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ABSTRACT 

We consider a gasmotion behind the front of a strong flat shock wave propagating along a flat surface, which, 

starting from a certain point, becomes perforated. The solution of Euler system of equations is constructed by a small 

parameter method. The characteristic ratio of gas densities at the shock front is chosen as a small parameter. An 

approximate analytical solution of the problem is constructed taking into account the terms of the first approximation. It is 

assumed that the gas flow through the permeable boundary is proportional to the pressure drop across it, which allows 

replacing the solution of the problem with the solution of a shock wave diffraction problem at an angle greater than 𝜋. the 

structure of the flow in the perturbed region behind the diffracted shock wave is analyzed.  The shape of the wave front is 

constructed for different values of determining flow parameters. 

 
Keywords: shockwave diffraction, perforated surface, small parameter method. 

 

INTRODUCTION 
To construct approximate analytical solutions in 

problems with strong shock waves, the most often used 

method is a thin shock layer method (the “boundary layer” 

method) [1-3]. This method was proposed in the late 50-

ies of the last century to solve two-dimensional problems 

(plane steady and unsteady one-dimensional). It is now 

successfully used to construct approximate analytical 

solutions for plane and spatial unsteady gas dynamics 

problems with strong shock waves. [4-6]. 

The method of a thin shock layer is based on the 

assumption, natural for such problems, that the gas density 

ratio ahead of the front of an intense shock wave and 

immediately behind it is small compared with the unit. 

When constructing the gas-dynamic problem solution, the 

flow parameters in the perturbed region near the front of a 

strong shock wave are represented as special series in 

powers of this parameter. The solution of the problem 

begins with finding the so-called limiting flow, which is 

the exact solution (it is sometimes called the “Newtonian” 

solution) of the gas dynamics equations, when the ratio of 

gas densities at the shock front tends to zero. The greater 

the contribution of the limiting solution of the problem, 

the fewer expansion terms need to be sought to achieve the 

desired accuracy of the desired approximate solution. 

The good agreement between the results of 

calculations obtained using this method and the results of 

numerical calculations and experimental data allows us to 

conclude that this method can be applied for the 

approximate solution of gas dynamics problems with 

intense shock waves [7-9]. 

In this paper, we consider the motion of a gas 

behind the front of a strong flat shock wave propagating 

along a flat surface, which, starting from a certain point 

becomes perforated. In the framework of the thin shock 

layer method, an approximate analytical solution of the 

problem is constructed taking into account the terms of the 

first approximation. It is assumed that the gas flow 

through the permeable boundary is proportional to the 

pressure drop across it, which allows replacing the 

solution of the problem with the solution of the problem of 

diffraction of a shock wave at an angle greater than𝜋. 
 

FORMULATIONOFTHEPROBLEM 

Consider the infinite rigid wall EON (Figure-1), 

which consists of an absolutely impenetrable beam EO 

and a permeable portion of infinite length ON. The 

permeability of the wall will be assumed low. 

 

 
 

Figure-1. Flow pattern. 

 

Let a strong plane shock wave, for which the 

characteristic ratio of gas densities at the front is much less 

than unity, propagates along a rectilinear rigid and 

impenetrable wall EO with velocity 𝑁0. On the 

undisturbed front of the shock wave, the conditions of 

dynamic compatibility are fulfilled, which for strong 

shock waves can be approximately written as: 

 𝑣1𝑁0 = 1 − 𝜀,      𝑝1𝜌0𝑁0 = 1 − 𝜀,                                           (1) 𝑘 = 1 + 2𝜀1 − 𝜀 ,     𝑎12𝑁02 = 𝜀(1 + 𝜀) 

 

At the time 𝑡 = 0, the shock wave passes through 

point O and begins to move along the permeable portion 

of the rigid wall. ON.  
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The problem will be solved in the polar 

coordinate system. By virtue of the self-similarity of the 

problem (there is no characteristic linear dimension), the 

system of equations describing the flow of gas in the 

perturbed region can be written in the vector form: 

 (𝑣̅ − 𝑟̅) 𝑑𝑣̅𝑑𝑟̅ = −𝜀𝜏 𝑔𝑟𝑎𝑑 𝑝 (𝑣̅ − 𝑟̅)𝑔𝑟𝑎𝑑 𝜏 = 𝜏 𝑑𝑖𝑣 𝑣̅ (𝑣̅ − 𝑟̅)𝑔𝑟𝑎𝑑 𝑖 = 𝜀𝜏(𝑣̅ − 𝑟̅) 𝑔𝑟𝑎𝑑 𝑝                               (2) 𝜀𝜏 = 𝑘 − 1𝑘 𝑖𝑝 . 
 

