
 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3046

A SURVEY OF SOFTWARE REQUIREMENTS

SPECIFICATION AMBIGUITY

Ashok Kumar Gupta1, 2, Aziz Deraman2 and Shams Tabrez Siddiqui1
1Department of Computer Science, Jazan University, Jazan, Kingdom of Saudi Arabia

2Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
E-Mail: kgupta.ashok@gmail.com

ABSTRACT

The quality of Software Requirements Specification (SRS) is critical. A good quality SRS must be clear, correct,
consistent, unambiguous, modifiable, verifiable and traceable. Ambiguity is difficult to tackle; therefore, requirements
elicitation technique should be effective. Published material related to SRS issues discusses ambiguity as the most
conversed problem. In this survey, our focus is on one of the major quality issues i.e. ambiguity. There are many solutions
to resolve SRS ambiguity but, there is no prescribed classification of these solutions exists. The survey to provide a
summary of the huge research contributions in the form of developments and new techniques, models, and methodologies
that have been recommended to control the SRS ambiguity and magnify the benefits of addressing SRS ambiguity in
development projects. To organize this enormous work by researchers, we try to provide the main concepts and
associations that together represent the field of SRS ambiguity. The study is important for further assessments of possible
solutions to SRS ambiguity for the improvement of SRS that helps researchers and experts to compare these techniques for
better results.

Keywords: SRS ambiguity, ontology, NLP, UML, boilerplates, inspections, controlled language, SRS quality, ambiguity tools.

1. INTRODUCTION

Requirements Engineering (RE) process is a
critical step, because SRS quality issues are significantly
important, for different software projects domains.
Sometimes SRS quality is directly rated as the main cause
of the disasters in software development projects [1-3].
The final output of effective RE comes out to be a good
quality SRS [3, 4]. It has been more than 20 years since
Shull, Forrest J Basili, Victor R. developed the defect
taxonomy related to SRS that consists of six types of
problems missing, incorrect fact, inconsistent information,
ambiguous, extraneous information and miscellaneous [5].
IEEE Standard 830-1998 [6] provides the Characteristics
of a good SRS. The characteristics consist of unambiguity,
correctness, modifiability, completeness, traceability, and
ranking for importance, consistency, stability, and
verifiability. However, complete, accurate and steady SRS
requires extensive research to achieve the accuracy level.

An evident research problem in RE is resolving
ambiguity, where ambiguity can be defined as “a
statement having more than one meaning”. It appears that
no single broad, all-inclusive and exact definition of
ambiguity written in the software engineering work. Every
definition provides only some parts and portions of the
complete definition by neglecting the rest of the definition.
Altogether it forms a complete understanding of the
current definition of ambiguity in Software Engineering.

The IEEE Recommended Practice for Software
Requirements Specifications [6] says that “An SRS is
unambiguous if, and only if, every requirement stated
therein has only one interpretation.” The problem with the
IEEE definition is that there is no unambiguous
specification simply because for any specification, there is
always someone who understands it differently from
someone else, just as there are no bug-free programs.
According to Gause and Weinberg [7], there are two major

sources of ambiguity, communication errors and missing
information. Communication errors occur due to
expression insufficiencies and lack of contextual
information between the author and the reader. Missing
information can be due to many reasons, for example,
human factor, lack of observation, and generalize
inaccurately.

On the other hand, till date most of the research
work on SRS ambiguity has not been assimilated in an
organized manner, hence making the work difficult to
reconcile and evaluate for researchers and practitioners.
To provide an organized and systematized view of the
research in SRS ambiguity, this survey describes the
current state of the art of research work available in the
field of SRS ambiguity. The survey includes taxonomy of
the core concepts and relationships that together embody
the SRS ambiguity field. This taxonomy is organized
around two primary dimensions, technical, and tools with
which we try to portray SRS ambiguity. While these major
dimensions are most suitable for the key areas of software
development, we elicited from the literature individual
sub-dimensions that are crucial for the work in the field of
SRS ambiguity. This material may concrete the road for
the use of the SRS ambiguity method in projects.
Moreover, it provides a road-map in the form of a
classification that helps researchers to focus on the best
suited solutions available for a particular ambiguity.

2. RELATED WORK
To consolidate and organize the findings of SRS

issues, due to the sheer volume of work already published,
is difficult. Here we will discuss most relevant surveys
available. Broadly their surveys can be summarized as
follows.

Gernat [8] describes the various types of
ambiguities. He classified these ambiguities into six broad

mailto:kgupta.ashok@gmail.com

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3047

categories. Lexical ambiguity, Semantic ambiguity,
Structural ambiguities etc. Mich [9] defined weighted
semantic ambiguities, the weighted semantic ambiguity
that includes the frequencies that the different meaning of
the word occurs.

Shah and Jinwala [10] provided a comprehensive
survey on the techniques to resolve ambiguities in natural
language software requirements. The research was focused
to compare and contrast the established approaches to deal
with ambiguities in natural language software
requirements. The considered research presented a survey
of the currently available automatic and semi-automatic
tools for ambiguity resolution. We observed that the study
doesn’t include all possible solutions to resolve the
ambiguity. It focuses on the tools used to resolve the
ambiguity. This article reports on our understanding on the
basis of literature survey to categorize the solutions and to
check the number of solutions available in each category.

All of these surveys can enhance the knowledge
of ambiguities and types of ambiguities by identifying
factors that may influence SRS. However, none of them
offers its findings from a more comprehensive approach. It
becomes difficult for researchers to decide which
ambiguity detection method or tools to choose, and which
one will be effective in case a particular type of ambiguity
appears in SRS.

We conducted search in various databases for
source selection, and inclusion and exclusion criteria. The
guidelines are based on Petersen et al. [11]. Many authors
worked on the types of ambiguities and suggested types of
ambiguities and plenty of proposed and recommended
solutions to handle ambiguities. The objective of the study
is to offer a summary of the SRS research on effective
solutions in terms of frameworks, models methods, and
techniques available to handle SRS ambiguity.

2.1 Selection of source

The objective of the source selection is to search
relevant sources of literature for the study. The sources of
the literature are online journals, databases, thesis, and
books. At first step, we considered the databases ACM,

IEEE, Springer, Scopus and Science Direct as proposed in
[12]. The major keywords are mined from a collection of
related papers known by the researchers as extremely
appropriate. We made a comparison to check whether our
findings include publications from these peer-reviewed
papers [10, 13-16] or not. We searched the literature from
the above-mentioned sources. Selection of appropriate
literature is made according to the process defined in
Figure-1. Finally, we combined the relevant literature
retrieved from all sources to get the required set of
literature that is being used to find a solution for the
research problem.

