td>
<td>0.1608</td>
<td>0.1429</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.1461</td>
<td>0.1422</td>
<td>0.1331</td>
<td>0.1196</td>
<td>0.1438</td>
<td>0.1509</td>
<td>0.1306</td>
<td>0.1178</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.1638</td>
<td>0.1581</td>
<td>0.1325</td>
<td>0.1017</td>
<td>0.1391</td>
<td>0.1363</td>
<td>0.1643</td>
<td>0.1293</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.1345</td>
<td>0.1711</td>
<td>0.1672</td>
<td>0.1581</td>
<td>0.1713</td>
<td>0.1193</td>
<td>0.1063</td>
<td>0.1878</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.2064</td>
<td>0.063</td>
<td>0.2172</td>
<td>0.1274</td>
<td>0.1479</td>
<td>0.1333</td>
<td>0.0631</td>
<td>0.1816</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>0.1252</td>
<td>0.18</td>
<td>0.1143</td>
<td>0.0999</td>
<td>0.1644</td>
<td>0.1425</td>
<td>0.1498</td>
<td>0.1507</td>
<td></td>
</tr>
<tr>
<td>Minimum Value</td>
<td>0.1182</td>
<td>0.063</td>
<td>0.1143</td>
<td>0.0999</td>
<td>0.1113</td>
<td>0.1193</td>
<td>0.0632</td>
<td>0.1178</td>
<td></td>
</tr>
</tbody>
</table>
Table-2. Regression Values for Training, Testing, Validation and All at Different Node and Segment Length.

<table>
<thead>
<tr>
<th>N</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>L:</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.7</td>
<td>0.71</td>
<td>0.7</td>
<td>0.7</td>
<td>0.69</td>
<td>0.7</td>
<td>0.69</td>
<td>0.68</td>
<td>0.67</td>
<td>0.69</td>
<td>0.68</td>
<td>0.68</td>
<td>0.7</td>
<td>0.72</td>
<td>0.76</td>
<td>0.75</td>
</tr>
<tr>
<td>15</td>
<td>0.68</td>
<td>0.71</td>
<td>0.7</td>
<td>0.72</td>
<td>0.7</td>
<td>0.69</td>
<td>0.69</td>
<td>0.7</td>
<td>0.72</td>
<td>0.75</td>
<td>0.69</td>
<td>0.77</td>
<td>0.6</td>
<td>0.54</td>
<td>0.78</td>
<td>0.61</td>
</tr>
<tr>
<td>20</td>
<td>0.68</td>
<td>0.65</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.69</td>
<td>0.67</td>
<td>0.73</td>
<td>0.75</td>
<td>0.8</td>
<td>0.89</td>
<td>0.66</td>
<td>0.65</td>
<td>0.66</td>
<td>0.7</td>
<td>0.44</td>
</tr>
<tr>
<td>25</td>
<td>0.71</td>
<td>0.71</td>
<td>0.74</td>
<td>0.72</td>
<td>0.72</td>
<td>0.76</td>
<td>0.67</td>
<td>0.7</td>
<td>0.72</td>
<td>0.8</td>
<td>0.73</td>
<td>0.62</td>
<td>0.65</td>
<td>0.67</td>
<td>0.84</td>
<td>0.79</td>
</tr>
<tr>
<td>30</td>
<td>0.7</td>
<td>0.67</td>
<td>0.72</td>
<td>0.58</td>
<td>0.64</td>
<td>0.7</td>
<td>0.69</td>
<td>0.7</td>
<td>0.71</td>
<td>0.65</td>
<td>0.77</td>
<td>0.55</td>
<td>0.83</td>
<td>0.82</td>
<td>0.71</td>
<td>0.66</td>
</tr>
<tr>
<td>35</td>
<td>0.68</td>
<td>0.69</td>
<td>0.65</td>
<td>0.62</td>
<td>0.68</td>
<td>0.61</td>
<td>0.64</td>
<td>0.69</td>
<td>0.67</td>
<td>0.46</td>
<td>0.73</td>
<td>0.69</td>
<td>0.7</td>
<td>0.68</td>
<td>0.57</td>
<td>0.61</td>
</tr>
<tr>
<td>40</td>
<td>0.66</td>
<td>0.67</td>
<td>0.72</td>
<td>0.73</td>
<td>0.7</td>
<td>0.67</td>
<td>0.64</td>
<td>0.68</td>
<td>0.78</td>
<td>0.55</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.7</td>
<td>0.7</td>
<td>0.64</td>
</tr>
<tr>
<td>45</td>
<td>0.69</td>
<td>0.66</td>
<td>0.72</td>
<td>0.7</td>
<td>0.73</td>
<td>0.68</td>
<td>0.72</td>
<td>0.68</td>
<td>0.55</td>
<td>0.77</td>
<td>0.37</td>
<td>0.51</td>
<td>0.52</td>
<td>0.54</td>
<td>0.6</td>
<td>0.75</td>
</tr>
<tr>
<td>Maximum value</td>
<td>0.71</td>
<td>0.71</td>
<td>0.74</td>
<td>0.73</td>
<td>0.76</td>
<td>0.72</td>
<td>0.72</td>
<td>0.73</td>
<td>0.8</td>
<td>0.8</td>
<td>0.77</td>
<td>0.83</td>
<td>0.82</td>
<td>0.84</td>
<td>0.79</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Table-2C. Regression Validation Values