Here 𝑣̅(𝑣𝑟 , 𝑣𝜃), 𝑝, 𝜌 = 1𝜀𝜏 , 𝑖 – is the velocity 

vector of the gas, pressure, density and enthalpy, referred 

to 𝑁0 , 𝜌0𝑁02 , 𝜌0и𝑁02 respectively;𝑟̅isradius vector in the 

plane of dimensionless self-similar variables;𝑣𝑟и𝑣𝜃are the 

radial and transverse components of the velocity vector; 𝑘is a ratio of the specific heats of gas, 𝜀 = 𝑘−1𝑘+1. 

The boundary conditions for system (2) are set at 

the ODA boundary with a uniform flow, at the perturbed 

front of the shock wave AB and at the permeable wall 

section ON. 

At the ODA boundary, by virtue of (1) we have: 

 𝜏 = 1 ,    𝑝 = 1 − 𝜀 ,     𝑖 = 12 (1 − 𝜀2) ,                            (3) 𝑣𝑟 = (1 − 𝜀) cos 𝜃  , 𝑣𝜃 = −(1 − 𝜀) sin 𝜃 . 
 

On OD equality is true 

 𝑠𝑖𝑛2𝜃 = 𝜀(1 + 𝜀)(1 − 𝜀)2  ,    𝑐𝑜𝑠2𝜃 = 1 − 3𝜀(1 − 𝜀)2 . 
 

Let us suppose that the gas flow through the 

permeable boundary is proportional to the pressure drop 

across the wall. Then the boundary condition on the 

permeable wall can be represented as: 

 𝑣𝜃 = − 𝜀 𝑘0.                                                                     (4) 

 where 𝑘0 is a dimensionless coefficient characterizing the 

degree of permeability of the boundaryON. 

Let us set the front equation of the perturbed 

shock wave in the form𝑟 = 𝑟(𝜃). Then the dynamic 

compatibility conditions will take the form: 

 𝑣𝑟 = 𝑟(1 − 𝜀𝜏)𝑐𝑜𝑠2𝛿,   𝑣𝜃 = −𝑟(1 − 𝜀𝜏) sin 𝛿 cos 𝛿,   (5) 𝑝 = 𝑟2(1 − 𝜀𝜏)𝑐𝑜𝑠2𝛿, 𝑖 = 12 𝑟2(1 − 𝜀2𝜏2)𝑐𝑜𝑠2𝛿, 
 

where 𝑡𝑔𝛿 = 1𝑟 𝑑𝑑𝜃 𝑟(𝜃) . 

Conditions (5) are written up to terms of order 𝑎02 𝑁02  ⁄  , where𝑎0 is the speed of sound in a gas at rest 

ahead of the shock wave front [10].  

To determine the flow in the perturbed region, 

one should find a solution to the system of equations (2) 

that satisfies the boundary conditions (3) - (5). The 

boundary of the considered area (with the exception of the 

ON section) must be determined in the process of 

constructing the problem solution. 

The problem (2) - (5) is equivalent to the problem 

of the diffraction of a strong shock wave near the angle 𝜋 + 𝜀𝑘0with the vertex at the point O. We place the 

beginning of the polar coordinate system at point O, and 

direct the polar axis along the fictitious rigid and already 

impenetrable wall OM (Figure-1). Then the gas 

parameters along the horizontal permeable wall will be 

equal to the values of the corresponding values in the 

problem of the diffraction on the beam𝜃 = 𝜀𝑘0. Note that 

the curved shock wave should be perpendicular to the 

fictitious wall at B.  