3. TAXONOMY TO RESOLVE AMBIGUITY

On the basis of extracted literature, we derived
the nomenclature to clear the fundamental ideas and
relationships of SRS ambiguity. This taxonomy is
prepared around two key dimensions - technical dimension
and tools dimension as shown in Figure-2. With them, we

characterized the details about SRS ambiguity. We used a
proper selection method for each key dimension, in the
form of a predefined goal to get relevant papers from the
large set of literature. However, required technical and
tools dimensions are not exclusive, these dimensions are
linked to the various issues of SRS, here we will focus
only on one issue i.e. ambiguity. We found literature
specific to sub-dimensions that is significant and of good
relevance in context to resolve the ambiguity.

Figure-1. Process for literature search and selection.

NO

Retrieve the literature

Check the

Relevancy

of Results

Redefine the

keywords to get

relevant results

Define the Keywords

Start

Select the sources

Search Keywords in database

Exclude irrelevant literature

(Review title and abstract)

Make a final list of literature

End

YES

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3048

Figure-2. Shows Dimensions and sub dimensions
related to SRS ambiguity.

Here we are explaining briefly both dimensions

and its related major objectives. The major aim of the
technical dimension is to describe the types of ambiguities,
methods, techniques, and models to resolve the ambiguity.
To achieve this, each approach needs to be described with
proper detail as the process of elicitation, the type of
ambiguities, the different team roles (team roles, size of
the project, and selection), and the technique applied to
detect and remove ambiguity in SRS documents. Finally,
the tool dimension describes how tools can support to
detect and remove SRS issues. For this dimension, we
described the role of the various tools (purpose) and
investigated what technique is used by the different tools
as there are plenty of tools that work on different types of
ambiguities. The above two dimensions may not be
completely distinct as some of the parameters may be
overlapped, as for now, this is unavoidable. For example,
techniques discussed in the technology might be used as a
base for the tool in the other dimension. Here tools are
only meant for the automatic detection and removal of the
ambiguities so that we can reduce the overall cost and can

save precious time of the team. But still, we tried our best
to better clarify these dimensions from the end user
perspective. Now we will pursue our discussion on the two
dimensions and their sub dimension’s with the help of
appropriate material which we extracted from the
databases by using related keywords.

4. THE TECHNICAL DIMENSION OF SRS

 AMBIGUITY

It starts with the clarity of SRS life cycle to the
requirements engineer or business analyst so they can
detect and remove SRS ambiguities by inculcating extra
efforts to analysis and validation phase. Final drafted SRS
should be complete, correct and unambiguous, for a
particular development situation. Detailed description of
the technical dimension with existing issues related to SRS
ambiguity and refinements, to improve the quality of SRS,
is important. As shown in Figure-3, the detail
classification of our technical dimension which includes
the Requirements Engineering Process, role of various
team members and participants, various types of
ambiguities and the methods, technique, models to
prevent, detect and remove ambiguity as a sub-dimension.
More details of each sub-dimensions are discussed here in
the below section. We found, in total 58 references related
to the technical dimension.

5. REQUIREMENT LIFE CYCLE

Requirement life-cycle involves a number of
phases and at times it can be a complex process. The
nature of the process depends on the model you choose for
your Software development like V, Double V, Waterfall,
Incremental, etc.

We surveyed the literature and found various
issues in choosing the requirement model. There are
factors which can greatly affect the SRS.

a) Project (Size, Complexity, Requirement Uncertainty,

Time constraint, Generic, Repetitive or New etc.)
b) Requirement Engineer (Experience with Elicitation,

Formal Training, Domain Experience, Training on the
same technique etc.)

c) Stakeholders (Experience, Location, Expressiveness,
Time Availability etc.)

We are not able to find any rule which can guide
the team to choose suitable model, as it all depends on the
nature of project and experience of the various
stakeholders. In the process of SRS, the major
responsibility is on the requirements engineer to extract
the requirements from the stakeholders and specify them
clearly. There are six well known major Requirements
engineering phases that should be known to Business
Analyst or Requirements Engineer: planning, requirements
gathering, requirements analysis, requirements
documentation, requirements validation, requirements
management. Requirements development and
requirements management are two main activities of
requirements engineering. Activities like extraction,
analysis, and validation are part of requirements

SRS issues: Ambiguity, Completeness, Inconsistency,

Correctness, Modifiable, Verifiable, Traceability, etc.

Technical

Dimension
Goal:
Characterize
Different
methodologies
to resolve
Ambiguity

1. SRS Cycle

2. Roles of

Requireme

nt

Engineer

3. Types of

Ambiguitie

s

4. Possible

Solutions

SRS

Ambiguity

Tool

Dimension Goal:
Characterize
Different Tools
to resolve
Ambiguity

1. Necessity

2. Proposed

tools to

resolve

ambiguity

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3049

development [17]. Whereas requirements management
comprises all activities involved in making changes in
requirements baseline request, performing analysis for a
change request.

5.1 Requirements planning

In the planning phase, various significant tasks
are accomplished by the analyst, i.e. goal identification,
prioritization, team organization, assigning of
responsibilities and preparation of various materials to be
used in different phases of RE process. Responsibility is
assigned to various stakeholders for elicitation, analysis,
verification and documentation phases [18]. Some
materials are prepared that can be used in various phases
of the RE process, which includes a list of questions used
during the elicitation phase of the requirements
engineering.

5.2 Requirement elicitation
Requirement gathering or elicitation is one of the

most crucial phases of requirement engineering process
commonly known as requirement mining. After gathering
the requirement, this product can be arranged logically in
folders according to the release [19]. Impact assessment
process involves requirements investigation to formulate
facts and figures to track possible outcomes based on the
analysis.

5.3 Requirements analysis

Discussion and analysis is a process in which
requirements are studied in relation to compatibility,
possibility, and completeness.

Figure-3. Shows Technical Dimensions of SRS ambiguity.

Prioritizing the discussions to omit requirement
interference and identifying the risk of the issues leads to

relevant set of output requirements. Techniques for
analyzing the requirements are model by Joint applied

Techniques to
Resolve SRS

Types of

Ambiguities

Roles

Linguistic Ambiguities

 Lexical Ambiguity

 Syntactic Ambiguity

 Weighted Syntactic Ambiguity

 Semantic Ambiguity

 Weighted Semantic Ambiguity

 Pragmatic Ambiguity

 Vagueness Ambiguity

 Generality Ambiguity

 Genuine Ambiguity

 Polysemy Ambiguity

 Nocuous Ambiguity

 Anorphic Ambiguity

 Incompleteness Ambiguity

 Referential Ambiguity

 Scope Ambiguity

RE-Specific Ambiguities

 Genuine RE Specific ambiguity

 Requirements-document ambiguity

 Application-domain ambiguity

 System-domain ambiguity

 Development-domain ambiguity

 NLP

 Ontologies

 UML

 Object Oriented

 Inspection

 Boilerplates

 Controlled Languages

 Others

Process

SRS
Ambiguity

Requirement Engineer

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3050

development (JAD) meetings, modelling, priority
requirements and quality function deployment (QFD),
using three different types of languages namely official,
semi-official and informal language.

