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ABSTRACT 

In this paper, Gene Expression Programming (GEP) models are developed to select the appropriate ground 
improvement technique. Ground improvement is usually used to increase the soil bearing capacity, reduce potential 
settlement, and mitigate liquefaction. The data used to build the GEP models was collected from 83 ground improvement 
projects in the UAE. Data collected from each project includes the following parameter: fine content (%), groundwater 
level (m), depth of improvement (m), distance to close by structures (m), and the used ground improvement method. This 
paper investigates five ground improvement techniques that are dynamic compaction (DC), dynamic replacement (DR), 
vibro compaction (VC), rapid impact compaction (RIC), and stone columns (SC). One GEP model is developed for each 
technique, the user will be able to input the above-mentioned parameter in each model and select the technique with higher 
accuracy. The developed GEP models have R2 values, for the training dataset, ranging from 0.72 to 0.95. The results 
showed that GEP could select the appropriate ground improvement technique with acceptable accuracy. 
 
Keywords: GEP, ground improvement, DC, DR, VC, RIC, SC, expression tree. 

 
1. INTRODUCTION 

Ground improvement can be defined as “the 
process of enhancing the quality of soil” [1]. There are a 
variety of techniques available to improve ground 
conditions such as stone columns (SC), dynamic 
compaction (DC), short pile, rapid impact compaction 
(RIC), vibro compaction (VC), and dynamic replacement 
(DR). In essence, ground improvement is needed 
whenever ground conditions are poor. It enhances soil 
layers by different means such as mechanical and 
chemical methods [1]. 

In this regard, this paper covers the five most 
common methods for ground improvement: (1) Dynamic 
Compactions (DC); (2) Rapid Impact Compaction (RIC); 
(3) Vibro Compaction (VC); (4) Dynamic Replacement 
(DR); and (5) Stone Columns (SC). 

The following sub-sections provide discussion on 
each of the five methods: 
 
A. Stone Columns (SC) 

Prior to its widespread application and 
familiarity, the early 1960s saw the first application of 
stone column in the European countries [2]. The stone 
columns are constructed by two methods, namely: 
replacement, and displacement. Whenever the level of 
groundwater is shallow, and the soil is firm, the 
displacement method is preferred [3]. In this method, soil 
particles are displaced horizontally by a vibrating probe 
that works on compressed air. Baumann and Bauer in 
1974 added that SC could work by compacting either sand 
or gravel, then injected into the clay foundation using the 
displacement method [4]. The replacement method applies 
a uniform compressive force on soil particles using holes 
that are built based on a combination of vibration and 
water jet. 

Once the SC applies the load, deformation of 
piles will transform loads and stresses to the upper layers 

of soil strata by bulging the piles into underneath soil 
layers [3]. 

The SC technique will ultimately increase the 
density of the soil (unit weight) as a result of consolidation 
from vertical piles of SC. Moreover, while consolidation 
takes place, paths for drainage are created allowing for 
more stability of soil layers by preventing liquefaction and 
pore pressure [1]. In line with this, Han and Ye noticed 
from field observations that SC can speed up the 
consolidation of soft clays [5]. Later in 2001, Han and Ye 
found that over time, SC will gain more stresses while 
these stresses on soil decrease. After consolidation, the 
stable distribution of stresses is reached [6]. 

Improvement of soil from the SC technique is 
attributed to the high stiffness of SC. Thus, it can be said 
that stiffness and load distribution between column and 
soil is crucial to the SC method. Typically, SC is 
appropriate for structures since they reduce settlements, 
increase bearing capacity, enhance drainage and stiffness. 
However, these advantages are not fully utilized especially 
when SC is used in sensitive clays. In this case, SC poses 
the risk of bed settlement due to the lack of lateral support. 
Additionally, particles of clay can decrease radial drainage 
[2]. 
 