 

SOLUTION 

We will solve the problem using the thin shock 

layer method. A distinctive feature of the problem under 

consideration is the presence of regions in which the 

asymptotic expansions in the parameter ε of dependent and 

independent variables have significantly different nature. 

a) Consider first the region where 1 − 𝑟 = 𝑂(1), 
i.e. 𝑟 ≪ 1 . The effect of the permeable wall ONon the 

flow behind the shock-wave front downstream will be 

limited by the straight-line characteristic of the first family 

OD. To the right of the OD characteristic, the flow pattern 

should be similar to the rarefaction flow that occurs when 

a larger angle flows around𝜋. If we assume that for all the 

main flow parameters, the dependence on the angle 𝜃 is 

more significant than on the distance to the origin of 

coordinates in the plane of self-similar variables, then in 

the first approximation from (2) we obtain a system of 

ordinary differential equations. Integrating and defining 

the arbitrary constants from conditions (3) we obtain 

 𝑣𝑟 = 1 − 32 𝜀 + 𝑂(𝜀) ,   𝑣𝜃 = −√𝜀 (1 + 12 𝜀 + 𝑂(𝜀)).   (6) 

 

In the area between the OC and the OB wall, 

there is a uniform flow with parameters: 

 𝑣𝑟 = (1 − 𝜀) cos 𝜃 ,     𝑣𝜃 = −(1 − 𝜀) sin 𝜃 p = 1 − √εk0 + O(ε) ,   τ = 1 + √εk0 + O(ε) . 
 

The areas of these currents are bounded to the 

right by the characteristic of the second family DK. 

System of equations (2) to the right of the DK 

characteristic is hyperbolic down to the parabolicity line 

DF, whose equations are determined by the relation (𝑣𝑟 − 𝑟)2 + 𝑣𝜃2 = 𝑎2 , where 𝑎is the local speed of sound. 

It is easy to verify that in the approximation under 

consideration, the gas flow in the DFK region can be 

described by the formulas (6), (7). 

b) In the intermediate zone, in the region of 

ellipticityof system (2), to the right of the DF parabolicity 

line, we move on to the new independent 

variables𝜎and𝜑by the formulas: 

 𝑟 = 1 + √𝜀 𝜎  ,   𝜃 = √𝜀 𝜑 .                                             (8) 
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Given the orders of the desired functions, the 

solution of the problem in this area will be sought in the 

form: 

 𝑣𝑟 = 1 + 𝜀𝑢1,     𝑣𝜃 = −√𝜀 𝜑 + 𝜀𝑣1 ,                              (9) 𝑝 = 1 + √𝜀𝑝1 ,   𝜏 = 1 + √𝜀𝜏1 ,   𝑖 = 12 + 𝜀𝑖1. 
 

As a result, we obtain the system of differential 

equations in partial derivatives, which, putting𝜎 =𝑅 cos 𝜆  , 𝜑 = 𝑅𝑠𝑖𝑛 𝜆, we reduce to a second order 

equation for the function𝑝1. Note that in the considered 

approximation, we can assume that𝑅 = 1 on DF . 
Integrating the resulting equation, we obtain an expression 

for the first approximation correction𝑝1. Using the 

solution obtained from the remaining equations, it is easy 

to determine the velocity field in the considered region, 

which is characterized by the fact that the radius vector 

differs from unity by an amount of the order of√𝜀 

(1 − 𝑟 = 𝑂(√𝜀)) . 

c) We proceed to consider the flow in the region 

where1 − 𝑟 = 𝑂(𝜀). In this region immediately adjacent 

to the disturbed shock front AB, we set: 

 𝑟 = 1 + 𝜀 𝜁  ,   𝜃 = √𝜀 𝜑 .                                              (10) 

 

Then, taking into account the orders of the 

desired functions, the solution of the problem in this area 

will be sought in the form: 

 𝑣𝑟 = 1 + 𝜀𝑢2 + ⋯,     𝑣𝜃 = √𝜀𝑣2 + ⋯ ,  𝑝 = 1 + 𝜀𝑝2 + ⋯  ,   𝜏 = 1 + 𝜀𝜏2 + ⋯ ,    𝑖 = 12 + 𝜀𝑖2 + ⋯.                                                            (11) 

 

Substituting (10), (11) into the original system of 

equations (2), we obtain the system of nonlinear equations 

describing the flow in the considered domain: 