As the requirements are met and modelled,
problems may arise in maintaining the pacts with all
stakeholders, particularly if stakeholders have different
goals [20]. The authors believe that collective
requirements must go through an analysis process in order
to achieve the best requirements [20-22]. Negotiations to
resolve conflicts between stakeholders are necessary
attempts, to weaken the essential weaknesses of each
stakeholder's goal [20]. The objective of this phase is to
find the problems that occur in the initial requirements
statements of elicitation phase. The following types of
investigations are performed in the requirement analysis
phase using the analysis checklist (As per authors).

a) Ambiguity Checking
b) Necessity or requirement checking.
c) Completeness checking
d) General comments

Usually, stakeholders analyze the requirements
for completeness; means that those requirements which are
not needed are omitted [17]. Requirement statements are
said to be complete if all the parts are present and there is
no existence of “to be defined” statements or postponed
decision. Stakeholders examine the requirements to
observe whether the requirements achieved are fit for
attaining the business goals of the organization. The
elicited requirements satisfy the stakeholder’s application
domain, goals, and objectives of the organizations. It is
also learnt whether the elicit requirements achieved are
really necessary to solve specific problems. The
stakeholders provide general comments at the bottom of
analysis checklist, regarding the initial requirements
statement. Stakeholders gave suggestions regarding
elicited requirements and mention if they agree with the
same or if they want further modification then that
modification is specified.

5.4 Requirements documentation

The ultimate goal of requirements engineering is
to document requirements as described by the customer so
that other stakeholders like developers, designers,
requirements engineers can understand the exact context
of the requirements. Documents of good requirements
should be accurate, correct, unambiguous, improvable,
revisable and understandable.

Requirements can be considered as the basis for
controlling document changes and evaluating the products
and processes of future system design, system testing
cases and verification. Accepted requirements documents
have suitable details as well as suitable symbols.
Requirements documentation has a direct relationship with
requirements management. The specifications of the
requirements can be outlined in small projects in a SRS
document or in bigger projects.

 In requirements specification, Functional and non-
functional requirements and their limitations are
documented.

 Business requirements document have Business
requirements only.

 External interfaces are kept separately in
specifications of software requirements or documents
of external requirements.

5.5 Requirement validation

Requirement validation is a necessary phase of
the requirements engineering and plays a crucial role in
the successful execution of any project. Validation of
requirements means that it is necessary to ensure that the
needs of the customers are complete, and well-written.
Requirements validation phase executes the project on the
basis of various needs of the stakeholders. Validation in
requirements engineering is to control the quality by
checking the specification, Traceability Analysis, High
Fidelity Simulation, wireframe, etc.

There are numerous requirements validation tools
available that can be used for validation with minimal
human intervention. If some requirements are incomplete
then the same process can be followed through the phases
namely, elicitation, analysis, verification and validation for
those specific incomplete requirements. If requirements
are ambiguous then meetings are held among stakeholders
to remove the ambiguities. Tools are also available that
can be used to remove the ambiguities. This phase
continues to repeat the other stages of development
requirements due to lack of identity, the gap between
needs, additional information and other issues. The
software implemented is valid in the software life cycle
test phase based on its requirements [23].

5.6 Requirement management

Requirement Management process includes
planning, monitoring, analyzing, communicating and
managing requirements. If the requirements are not well
managed, then the final product will be adversely affected.
Managing thousands of requirements manually seems to
be difficult; it is advised to use some tools. A variety of
requirement management tool are available online which
helps in managing the requirements easily just by putting
very small efforts and time.

6. ROLES
There are two important questions practitioners

usually have about SRS:

a) What roles are involved in the requirements lifecycle?

b) What skills are required to get complete, correct and

unambiguous requirements?

In the first question, specific roles assigned to a
participant, therefore each participant has a clear and
distinct responsibility as described in the roles and
responsibilities [2, 24]. There is not much disagreement

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3051

between the engineer and Business analyst regarding the
role and requirements definitions. The requirements
engineering emphasize is on project role, not on the job
title. In the following, we will describe the role and
responsibilities of requirements engineer in more detail:

6.1 Requirements engineer
The requirements engineer is individual, whose

primary obligation is to elicit, analyze, document and
validate the complete set of requirements of a system [20].
Requirements engineer/analyst is also known as a
requirements manager, business analyst, system analyzer
or simply an analyst. The requirements analyst is a bridge
between the customer community and the software
development team through which requirements flow.
Requirements analyst regularly communicates with
customer community and development team, also
discusses the difficulties with both the parties. Throughout
the software development life cycle, the requirements
analyst is included at various levels. After achieving the
baseline requirements, the focus is transferred towards the
management of the requirements specification.
Requirements Analyzer is responsible for seeing that the
tasks are performed properly and verify the fulfilment of
all requirements. In [25] some of the desirable skills are
mentioned

a) Interviewing skills, to talk with individuals and
groups about their needs and ask the right questions to
surface essential requirements information.

b) Listening skills, to understand what people say and to
detect what they might be hesitant to say.

c) Analytical skills, to properly investigate and evaluate
the information gathered from different sources;
decompose high-level information into
comprehensive information, to bring a more general
understanding of the fundamentals with lower level
information.

d) Facilitation skills, to lead requirements elicitation
workshops.

e) Observational skills, to validate data obtained via
other techniques and expose new areas for elicitation.

f) Writing skills, to communicate information
effectively to customers, managers, marketing, and
technical staff.

g) Interpersonal skills, to help negotiate priorities and to
resolve conflicts among project stakeholders (such as
customers, product management, and engineering).

h) Modeling skills, to represent requirements
information in graphical forms that enhance textual
representations.

Organizational skills, to deal with the huge array

information gathered during organizational skills,
elicitation and analysis and dealing with rapidly changing
information.

7. TYPES OF AMBIGUITIES
According to Kamsties & Peach [26] ambiguities

can be resolved if we know the RE context. Further,
author took the RE context into consideration and defined
an ambiguous requirement is a requirement that has
different meanings. He described the importance of RE
context because almost all natural language requirements
have a high probability to have ambiguous meaning.
While reading the requirements most of the requirements
can be disambiguated by a reader who understands the
context of RE, rest of the requirements, we consider
ambiguous. A requirement allows multiple interpretations
if it contains linguistic or RE-specific ambiguity (as shown
in Table-2). Linguistic ambiguity (Syntactic, Lexical,
Semantic, generality and vagueness ambiguity etc.) is
independent of any context. RE-specific ambiguity
depends on system-domain, application-domain,
development-domain and RE context ambiguity [26].
Table-1 shows types of ambiguities with references.