B. Rapid Impact Compaction (RIC) 

When little silt and clay particles exist, which is 
the case of sand, the RIC is preferred. As the name 
implies, the RIC method depends on a dynamic 
compaction device to perform compaction of soil. When it 
comes to soil compaction, generally, there are deep 
compaction and surface compaction techniques. The RIC 
technique comes between deep and surface techniques [7]. 

In this technique, the ground is compacted using 
a hammer that weighs 9 tons. The hammer is released 
from a height ranging from 0.3 m to 1.2 m. The hammer is 
dropped on a steel paten foot with a diameter of 1.5 m; 
resulting in significant energy ranging from 26,486 to 105, 
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948 joules per drop. It can strike 40-60 blows per minute. 
The RIC can increase the density of loose soils down to an 
average depth of 5 m. The compaction of the lower levels 
is done first followed by the upper levels. Blowing stops 
when the total depth of the impact foot, defined as a 
specified number of blows, and the final settlement of the 
impact foot have been reached.  

Falkner and others in 2010 had theoretically 
investigated the RIC using computer simulations to 
examine the delivered energy into the soil and the 
propagation of waves [8]. Further examinations were 
carried by experimental test to verify the theoretical 
results, resulting in verification of the initial theoretical 
investigations. The RIC method has been applied in many 
cases, for instance, Simpsons and colleagues in 2008 used 
the RIC method in a reclaimed site in California, USA [9]. 
Further discussion on RIC method can be found in [10]. 
 
C. Vibro Compaction (VC) 

The VC technique is very effective when 
enhancing the density of granular soils with appropriate 
gradation that has limited fine content (less than 5%). The 
required depth is penetrated by a vibroflot which is 
assisted by water jetting. Once the design depth is reached, 
the water jetting is gradually removed by stopping at 
uniform intervals. This ensures suitable levels of 
compaction are attained at each depth. In the VC 
technique, soil particles are densified by the radial 
vibrations. The soil is then characterized as having greater 
density and enhanced mechanical properties, such as shear 
strength, stiffness, and bearing capacity [10]. 
 
D. Dynamic Compaction (DC) 

Menard and Broise introduced this method in 
1975 [11]. The simple application, value, and significant 
reachable depth have made the DC method a popular 
ground improvement technique. This method is applicable 
to any type of soil but can be more beneficial when used in 
sandy and granular soils. However, attention is needed 
when used on saturated clay and fine-grained soils. 

The DC technique is applied by impacting the 
ground frequently via a large pounder by free-fall 
dropping onto grid points from a height of 10-40 m. The 
pounder weighs 6-40 tons to increase the compaction 
effort and the bearing capacity. As Lutenegger noted, this 
will decrease the collapsibility of losses when improving a 
specified depth [12]. 

In spite of its simple application, challenges still 
exist. For instance, the required depth to be improved is 
sometimes hard to assess. In this case, parameters are 
developed to evaluate the necessary depth by carrying out 
an experimental study to identify the operational 
parameters. In fact, such experimental assessments will 
reduce the cost of applying DC. However, the challenge 
here is attributed to the fact that many parameters can vary 
significantly and in some cases will lead to no results [13, 
14, 15].   

The civil engineering projects are familiarized 
with the DC technique. Such projects include highways, 
airports, the coal industry, and structural buildings [16]. 

For instance, Bo and others in 2009 examined DC at the 
Changi East Reclamation in Singapore to enhance a sandy 
fill [17]. Data from the site were extracted to evaluate the 
efficiency of densification and the impact of different 
factors on the success of DC treatment.  
 
E. Dynamic Replacement (DR) 

The DR technique was first presented by Menard 
and Broise in 1975 to enhance the properties of fine grain 
soils through dynamic driving of granulated attachments 
into the soil [2]. This method is an extension to the 
Dynamic Compaction (DC) in that the energy is applied to 
deliver the granular material, which is the fill material, 
down into the compressible soils. This will result in a 
reinforced column, made of soil, called pillar, with a 
diameter of 2-2.5 m and can be reached down to a depth of 
7 m. Such a pillar can be formed by releasing a 15-25-ton 
weight from 10-25 m height. In order to increase the 
penetration and stamping of the weight, the DR uses larger 
loads than DC. 