<table>
<thead>
<tr>
<th>N</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>L:</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.67</td>
<td>0.59</td>
<td>0.67</td>
<td>0.68</td>
<td>0.67</td>
<td>0.66</td>
<td>0.67</td>
<td>0.64</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.7</td>
</tr>
<tr>
<td>15</td>
<td>0.67</td>
<td>0.64</td>
<td>0.56</td>
<td>0.61</td>
<td>0.74</td>
<td>0.65</td>
<td>0.66</td>
<td>0.7</td>
<td>0.68</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>20</td>
<td>0.67</td>
<td>0.52</td>
<td>0.72</td>
<td>0.67</td>
<td>0.69</td>
<td>0.67</td>
<td>0.6</td>
<td>0.66</td>
<td>0.68</td>
<td>0.65</td>
<td>0.67</td>
<td>0.69</td>
<td>0.68</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>25</td>
<td>0.63</td>
<td>0.66</td>
<td>0.68</td>
<td>0.72</td>
<td>0.66</td>
<td>0.67</td>
<td>0.7</td>
<td>0.73</td>
<td>0.72</td>
<td>0.7</td>
<td>0.71</td>
<td>0.71</td>
<td>0.73</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
</tr>
<tr>
<td>30</td>
<td>0.57</td>
<td>0.61</td>
<td>0.69</td>
<td>0.79</td>
<td>0.67</td>
<td>0.68</td>
<td>0.59</td>
<td>0.64</td>
<td>0.68</td>
<td>0.67</td>
<td>0.68</td>
<td>0.65</td>
<td>0.67</td>
<td>0.7</td>
<td>0.67</td>
<td>0.69</td>
</tr>
<tr>
<td>35</td>
<td>0.65</td>
<td>0.56</td>
<td>0.58</td>
<td>0.61</td>
<td>0.57</td>
<td>0.72</td>
<td>0.77</td>
<td>0.58</td>
<td>0.68</td>
<td>0.64</td>
<td>0.65</td>
<td>0.63</td>
<td>0.66</td>
<td>0.64</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>40</td>
<td>0.43</td>
<td>0.86</td>
<td>0.57</td>
<td>0.72</td>
<td>0.65</td>
<td>0.68</td>
<td>0.86</td>
<td>0.63</td>
<td>0.65</td>
<td>0.68</td>
<td>0.69</td>
<td>0.7</td>
<td>0.71</td>
<td>0.71</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>45</td>
<td>0.73</td>
<td>0.58</td>
<td>0.72</td>
<td>0.77</td>
<td>0.58</td>
<td>0.7</td>
<td>0.62</td>
<td>0.66</td>
<td>0.68</td>
<td>0.65</td>
<td>0.67</td>
<td>0.68</td>
<td>0.67</td>
<td>0.64</td>
<td>0.69</td>
<td>0.69</td>
</tr>
<tr>
<td>Maximum value</td>
<td>0.73</td>
<td>0.86</td>
<td>0.72</td>
<td>0.79</td>
<td>0.74</td>
<td>0.72</td>
<td>0.86</td>
<td>0.73</td>
<td>0.72</td>
<td>0.7</td>
<td>0.71</td>
<td>0.71</td>
<td>0.73</td>
<td>0.72</td>
<td>0.72</td>
<td>0.72</td>
</tr>
</tbody>
</table>

N : Number of Nodes L: Segment Length Maximum value : Maximum Value of Regression

Table-2D. Regression all Values
4. CONCLUSIONS
This paper describes a new carbon mono oxide detection model-based approach with enhanced artificial neural network based Artificial Intelligence techniques. The aim of this work is to accurately classify the carbon mono oxide level in terms of high and low concentration.
This objective is achieved using an optimal artificial neural network model at specific data segment length and no. of nodes of the hidden layer. The Number of neurons and data segment length is varied to optimize the artificial neural network Model. The system performance is optimized in terms of Minimum Value of Mean Squared Error and Maximum Value of Regression analysis. Results show that the artificial neural network prediction accuracy is highly dependent on the data segment length and network parameters. The accuracy of prediction is improved by systematic selection of data and network parameter with minimum no of features. Work further may be enhanced by applying Genetic Algorithm Based Optimize Search on artificial neural network Platform. It is expected that the development model is helpful in application related to the environmental hazards that include carbon mono oxide related air pollution. Hence this work can support the target of air quality required in the open area and also in the buildings such as hospitals, hotels, and industries where Carbon Monoxide is very common due to the inadequate combustion process.

REFERENCES