8. TECHNIQUES TO RESOLVE AMBIGUITIES

Here our main focus is to identify existing
solutions which can improve the quality of the SRS in
terms of ambiguity detection and reduction. We reviewed
and analysed 54 literatures and found most of the solutions
can be divided into six main categories based on the
technique used by researchers to resolve ambiguity.

In the survey, we found that solutions to SRS
ambiguity can be broadly categorized into six categories:

a) Ontology Based Solutions
b) Object-Oriented & UML Based Solutions
c) NLP Based Solutions
d) Inspections Based Solutions
e) Boilerplates Based Solutions
f) Controlled Languages Based Solutions

In [27] the study is based on the automatic and
semi-automatic tools only, whereas our survey includes all
techniques, models, algorithms, and frameworks
investigated by the different authors to detect and reduce
ambiguity over the period of time. To know about various
techniques, we thoroughly reviewed the literature and
found that ontology based solutions are commonly used to
detect and remove ambiguity. Several types of automated
tools are listed to reduce ambiguity are majorly based on
ontologies and NLP [10].

The First type of (24%- [24, 28-38]) solution is
based on ontologies. Ontology is a collective formal
conceptualization of a domain that allows the definition of
semantic relationships between entities and inference of
knowledge through reasoning [24]. Domain ontologies are
suitable for building requirements elicitation and can help
reduce the effort. Background knowledge can be used to
disambiguation in the unstructured text [35]. In order to
recognize a pattern in the problem description, a
theoretical model for knowledge of the domain is required
so that terms, entities, and relationships among them are
clear. Polpinij, Jantima [31] used a text classification and
filtering technique to discard irrelevant sentences which

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3052

have similar details so that we can avoid ambiguity.
Further ontology based question answers are helpful to
resolve functional and lexical ambiguities [30, 33]. As far
as non-functional requirements are concerned Rashwan et

al. [38] proposed a new corpus & support vector machine-
based classifier to examine the sentence based
classification of requirements.

The second category is (18% [44-52]) Model-
based solution to ambiguity. Models can be based on
UML or Object-oriented. Meziane, Athanasakis, &
Ananiadou in [44] developed a java based tool
“GenNLangUML” to generate Natural Language
Specifications using UML diagrams to disambiguate the
SRS. In [45] proposed a semi-automatic tool to identify
ambiguities in SRS. Natural Language (NL) SRS is parsed
by using constrained grammar, then relationships extracted
in the parsing, the tool creates methods, classes, and
associations and finally, the model is diagrammed so that
human reviewer can detect ambiguities. In [52] author
proposed and mentioned a method which translates natural
language requirements to state transition diagrams in an
incremental manner and allows requirements engineers
and other stakeholders to participate in the conversion
process. This approach can improve requirements during
the conversion process by recognizing ambiguities and
incompleteness in the NL requirements. LUCSED

(Language of Use Case and Sequence Diagram) [51] tool
is used to automatically generate use cases and sequence
diagram from textual requirements. It mitigates natural
language problems like ambiguity. According to
Kamalrudin, Hosking, and Gundy in [46] using an
essential use case interface pattern library can improve the
quality and reduce the inconsistency. Further [47] used a
modeling approach known as Restricted Use case
modeling which is composed of rules and restrictions and
an altered use case model to reduce the ambiguity. The
author claimed approach is easy and gives good results
over traditional approach in terms of class completeness
and sequence diagram completeness. Saurabh and Atul in
[49] performed an experiment using UML use case model
and formally specified use case models and assessed the
later gave better results in terms of correctness and
completeness. The formal use case template showed to be
better quality analysis model than the semi-formal use
case model.

The third category is (16%- [27, 43, 53-58])
based on NLP techniques. In [27] author proposed a NLP
technique based on text chunking to automatically verify
the templates. Templates can be used to write natural
language requirements to avoid ambiguity. When we
apply a template, it is vital to authenticate the requirement,
which is

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3053

difficult, NLP techniques can be used for the automatic
checking of requirements. In [54, 55, 57] natural language
pattern is used to increase the quality and to reduce the
ambiguity. Domain-dependent patterns are helpful to

improve the precision of the requirements specification
[54]. While in [57] the definition of linguistic patterns was
introduced through a new language known as RSL-PL
language, which empowers the linguistic patterns to

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3054

abstract information to perform the linguistic analysis.
Guiding rules and specific language patterns are used to
write the Natural Language Requirements, validation of
ambiguous requirement sentences can be done using the
rules and patterns [55]. These linguistic rules and language
pattern become the base of a requirements engineering
tool SREE (Systemized Requirements Engineering
Environment). A machine learning algorithm is used to
find sentence level ambiguity and a prototype tool NAI
can be used to reduce the coordination ambiguity and
misunderstanding among different team members [58].

The fourth category of (16% [59-66]) solutions
are inspections focused. Reviews are conducted during
development to refine the SRS to avoid ambiguity.
Inspection is used when SRS is supposed to be completed
just to detect ambiguities. Effective inspection method can
reduce the ambiguity and can improve the quality of
Software requirements document. Reading is one of the
inspection techniques which can be applied by the
reviewer to put more focus on the significant parts of an
entity while inspection. Kamsties et al. in [60] proposed a
checklist and scenario-based inspection technique.
Another type of reading is Usage-based reading focuses on
user’s point of view of a software artifact to help reviewer
so that they can focus only the important parts [61]. As per
Berling & Runeson, (2003) [62], perspective based
inspection is more effective than checklist based
inspection. Tjong, Hartley, & Daniel, (2008) [59] in their
thesis gave some guiding rules on the basis of the corpus
which can serve as an Inspection checklist to find
ambiguities. In [65] author perspective-based inspection
methodology is developed based on Pragmatic Quality
Model to recognize 198 total inspection points to prepare a
quality inspection report.

The fifth category is (14% [14, 18, 24, 67-70])
boilerplate based solutions. A Boilerplate is a textual
template for requirements specification, which is based on
predefined patterns in order to reduce ambiguity [24]. For
requirements, the grammatical structure of sentences can
be improved through Boilerplates suggested patterns. A
variety of boilerplates have been suggested by the
researchers, two such well-known boilerplates are the
EARS (Easy Approach to Requirements Specification)
boilerplate [68] and Rupp’s boilerplate [18]. To decrease

the problems in NL specification EARS boilerplate is one
of the most commonly used boilerplate. Farfeleder, Stefan
et al. [67] uses boilerplates in their tool that can semi-
automatically transforms the natural language
requirements, into semi-formal boilerplates. In [69] author
presented a tool-supported approach for boilerplate to
check conformance because the checking of conformance
manually to boilerplates is very difficult. Apart from this,
boilerplate is one of competent technique to decrease
ambiguity and become more adaptable for automatic
analysis. In addition, it offers a modest and significant way
for improving requirements quality in terms of
inconsistency, ambiguity and by avoiding complex
structure, with the help of Text chunking which provides a
precise and correct basis for checking conformance to
boilerplates [70].