The replacement ratio from this method can be up 
to 25% with each pillar having a load carrying capacity of 
150 tons. This numerous weight can be used to improve 
the nearby and underlying layers by transmitting the 
energy generated from this weight. Tarawneh and others in 
2017 stated that the DR is superior over the DC and SC 
techniques since it can “produce large diameter dynamic 
replacement inclusions with high internal shear resistance” 
[18]. 

The advantages of DR can be summarized as 
follow [17]: 
 
a) Improving the bearing capacity of the soil. 

b) Applicability for a variety of soil types. 

c) Increase the consolidation rate of fine materials. 

d) Significant reduction of settlements especially for 

post-construction. 

e) Increasing productivity rates. 

f) Using a variety of materials to construct the pillar, 

such as sand, gravel, concrete ruins, and dredged 

materials.  

2. GENETIC PROGRAMMING 

Genetic programming (GP) is an optimization 
method generating programs with an aim of solving 
problems by mimicking the biological growth of living 
creatures [19]. Friedberg conducted the earliest 
applications of GP in 1958 [20]. Later in 1985; genetic 
algorithms (GAs) and tree-like structures were used to 
evolve and develop solution programs [21].  

Overtime; GP and GA have shown capabilities in 
solving and developing computer programs. With a few 
modifications, GP can make use of GA’s operators. The 
GA solution is presented in the form of strings of 
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numbers; while the GP produces tree structures as a 
solution outcome [22]. To evaluate the outcome of each 
GP; a fitness function is examined. In other words, the 
objective function that GP optimizes is the fitness 
function. 
 
3. GENE EXPRESSION PROGRAMMING (GEP) 

In 2001, Ferreria combined genetic algorithms 
(GA) and genetic programming (GP) to construct a 
problem-solving technique called Gene Expression 
Program (GEP) [23]. This technique makes use of a 
natural phenotype/genotype system. The GA facilitates the 
development of linear programs (individual or 
chromosomes) of specified length and expression trees 
(ET) as extracted from GP. In GEP, some terms are 
commonly used during the development and interpretation 
of models such as; chromosomes, genes, and ET. A 
chromosome in GEP is made of genes. Chromosomes are 
exposed to genetic changes allowing GEP progression. It 
should be noted that genes are exposed to operations such 
as mutation and recombination to make proper changes on 
them. Mutation means that any component of the gene’s 
head or tail is randomly replaced by an element from the 
function or terminal set.  

When two chromosomes are combined and 
fragmented at the same point, then recombination takes 
place. Moreover, the combination-fragmentation process 
aims to change the chromosomes’ components to the 
merging point, downward.  

A gene is composed of head and tail. The head is 
in charge of holding functions (e.g., +, -), while the tail is 
made up of terminals. Terminals in the GEP language 
describes the input variables (represented as d1, d2, d3…). 

Therefore, a standard gene in GEP is noted as follows: 
+.+.-../.dl./.d1.d2.d3.d4.d1.d2, where “.” is splitting 
between symbols; and d0, d1, and d2 are variables 
recognized as terminals.  

The gene head is expressed by functions and 
italic symbols, whereas; the bold, black symbols describe 
the tail. The expression just provided above is known as 
K-expression or Karva notation (Ferreira, 2001).  

The construction of the GEP model is explained 
in Figure-1, as adopted from [7]. The development starts 
with building the population of computer programs based 
on a random selection from a predefined set of functions 
and terminals. Elementary mathematical operators such as 
(+, -, x, /) are included in functions, whereas; terminal 
include constants (logical and numerical), or variables. 
When implementing a program (chromosome), its checked 
in terms of fitness. This is done by the fitness function 
which is responsible for measuring the competency of a 
chromosome with the population. After that, chromosomes 
are subject to improvement based on the fitness measure. 
In other words, chromosomes with high levels of fitness 
are given higher chances of being reselected, and those 
with low fitness levels will have a low chance of 
reselection. 

Mutation and recombination, as described earlier, 
are then applied to improve the selected programs. This 
implies genetic modifications for the selected programs. A 
new set of chromosomes are then produced with new 
features and characteristics to remove the existing 
population. The new population of chromosomes will go 
through the same process until stopping criteria, which has 
already been defined, is met.  
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Figure-1. GEP Model Progress Flow Chart (Tarawneh, 2018). 
 

In order to graphically represent the interactions 
between the gene’s constituents, a tree is used to represent 
such interactions. This tress is called the Expression Tree 
(ET) and serves as a solution map. In other words, the 
output of the GEP model is expressed by different means 
such as graphical, mathematical, and programming 
languages (C++). For instance, Figure-2 shows an ET for a 
GEP model output. This ET can also be converted to the 
k-expression, as stated earlier.  
 

 
 

Figure-2. ET for typical GEP model output. 
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The karva notation for the ET displayed in 
Figure-2 can be expressed as shown in equation (1) below: 
 
ET= A x C + log ((B x 1) + (D/1))                                (1) 
 

The ET is translated into Karva notation by 
reading the ET from left to right; starting by roots, 
reporting nodes located at the same level, and reaching the 
deepest level.  

Therefore, this paper will develop a GEP, with a 
process similar to the one described above, to select the 
most suitable ground improvement method (amongst the 
five methods described previously). 
 
4. DATA AND MODEL DEVELOPMENT 

The data used to build the GEP model was 
collected from 83 ground improvement projects in the 
UAE. Data collected from each project includes fine 
content (%), groundwater level (m), depth of improvement 
(m), distance to close by structures (m), and the used 
ground improvement method. This paper investigates five 
ground improvement methods, as follows: (1) RIC, (2) 
DC, (3) VC, (4) DR, and (5) SC. 

In order to investigate the relationship between 
the dependent (ground improvement method) and 

independent variables (fine content, groundwater level, 
depth of improvement, and distance to close by 
structures), a regression analysis was developed. In 
essence, the model is prepared to predict the most likely 
ground improvement method that is suitable for a given set 
of independent variables. To use the model, ground 
improvement method is treated as the dependent variable. 
In other words, if someone is considering to improve the 
ground conditions, and he/she has five options, the model 
predicts which method is the most likely to be chosen for 
ground improvement based on the independent variables. 

The dependent variable, in nature, is discrete. 
Therefore, and given the aim of this paper, this research 
develops a multinomial logistic regression model to 
predict the ground improvement method. The multinomial 
logistic regression is used when a discrete outcome is 
foreseen. There are several advantages of using a 
multinomial model in that it can establish the relationships 
between the set of independent variables and the 
dependent variable when the dependent variable has more 
than two outcomes. In GEP language, this model is called 
the multiclass classification model. 

Table-1 describes the statistics of the variables 
used to develop the model. 

 
Table-1. Descriptive Statistics of Model Variables. 

 

Model Variables Mean 
Standard 

Deviation 
Min. Max. Range 

Fine content 27.31% 21.72% 3 9 6 

The depth of Improvement (m) 7.35 4.03 1 19 18 

Ground Water Level (m) 4.43 2.47 0 0 0 

Distance to Close by Structure 
(m) 

36.51 34.76 4 80 76 

 
Additionally, Figure-3 depicts the number of 

observations recorded for each ground improvement 
method (the dependent variable). The dataset was 
partitioned into two sets to ensure the robustness of the 
model that are training and validation. The training dataset 
is used to fine-tune the model to develop the GP that 
builds the relationship between the independent and 
dependent variables. 79.31% of data (65 data points) were 
used to train the model, while the remaining data is used to 
validate and test the model. The ratio of such splitting 
between training and validation follows the guidelines 
suggested by Ferreira [23].  
  