The sixth type (12% [16, 71-75]) solutions is
based on controlled language. Using controlled language
means we are trying to avoid the ambiguities.
Constrained/Controlled Natural Language (CNL) is
becoming popular for writing requirements specification.
CNL reduces ambiguity within natural language while
maintaining their readability & expressiveness.
Combination of constraint lexicons and word sense
disambiguation reduced the ambiguity [71]. Controlled
language, verification and automatic extraction of
requirements models are used to reduce the ambiguity
[72]. There are many tools which are based on controlled
language like Word Sense Disambiguation (WSD), wiki-
based prototype, Attempto Controlled English (ACE) and
NL2OCL.

Other types of solutions are:
The reason to keep these solutions into other

categories is either the number of solutions is less than two
or these are not fit into any of the categories. Stories and
Scenario based requirements can ensure the proper,
unambiguous and verifiable requirements [76]. Agile
requirements gathering is another effective method to
understand the words clearly which lead to the less
ambiguous SRS [77]. In [78] author proposed a string
rewriting technique and overall string amendment rules
that can be practiced in the development to automatically
make new equalities thereby motivating the human for a
smaller amount of decisions which leads to a

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3055

Figure-4. The amount of research to resolve to ambiguity from 2000-2016.

reduction in ambiguity. Figure-4 illustrates a number of
papers (in percentage) in the form of a bar chart, which
represents the mainly six types of techniques to reduce
ambiguity.

9. THE TOOL DIMENSION OF SRS AMBIGUITY

Manually resolving ambiguity from software
requirements is a difficult task, time taking process, and
that’s why it’s quite expensive process [39]. Moreover, as
systems turn out to handle high-quality commercial
applications, their requirements become huge, further
growing scope can lead to ambiguity escalation [79].
Therefore, we need some mechanism to resolve
ambiguities from the requirements documents. There exist
varied approaches, beginning from inspections, controlled
natural language, lexicon-based approach to ontology-
based approach which automatically reduce the ambiguity
from the SRS. In addition, there are a number of different
tools as shown in Table-3. Systemized Requirements
Engineering Environment (SREE) [80], Word sense
disambiguation (WSD) [81], Nocuous Ambiguity
Identification (NAI) [58], Quality analyzer for
requirements specification (QuaARS) [82], ARM [42],
Requirements Engineering Specification Improver (RESI)
[83], and Natural Language to Object Constrained
Language (NL2OCL) [75] developed to detect and resolve
ambiguities.

Parsing a text (using Stanford [84]) is helpful to
detect or disambiguate ambiguous words by looking at the

syntax - however such techniques are useful for lexical
and syntactic ambiguities.

10. ANALYSIS AND DISCUSSIONS

In our survey we found number of papers focused
on detecting and removing ambiguities. There is no such
technique which can avoid the ambiguities. If we can
avoid the ambiguities that can make the overall process of
requirements gathering comparatively easy or less
complex rather than detecting and removing various
ambiguities. There are open questions about what will
happen if the requirements are complex or the size of the
project is large. We went through different types of tools,
algorithms, and models that deal with different type of
ambiguities. To measure the performance of technique
researchers, calculate precision, recall, and F-Measure, we
are not able to find any tool, technique achieving 100%
accuracy. There is no such tool which can handle all type
of ambiguities. As we know the requirements engineer is
responsible for requirements gathering and to write the
bug-free SRS. How to improve the skills of a requirement
engineer to deal with ambiguities? A survey can be
performed to compare industry practices to check the
effectiveness of different techniques and how they manage
ambiguities? A survey/experiment can be performed to
determine the efficiency of different tools. A case study
can

24.0

18.0

16.0 16.0

14.0

12.0

8.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0
P

e
rc

e
n

ta
g

e
 o

f
P

a
p

e
rs

Type of Solutions

Ontologies

Object oriented &

UML

NLP

Inspections

Boiler Plates

Controlled Lang

Other

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3056

Table-3. List of different tools to handle different types of ambiguities.

Tools Technique Used
Ambiguity

Addressed
Reference Remarks

WSD (Word Sense
Disambiguation)

(2000)

NLP and
Ontology

Lexical,
Semantic,
Pragmatic

[81]

Tool is amalgamations of
different approaches, and the
return of knowledge-based
systems via graph-based

methods.

QuaARS (Quality analyzer for
requirement specification)

(2001)
NLP

Lexical,
Syntactic,
Quality

[82]
Automatic tool to evaluate
Natural language written

requirements

Object Oriented Visualization
(2006)

OOP Lexical, Pronoun [29]
Useful to extract Non-

functional requirements.

SREE (Systemized
Requirements Engineering

Environment) (2008)
NLP, Rule Based

Identifying
Plurals, Pronoun

[59, 85]
Used for ambiguous and
incomplete requirements

RESI (Requirements
Engineering Specification

Improver) (2009)
Ontology

Avoid Lexical
Scope

[83]
Automatic UML improver,

Input must be in GrGen
Graph

NAI (Nocuous Ambiguity
Identification)

(2010)
NLP

Nocuous,
Anaphoric and
coordination
Ambiguity

[42, 58]
Effective in the case of
coordination Ambiguity

SBVR Tools (Semantics of
Business Vocabulary and Rules)

(2011)

Controlled
Language

Lexical,
Syntactic

[16] SBVR rule generation

NL2OCL (Natural Language to
Object Constrained Language)

(2012)

Knowledge
Based and
ontology

Homonymy,
Syntactic

[75]
A UML class input is

required

CKCO (Context Knowledge &
Concepts Ontology) (2012)

Knowledge
Based and
ontology

Lexical -
Polysemy
(ambiguity

[63]
Resolving ambiguity based
on Question Answers based

on Context

be launched to compare different tools and techniques on
the common data. More appropriately the complications of
the ambiguity need to be register and rectified using
different techniques, on common SRS, so that
comparisons can be made to determine a best possible
solution. Most important what is the acceptable ambiguity
intensities for requirement documents written in natural
language? Need of the day is generic tools/technique to
eliminate ambiguities or a model to avoid ambiguity.