 

Figure-3. Frequency of Ground Improvement Methods. 
 

In other words, training takes place first, followed 
by validation checks on the model. It should be noted that 
the training set includes minimum and maximum data 
points since artificial intelligence executes better in 
interpolation than extrapolation [24]. 

In order to facilitate the evolution of GEP 
development, some parameters needed to be set. Table-2 
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shows parameter settings for the GEP model. The 
parameter settings were established based on the previous 
study by Ferreira [23] and supported by a later study by 
Alvai and others [19]. 
 

Table-2. Parameter Settings for the GEP Model. 
 

Parameter Settings 

Number of Chromosomes 30 

Number of Genes 3 

Head Size 8 

Linking Function Addition 

Function Set +, -, x, /, power, exp, √ 

Complexity Increase 

Generations without 
Change 

2000 

Number of Tries 3 

Max. complexity (Genes) 5 

Genetic Operators 

Mutation Rate 0.00138 

Inversion Rate 0.00546 

 
Before training the model, variables must have 

low interdependency. The correlation between variables 
must be investigated to avoid poor performance of the 
GEP model. Positive/negative correlation coefficients with 
high values at both ends will result in misinterpretation of 
the impact of independent variables on the dependent 
variable. All possible pairs were examined in their 
correlation using R-value. This was evaluated using the 
built-in functions of Microsoft Excel. The R-value for all 
pairs of variables has shown very low correlation. 
Therefore, all variables have been utilized for model 
training and validation. Most pairs show R-values less 
than 0.3. Smith stated, if R-value is greater than 0.8; then a 
strong correlation exists [25]. 

GEP model is developed based on several runs to 
optimize the modeling parameters. This will secure the 
robustness and generalization of the model. Parameters of 
interest, those to be optimized, include the number of 
chromosomes, functional set, structure of chromosomes, 
fitness function, and linking function [23]. 

In order to derive the optimal parameters; 
subsequent runs were deployed. The program is run 
multiple times; during each run, the value of one 
parameter is changed while the remaining parameters are 
fixed. The model is set to stop whenever the maximum 
fitness is reached; implying no more significant 
improvement to the model. Table-3 shows the optimal 
parameters used to develop the model.  
 
Table-3. Optimal Parameters Used to Develop the Model. 

 

Chromosomes 30 

Genes 3 

Head Size 8 

Tail Size 9 

Gene Size 26 

Linking Function Addition 

 

5. RESULTS AND DISCUSSIONS 

For each case of the improvement methods; a 
multiclass classification is built. The GEP was deployed 
using Gene Xpro Tools 5.0 program. Each ground 
improvement method is treated by a separate logistic 
model that is based on a binary dependent variable. 
Therefore, in accordance with the dependent variable, 5 
different models are developed. In this regard, the 
algorithm is trained for each class (ground improvement 
method). Therefore; for five different ground improvement 
methods; five models are presented.  

As stated earlier, the GEP model is presented in 
the form of expression trees as depicted in Figure-2. Since 
the model predicts one method among the five available 
methods, the GEP model results are expressed in five 
different ETs. Under each model’s ET three sub-ETs are 
developed. In fact, this number of sub-ETs is in 
accordance with parameter settings in Table-2. In other 
words, since the model has three genes, this implies three 
different sub-ETs that are linked by addition function. 
Additionally, ETs can be converted into K-expression 
(Karva notation). Figure-4 presents the results of the GEP 
model. The performance of all five models is evaluated in 
Table-4 for both training and testing observations. The 
evaluation is based on accuracy and R-square. For more 
details on the resulting ETs for the current model, the 
Karva notation tables are presented in the appendix.  
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(a) VC 

 
(b) RIC 
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(c) SC 

 
(d) DR 

 
(e) DC 

 

 

Figure-4. The results of the GEP model. 
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Table-4. Performance Parameters of GEP Models. 
 