11. CONCLUSIONS

The software project success fundamentally
depends upon the quality of SRS document. In order to
ensure the quality of SRS, we need to examine various
quality attributes such as ambiguity, accuracy, and
completeness. Here we made survey on one of the quality
attributes i.e. ambiguity because ambiguity is the most
researched problem. The aim of the survey was
consolidation of the large work in the area of SRS
Ambiguity.

The survey presented a systematic explanation of
the basic concepts and their relationships, which define the
different possible components in the field of SRS
ambiguity. There are several benefits of this type of survey
for experts and researchers. Firstly, it helps to provide
organized information, in the form of a vocabulary that

helps in the identification of existing SRS ambiguity
detection models, methods, techniques, and tools. It also
supports to recognize the elements of the suitable
approach for a specific situation via learning various
dimensions. The survey offers the idea of the ambiguity
detection and correction work so far completed and helps
experts and researchers describe the type of new work in
the SRS ambiguity field, which can be pursued. This
investigation also helps to outline a common terminology
that describes the ambiguity in SRS. Secondly, it provides
the summary of the existing state of research performed in
the area and knowledge analysis in the field of SRS
ambiguity.

We know that each survey has its own
limitations, as it can provide only the snapshot of the
current work in progress. Moreover, the survey represents
a snapshot or a small portion of the existing articles that
are available on the SRS ambiguity. Although, in our case,
we examined close to two hundred research articles.
Undoubtedly the survey represents a good portrait of the
SRS ambiguity related work. In this paper, we tried to
categorize the different solutions to resolve ambiguity into
mainly six categories depending on the technique used in
the solutions. Secondly, we tried to find the number of
solutions in each category. We found that ontology is most
frequently used to resolve ambiguity, the reason is, its

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3057

applicability to clearly establish non-functional
requirements, which may be difficult otherwise.

Additional research can be performed specifically
for the quality comparison of the different techniques.
Moreover, we plan to introduce a system which can avoid
ambiguity rather than detecting and rectifying it.

REFRENCES

[1] J. Scheffczyk, U. M. Borghoff, A. Birk, and J.

Siedersleben. 2005. Pragmatic consistency

management in industrial requirements specifications.

in Software Engineering and Formal Methods, 2005.

SEFM 2005. Third IEEE International Conference on.

pp. 272-281.

[2] A. Bucchiarone, S. Gnesi and P. Pierini. 2005. Quality

analysis of NL requirements: an industrial case study.

in 13th IEEE International Conference on

Requirements Engineering (RE'05). pp. 390-394.

[3] F. Belfo. 2012. People, organizational and

technological dimensions of software requirements

specification. Procedia Technology. 5: 310-318.

[4] P. Heck and P. Parviainen. 2008. Experiences on

analysis of requirements quality. in Software

Engineering Advances, 2008. ICSEA'08. The Third

International Conference on. pp. 367-372.

[5] F. J. Shull and V. R. Basili. 1998. Developing

techniques for using software documents: a series of

empirical studies. Research directed by Dept. of

Computer Science. University of Maryland, College

Park, Md.

[6] I. C. S. S. E. S. Committee and I.-S. S. Board. 1998.

IEEE Recommended Practice for Software

Requirements Specifications.

[7] D. C. Gause and G. M. Weinberg. 1989. Exploring

requirements: quality before design: Dorset House

Pub. New York.

[8] M. H. Grenat and M. M. Taher. 2008. On the

translation of structural ambiguity. Al-Satil J, pp. 9-

19.

[9] L. Mich. 2001. Ambiguity identification and

resolution in software development: a linguistic

approach to improving the quality of systems. in

Seventh Workshop on Empirical Studies of Software

Maintenance. p. 7.

[10] U. S. Shah and D. C. Jinwala. 2015. Resolving

ambiguities in natural language software

requirements: a comprehensive survey. ACM

SIGSOFT Software Engineering Notes. 40: 1-7.

[11] K. Petersen, R. Feldt, S. Mujtaba and M. Mattsson.

2008. Systematic mapping studies in software

engineering. in 12th international conference on

evaluation and assessment in software engineering.

[12] [12] P. Brereton, B. A. Kitchenham, D. Budgen, M.

Turner and M. Khalil. 2007. Lessons from applying

the systematic literature review process within the

software engineering domain. Journal of systems and

software. 80: 571-583.

[13] V. Pekar, M. Felderer and R. Breu. 2014.

Improvement Methods for Software Requirement

Specifications: A Mapping Study. in Quality of

Information and Communications Technology

(QUATIC), 2014 9th International Conference on the.

pp. 242-245.

[14] U. Anuar, S. Ahmad and N. A. Emran. 2015. A

simplified systematic literature review: Improving

Software Requirements Specification quality with

boilerplates. in 2015 9th Malaysian Software

Engineering Conference (MySEC). pp. 99-105.

[15] N. Kiyavitskaya, N. Zeni, L. Mich, and D. M. Berry.

2008. Requirements for tools for ambiguity

identification and measurement in natural language

requirements specifications. Requirements

engineering. 13: 207-239.

[16] A. Umber and I. S. Bajwa. 2011. Minimizing

ambiguity in natural language software requirements

specification. in Digital Information Management

(ICDIM), 2011 Sixth International Conference on. pp.

102-107.

[17] G. Kotonya and I. Sommerville. 1998. Requirements

engineering: processes and techniques: Wiley

Publishing.

[18] K. Pohl. 2010. Requirements engineering:

fundamentals, principles, and techniques: Springer

Publishing Company, Incorporated.

[19] E. Kabaale and G. M. Kituyi. 2015. A theoretical

framework for requirements engineering and process

improvement in small and medium software

companies. Business Process Management Journal.

21: 80-99.

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3058

[20] B. Nuseibeh and S. Easterbrook. 2000. Requirements

engineering: a roadmap. in Proceedings of the

Conference on the Future of Software Engineering.

pp. 35-46.

[21] B. H. Cheng and J. M. Atlee. 2007. Research

directions in requirements engineering. in 2007 Future

of Software Engineering. pp. 285-303.

[22] L. Jiang, A. Eberlein and B. H. Far. 2005. Combining

requirements engineering techniques-Theory and case

study. in Engineering of Computer-Based Systems,

2005. ECBS'05. 12th IEEE International Conference

and Workshops on the. pp. 105-112.

[23] M. Attarha and N. Modiri. 2011. Focusing on the

importance and the role of requirement engineering.

in Interaction Sciences (ICIS), 2011 4th International

Conference on. pp. 181-184.

[24] O. Daramola, G. Sindre and T. Stalhane. 2012.

Pattern-based security requirements specification

using ontologies and boilerplates. in Requirements

Patterns (RePa), 2012 IEEE Second International

Workshop on. pp. 54-59.