Model 
Training Validation 

Accuracy R
2
 Accuracy R

2 

VC 100% 0.95 94.4% 0.83 

RIC 100% 0.79 77.8% 0.40 

SC 100% 0.98 83.3% 0.43 

DR 100% 0.88 83.3% 0.26 

DC 100% 0.72 88.9% 0.20 

 
Each of the five models obtained for a specific 

class (ground improvement method) functions individually 
and forecasts whether a specific observation refers to a 
specific ground improvement method. Therefore, it is 
necessary to adopt a probabilistic model to identify the 
most likely ground improvement method will be utilized 
given a set of observations. In this regard, logistic 
regression serves to assign probabilities to the model 
outcomes and eventually presents a multi-class 
classification model. After the probabilities of each class 
are defined, it is now possible to categorize the likelihoods 
of each observation. The logistic regression forecasts a 
logit transformation of the likelihood of a dichotomous 
variable on a linear basis. To elaborate more, assume that 
for a specific class: 
  
Y= 0: not being chosen; 1: being chosen. 
 

In this case, Y is a binary outcome. Therefore, if 
p(Y=1|X) is the probability of a specific class Y to be 
chosen given an array of independent variables X, the 
logistic regression of Y is described in equation (2):  
 

Logit (p(Y=1|X)) = log  
𝑃(Y=1|X)1−𝑃(Y=1|X) = α+βX.                    (2)  

 
(α: slope; β: intercept)    
 

The term 
𝑃(Y=1|X)1−𝑃(Y=1|X) is the odds ratio between the 

probability of a “Y” ground improvement method and the 
probability of “Y” not being selected. Solving Eq. (2) for 
p; the probabilities will be evaluated based on equation 
(3): 
 𝑝 =  11+𝑒−(α+βX)                                                              (3) 

 
To utilize Eq. (3) for the current problem; the 

generated GEP models will be replaced by X in Eq. (3). 
 
6. SUMMARY AND CONCLUSIONS 

This research offers an innovative approach for 
predicting the most suitable ground improvement 
technique using GEP. The data used to build the GEP 
models was collected from 83 ground improvement 
projects in the UAE. Data collected from each project 
includes the following parameters: fine content (%), 

groundwater level (m), depth of improvement (m), 
distance to close by structures (m), and the used ground 
improvement method. The models have been trained and 
then tested to make proper predictions. 

One GEP model is developed for each technique; 
the user will be able to input the parameters as mentioned 
above in each model and select the technique with higher 
accuracy. 

79.31% of data (65 data points) were used to train 
the model, while the remaining data is used to validate and 
test the model. The developed GEP models have an 
accuracy of 100% for the training dataset. The accuracy is 
ranging from 88.9% to 94.4% for the validation dataset. 

R2 values are ranging from 0.72 to 0.95 for the 
training dataset and 0.26 to 0.83 for the validation dataset. 
Therefore, model results show that GEP can perform 
accurately.  

Results can be presented in different forms such 
as ETs, K-expression, and Matlab code.  

In conclusion, GEP can serve as a proper method 
to solve engineering problems with complex mechanisms, 
such as the selection of ground improvement technique. 
The developed GEP model can be employed for selecting 
the appropriate ground improvement technique. 
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APPENDIX A 
Table-1. A: Model Output in Karva Notation. 