[25] L. Macaulay. 1996. Requirements for requirements

engineering techniques. in Requirements Engineering,

1996., Proceedings of the Second International

Conference on. pp. 157-164.

[26] E. Kamsties and B. Peach. 2000. Taming ambiguity in

natural language requirements. in Proceedings of the

Thirteenth International Conference on Software and

Systems Engineering and Applications.

[27] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer.

2015. Automated checking of conformance to

requirements templates using natural language

processing. IEEE transactions on Software

Engineering. 41: 944-968.

[28] H. Hu, L. Zhang and C. Ye. 2010. Semantic-based

requirements analysis and verification. in Electronics

and Information Engineering (ICEIE), 2010

International Conference On. pp. V1-241-V1-246.

[29] G. A. Mala and G. Uma. 2006. Object oriented

visualization of natural language requirement

specification and NFR preference elicitation. IJCSNS.

6: 91.

[30] A. Rashwan. 2012. Semantic analysis of functional

and non-functional requirements in software

requirements specifications. in Canadian Conference

on Artificial Intelligence. pp. 388-391.

[31] J. Polpinij. 2009. An ontology-based text processing

approach for simplifying ambiguity of requirement

specifications. in Services Computing Conference,

2009. APSCC 2009. IEEE Asia-Pacific. pp. 219-226.

[32] S. Farfeleder, T. Moser, A. Krall, T. Stålhane, I.

Omoronyia and H. Zojer. 2011. Ontology-driven

guidance for requirements elicitation. in Extended

Semantic Web Conference. pp. 212-226.

[33] C. Unger and P. Cimiano. 2011. Representing and

resolving ambiguities in ontology-based question

answering. in Proceedings of the TextInfer 2011

Workshop on Textual Entailment. pp. 40-49.

[34] I. Omoronyia, G. Sindre, T. Stålhane, S. Biffl, T.

Moser and W. Sunindyo. 2010. A domain ontology

building process for guiding requirements elicitation.

in International working conference on requirements

engineering: Foundation for software quality. pp. 188-

202.

[35] J. Hassell, B. Aleman-Meza and I. B. Arpinar. 2006.

Ontology-driven automatic entity disambiguation in

unstructured text. in International Semantic Web

Conference. pp. 44-57.

[36] J. Gracia, V. Lopez, M. d'Aquin, M. Sabou, E. Motta

and E. Mena. 2007. Solving semantic ambiguity to

improve semantic web based ontology matching," in

Proceedings of the 2nd International Conference on

Ontology Matching. 304: 1-12.

[37] M. Bhatia, A. Kumar and R. Beniwal. 2016. Ontology

based framework for detecting ambiguities in

software requirements specification. in Computing for

Sustainable Global Development (INDIACom), 2016

3rd International Conference on. pp. 3572-3575.

[38] A. Rashwan, O. Ormandjieva and R. Witte. 2013.

Ontology-based classification of non-functional

requirements in software specifications: a new corpus

and svm-based classifier. in Computer Software and

Applications Conference (COMPSAC), 2013 IEEE

37th Annual. pp. 381-386.

[39] A. Handbook. 2003. From Contract Drafting to

Software Specification: Linguistic Sources of

Ambiguity.

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3059

[40] B. Gleich, O. Creighton and L. Kof. 2010. Ambiguity

detection: Towards a tool explaining ambiguity

sources. in International Working Conference on

Requirements Engineering: Foundation for Software

Quality. pp. 218-232.

[41] A. K. Massey, R. L. Rutledge, A. I. Antón, and P. P.

Swire. 2014. Identifying and classifying ambiguity for

regulatory requirements. in Requirements Engineering

Conference (RE), 2014 IEEE 22nd International. pp.

83-92.

[42] A. Willis, F. Chantree and A. De Roeck. 2008.

Automatic identification of nocuous ambiguity.

Research on Language and Computation. 6: 355-374.

[43] H. Yang, A. De Roeck, V. Gervasi, A. Willis and B.

Nuseibeh. 2011. Analysing anaphoric ambiguity in

natural language requirements. Requirements

engineering. 16: 163.

[44] F. Meziane, N. Athanasakis and S. Ananiadou. 2008.

Generating Natural Language specifications from

UML class diagrams. Requirements Engineering. 13:

1-18.

[45] D. Popescu, S. Rugaber, N. Medvidovic and D. M.

Berry. 2008. Improving the quality of requirements

specifications via automatically created object-

oriented models. Innovations for requirements

engineering. Vol. 71.

[46] M. Kamalrudin, J. Hosking, and J. Grundy. 2011.

Improving requirements quality using essential use

case interaction patterns. in Proceedings of the 33rd

International Conference on Software Engineering.

pp. 531-540.

[47] T. Yue, L. C. Briand and Y. Labiche. 2013.

Facilitating the transition from use case models to

analysis models: Approach and experiments. ACM

Transactions on Software Engineering and

Methodology (TOSEM). 22: 5.

[48] I. Sayar and M. T. Bhiri. 2014. From an abstract

specification in event-b toward an UML/OCL model.

in Proceedings of the 2nd FME Workshop on Formal

Methods in Software Engineering. pp. 17-23.

[49] S. Tiwari and A. Gupta. 2014. Does increasing

formalism in the use case template help? in

Proceedings of the 7th India Software Engineering

Conference. p. 6.

[50] R. A. Ahmad. 2016. Interface-Driven Software

Requirements Analysis. European Scientific Journal,

ESJ. Vol. 12.

[51] M. A. Miranda, M. G. Ribeiro, R. D. Tavares, T. H.

Dias, H. T. Marques-Neto and M. A. Song. 2016. An

Approach for Generating Class and Sequence Models.

in Proceedings of the International Conference on

Software Engineering Research and Practice (SERP).

p. 253.

[52] D. Aceituna, G. Walia, H. Do and S.-W. Lee. 2014.

Model-based requirements verification method:

Conclusions from two controlled experiments.

Information and Software Technology. 56: 321-334.

[53] O. Ormandjieva, I. Hussain, and L. Kosseim. 2007.

Toward a text classification system for the quality

assessment of software requirements written in natural

language. in Fourth international workshop on

Software quality assurance: in conjunction with the

6th ESEC/FSE joint meeting. pp. 39-45.

[54] C. Denger, D. M. Berry and E. Kamsties. 2003.

Higher quality requirements specifications through

natural language patterns. in Software: Science,

Technology and Engineering, 2003. SwSTE'03.

Proceedings. IEEE International Conference on. pp.

80-90.

[55] S. F. Tjong, N. Hallam and M. Hartley. 2006.

Improving the quality of natural language

requirements specifications through natural language

requirements patterns. in Computer and Information

Technology, 2006. CIT'06. The Sixth IEEE

International Conference on. pp. 199-199.