 

State (Ground 

Improvement 

Method) 

KARVA NOTATION  

VC Gene 1 
c0 = -6.71404412123277       
c1 = 7.86288033692435 
c2 = 6.71636312788796 
c3 = 5.23798333689383 
c4 = -22.8934539914727 
c5 = -5.47227393414106 
c6 = -1.5792488861568 
c7 = -7.84059663686026 
c8 = -9.08333299863064 
c9 = 6.52577288125248 
X2.+.LT2A.GOE2A.NOT.*.LT2C.Avg2.d0.c0.c2.d1.d0.c4.d3.d1.d3 
+  
GOE2C.*.LT2C.LT2E.LT2C.LT2E.+.Ln.d1.d0.d2.d1.d1.d3.d3.d3.d3 
+  
X2.GOE2G.GOE2G.+.Sqrt.*.*.LT2E.d1.c6.c5.d1.c9.c8.d0.d1.c5 

RIC Gene 1 
c0 = -4.54031643208106 
c1 = 1.99575792718284 
c2 = -5.94286935026093 
c3 = -9.32554094058046 
c4 = -1.88860506302072 
c5 = 6.96205633716849 
c6 = -11.0589631433581 
c7 = 4.62909421063875 
c8 = 3.71202822679157 
c9 = -4.15387432477798 
 
GOE2E.GOE2E.Logi.3Rt.Atan.LT2C.-.3Rt.d2.c4.c7.c8.d1.d0.d3.d3.c6 
+  
GOE2B.LT2G.LT2C.*.+.-.+.GOE2B.d0.c4.d3.d0.c4.d3.d1.c6.d2 
+  
GOE2B./.Atan.Sqrt.+.LT2A.*.LT2C.d1.d2.d1.c0.d0.c9.d0.d0.d3 

SC Gene 1 
c0 = -5.34149754325999 
c1 = -8.81591235084078 
c2 = 8.89846542642524 
c3 = 0.752229377117222 
c4 = 3.15490327631928 
c5 = 5.37705618457595 
c6 = 6.24073000274667 
c7 = -9.33408612323374 
c8 = 9.09761403009763 
c9 = -2.85622730185858 
 
LT2G.+.*.GOE2C.GOE2A.GOE2B.LT2C.LT2A.c2.d3.d1.d1.d2.d1.d0.c8.d0 
+  
-.LT2G.+.GOE2C.GOE2G.Sqrt.LT2A.GOE2G.d2.d0.d2.d3.d1.c7.d1.c4.d1 
+  
-.LT2C.GOE2G.c1.GOE2G.-.LT2A.LT2A.d3.d0.d1.d1.d3.d2.c7.c3.d2 

 
 
 

Gene 2 
c0 = 9.53672902615436 
c1 = -5.25498214667196E-02 
c2 = -7.85027619251076 
c3 = -80.6232970061342 
c4 = -6.33001145594958 
c5 = 179.271261424909 
c6 = 7.28080080568865 
c7 = -6.12964262825404 
c8 = 1.28506881923887 
c9 = -9.41035984374523 
 

Gene 3 
c0 = -1.21372112186041 
c1 = 7.56285687760552 
c2 = -2.43629261146886 
c3 = 1.2564470351268 
c4 = -1.52623065889462 
c5 = -2.85849231070589 
c6 = 9.53000542405469 
c7 = -9.63295085216834 
c8 = -12.401397177156 
c9 = -2.31571728584728 
 

Gene 2 
c0 = -1.9815668202765  
c1 = -9.8040711691641 
c2 = 9.75824882076479 
c3 = 7.98638874477371 
c4 = 2.86715166648366 
c5 = 4.42426831873531 
c6 = 8.32393871883297 
c7 = 5.07751701406903 
c8 = -5.42222357860042 
c9 = 0.372285808893094 
 

Gene 3 
c0 = 9.47839681451036 
c1 = 8.06329538865322 
c2 = -1.26377147740104 
c3 = -4.71236304818873 
c4 = -9.55809198278756 
c5 = -5.65477462080752 
c6 = -1.3243507187109 
c7 = -2.16345713675344 
c8 = 4.4564296395764 
c9 = -6.73197046651411 
 