[56] C. Huertas and R. Juárez-Ramírez. 2012. NLARE, a

natural language processing tool for automatic

requirements evaluation. in Proceedings of the CUBE

International Information Technology Conference. pp.

371-378.

[57] D. de Almeida Ferreira and A. R. da Silva. 2013.

RSL-PL: A linguistic pattern language for

documenting software requirements. in Requirements

Patterns (RePa), 2013 IEEE Third International

Workshop on. pp. 17-24.

[58] H. Yang, A. Willis, A. De Roeck and B. Nuseibeh.

2010. Automatic detection of nocuous coordination

ambiguities in natural language requirements. in

Proceedings of the IEEE/ACM international

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3060

conference on Automated software engineering. pp.

53-62.

[59] S. F. Tjong, M. Hartley and M. B. Daniel. 2008.

Avoiding Ambiguities in Requirements

Specifications.

[60] E. Kamsties, D. M. Berry and B. Paech. 2001.

Detecting ambiguities in requirements documents

using inspections. in Proceedings of the first

workshop on inspection in software engineering

(WISE’01). pp. 68-80.

[61] T. Thelin, P. Runeson and C. Wohlin. 2003. An

experimental comparison of usage-based and

checklist-based reading. IEEE Transactions on

Software Engineering. 29: 687-704.

[62] T. Berling and P. Runeson. 2003. Evaluation of a

perspective based review method applied in an

industrial setting. IEE Proceedings-Software. 150:

177-184.

[63] O. Al-Harbi, S. Jusoh and N. Norwawi. 2012.

Handling Ambiguity Problems of Natural Language

Interface for Question Answering Answering

Answering.

[64] F. Salger, G. Engels and A. Hofmann. 2009.

Inspection effectiveness for different quality attributes

of software requirement specifications: An industrial

case study. in Software Quality, 2009. WOSQ'09.

ICSE Workshop on. pp. 15-21.

[65] S. Saito, M. Takeuchi, M. Hiraoka, T. Kitani, and M.

Aoyama. 2013. Requirements clinic: Third party

inspection methodology and practice for improving

the quality of software requirements specifications. in

2013 21st IEEE International Requirements

Engineering Conference (RE). pp. 290-295.

[66] M. Fagan. 2002. Reviews and inspections. Software

Pioneers–Contributions to Software Engineering. pp.

562-573.

[67] S. Farfeleder, T. Moser, A. Krall, T. Stålhane, H.

Zojer and C. Panis. 2011. DODT: Increasing

requirements formalism using domain ontologies for

improved embedded systems development. in Design

and Diagnostics of Electronic Circuits & Systems

(DDECS), 2011 IEEE 14th International Symposium

on. pp. 271-274.

[68] A. Mavin, P. Wilkinson, A. Harwood and M. Novak.

2009. Easy approach to requirements syntax (EARS),"

in Requirements Engineering Conference, 2009.

RE'09. 17th IEEE International. pp. 317-322.

[69] C. Arora, M. Sabetzadeh, L. Briand, F. Zimmer and

R. Gnaga. 2013. Automatic checking of conformance

to requirement boilerplates via text chunking: An

industrial case study. in Empirical Software

Engineering and Measurement, 2013 ACM/IEEE

International Symposium on. pp. 35-44.

[70] C. Arora, M. Sabetzadeh, L. C. Briand and F.

Zimmer. 2014. Requirement boilerplates: Transition

from manually-enforced to automatically-verifiable

natural language patterns. in Requirements Patterns

(RePa), 2014 IEEE 4th International Workshop on.

pp. 1-8.

[71] S. Boyd, D. Zowghi and V. Gervasi. 2007. Optimal-

constraint lexicons for requirements specifications. in

International Working Conference on Requirements

Engineering: Foundation for Software Quality. pp.

203-217.

[72] D. de Almeida Ferreira and A. R. da Silva. 2009. A

controlled natural language approach for integrating

requirements and model-driven engineering. in

Software Engineering Advances, 2009. ICSEA'09.

Fourth International Conference on. pp. 518-523.

[73] N. E. Fuchs, K. Kaljurand and T. Kuhn. 2008.

Attempto controlled english for knowledge

representation. in Reasoning Web, ed: Springer. pp.

104-124.

[74] A. Weissman, M. Petrov and S. K. Gupta. 2011. A

computational framework for authoring and searching

product design specifications. Advanced Engineering

Informatics. 25: 516-534.

[75] I. S. Bajwa, M. Lee and B. Bordbar. 2012. Resolving

syntactic ambiguities in natural language specification

of constraints. in International Conference on

Intelligent Text Processing and Computational

Linguistics. pp. 178-187.

[76] D. Firesmith. 2004. Generating Complete,

Unambiguous, and Verifiable Requirements from

Stories, Scenarios, and Use Cases. Journal of Object

Technology. 3: 27-40.

[77] D. Gordon, D. Lawless and C. Gordon. 2014. Speak

Clearly, If You Speak at All; Carve Every Word

 VOL. 14, NO. 17, SEPTEMBER 2019 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 3061

before You Let It Fall: Problems of Ambiguous

Terminology in eLearning System Development. Irish

Journal of Academic Practice. 3: 9.

[78] R. Eschbach, L. Lin and J. H. Poore. 2013. Applying

string-rewriting to sequence-based specification.

Formal Methods in System Design. 43: 414-449.

[79] P. Zave. 1997. Classification of research efforts in

requirements engineering. ACM Computing Surveys

(CSUR). 29: 315-321.

[80] S. F. Tjong. 2008. Avoiding ambiguity in

requirements specifications. Citeseer.

[81] N. Ide and J. Véronis. 1998. Introduction to the

special issue on word sense disambiguation: the state

of the art. Computational linguistics. 24: 2-40.

[82] F. Fabbrini, M. Fusani, S. Gnesi and G. Lami. 2001.

The linguistic approach to the natural language

requirements quality: benefit of the use of an

automatic tool. in Software Engineering Workshop,

2001. Proceedings. 26th Annual NASA Goddard. pp.

97-105.

[83] S. J. Korner and T. Brumm. 2009. Resi-a natural

language specification improver. in Semantic

Computing, 2009. ICSC'09. IEEE International

Conference on. pp. 1-8.

[84] D. M. Cer, M.-C. De Marneffe, D. Jurafsky and C. D.

Manning 2010. Parsing to Stanford Dependencies:

Trade-offs between Speed and Accuracy. in LREC.

[85] S. F. Tjong and D. M. Berry. 2013. The design of

SREE-a prototype potential ambiguity finder for

requirements specifications and lessons learned. in

International Working Conference on Requirements

Engineering: Foundation for Software Quality. pp. 80-

95.