Gene 2 
c0 = -6.98903686605426 
c1 = 7.91779140598773 
c2 = 4.5616016113773 
c3 = -3.20398571733757 
c4 = 8.00434457007181 
c5 = 2.89111301004059 
c6 = 10.0025971251564 
c7= 8.78470134172387 
c8 = -6.00826837977233 
c9 = 8.73958555864132 
 

Gene 3 
c0 = 4.64873195593127 
c1 = 6.99906494499116 
c2 = -7.73186437574389 
c3 = 6.67348246711631 
c4 = 0.315571459089938 
c5 = 6.04663228247932 
c6 = 2.69875179296243 
c7 = 6.9997378460036 
c8= 4.62202826013977 
c9 = -7.64996709939543E-02 
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DR Gene 1 
c0 = -8.60537215432763 
c1 = -0.56633198034608 
c2 = 6.60756248664815 
c3 = 0.881405072176275  
c4 = 5.20061952574236 
c5 = -4.88789712899258 
c6 = -4.78831268959624 
c7 = 5.56477191943452 
c8 = -9.45100461590058 
c9 = 3.54655598620563 
 
GOE2C.LT2C.*.GOE2E.*.-.-.LT2E.c7.c6.d0.d0.d1.c8.d3.d3.c0 
+  
*.LT2G.LT2E.+.LT2E.-.+.*.c0.d1.d2.c6.d0.d2.c5.c9.d2 
+  
LT2E.LT2G.d3.*.LT2E.+.-.+.d2.c9.d1.c1.c4.d0.c3.c4.d1 

DC Gene 1 
c0 = -3.54268013550218 
c1 = -8.0657368694113 
c2 = -2.59864803003021 
c3 = 5.6167666768395 
c4 = 9.95178075502792  
c5 = -1.66173284096805 
c6 = -8.98416364024781 
c7 = -6.29566331980346 
c8 = -4.27228614154485 
c9 = 2.20923269173254 
 
Logi.LT2C.*.X2.Avg2.Avg2.+.-.d1.d3.d1.d0.c9.c5.c2.c5.d2 
+  
3Rt.LT2B.X2.LT2G.LT2G.LT2C.LT2C.LT2C.c9.d0.d1.c0.d0.d3.d1.d3.d1 
+  
LT2G.LT2B.X4.LT2G.GOE2A.X2.+.LT2G.d2.d1.c9.c5.d0.d2.c4.d1.c0 

 

Gene 2 
c0 = -0.957726444957145 
c1 = -1.98028647724845 
c2 = 0.266956638560137 
c3 = 2.63161107211524 
c4 = 0.902432325205237 
c5 = -7.43055048295542 
c6 = -8.24499603579438 
c7 = -11.4995605334635 
c8 = 5.75988175603503 
c9 = 4.47864293191251 
 

Gene 2 
c0 = -3.03942098842086 
c1 = 8.73409222693564 
c2 = -3.83817712668233 
c3 = 7.86117130039369 
c4 = 3.955504013184 
c5 = 8.94589068269906 
c6 = -3.01428333719901 
c7 = -6.47999511703848 
c8 = 7.61528366954558 
c9 = 7.62959803972081 
 

Gene 3 
c0 = 6.56142765587329 
c1 = -0.718710898159734 
c2 = -6.77342548905911 
c3 = 1.45359660634175 
c4 = 3.09940407016205 
c5 = -10.8157846017461 
c6 = 4.08172310369366 
c7 = 8.38373973815119 
c8 = 7.23324610126041 
c9 = 7.08230536820582 
 
 

Gene 3 
c0 = 0.74422367015595 
c1 = -8.08943647106521 
c2 = -3.63936277352214 
c3 = -7.68695108810645 
c4 = 9.01398349172109 
c5 = -8.90342417676321 
c6 = -2.34717856379894 
c7 = 6.65639210180975 
c8 = 7.87530137028108 
c9 = -6.81020538956877 