 (𝑢2 − 𝜁) 𝜕𝑢2𝜕𝜁 + 𝑣2 𝜕𝑢2𝜕𝜑 − 𝑣22 = −𝜏 𝜕𝑝2𝜕𝜁 ,  (𝑢2 − 𝜁) 𝜕𝑣2𝜕𝜁 + 𝑣2 𝜕𝑣2𝜕𝜑 − 𝑣2 =  0 ,                                   (12) 𝜕𝑢2𝜕𝜁 + 𝜕𝑣2𝜕𝜑 + 1 =  0 (𝑢2 − 𝜁) 𝜕𝑖2𝜕𝜁 + 𝑣2 𝜕𝑖2𝜕𝜑 =  0 

 

The third equation of system (12) allows us to 

enter a function 𝐹(𝜑, 𝜁) such, that: 

 𝐹𝜑 = −𝑢2 ,    𝐹𝜁 = 𝑣2 + 𝜑 .                                            (13) 

 

Then, using the second equation of system (12), 

we obtain the nonlinear second-order equation in partial 

derivatives for determining the function 𝐹(𝜑, 𝜁): 

 (𝜁 + 𝐹𝜑)𝐹𝜁𝜁 + (𝜑 − 𝐹𝜁)𝐹𝜁𝜑 = 0 ,                                 (14) 

 

which, using the Euler-Ampere transform, 

 𝐹 = Φ(𝑞, 𝜑) + 𝑞𝜁,                                                         (15) 

 where Φ(𝑞, 𝜑)is a new desired function, 𝑞is a parameter, 

and, 𝑞 = 𝑣2 + 𝜑 = 𝐹𝜁 , is reduced to: 

 [Φ𝜑 − Φ𝑞 + (𝜑 − 𝑞)Φ𝜑𝑞]𝐹𝜁𝜁 = 0  

 

From here we have two cases.  In the first case, 

we have the Euler-Darboux equation, whose solution with 

two arbitrary functions allows us to obtain a parametric 

representation of the velocity field in the considered 

region: 

 𝑣2 = 𝑞 − 𝜑,                                                                    (16) 𝑢2 = −[𝐿2(𝜑) + 𝐻2(𝑞) − (𝜑 − 𝑞)𝐿2′ (𝜑)]  , 𝜁 = −[𝐿2(𝜑) + 𝐻2(𝑞) + (𝜑 − 𝑞)𝐻2′ (𝜑)]  , 
 

where 𝐻2(𝑞) = 𝐿1′ (𝑞), 𝐿2(𝜑) = 𝐻1′ (𝜑) are arbitrary 

functions. 

In the second case, we have: 

 𝐹(𝜑, 𝜁) = 𝜁𝑓1(𝜑) + 𝑓2(𝜑) ,                                           (17) 

 

or on based (13): 

 𝑣2 = 𝑓1(𝜑) − 𝜑,    𝑢2 = −𝜁𝑓1′(𝜑) − 𝑓2′ .                       (18) 

 

From the second equation of system (12) it 

follows that, in addition to the solution of (16), the system 

of equations describing the velocity field in the considered 

region has a special solution of the form: 

 𝑣2 = −𝜑,    𝑢2 = 𝑓(𝜑) ,                                                 (19) 

 

or𝑣2 = с,    𝑢2 = 𝑓(𝜑) − 𝜁, where 𝑓2′(𝜑) = 𝑓(𝜑)isan 

arbitrary function, а𝑐 = 𝑐𝑜𝑛𝑠𝑡. Note that these solutions 

are not contained in the general solution (16) under any 

functions. 𝐻1(𝑞)и𝐻2(𝜑). 

The general solution of the form (16) describes 

the vortex flow of gas, and the special solution (19) is 

valid for the isentropic flow.  Solutions of this type can be 

conjugated along an entropy characteristic AT. 

d) We will look for the shape of the front of a 

perturbed shock wave AB in the form 𝜁 = 𝜁2(𝜑), then 

from (5) we have: 

 𝑣2 = −𝜁2′ (𝜑),    𝑢2 = 𝜁2(𝜑) − 𝜁2′ 2(𝜑) − 1.                  (20) 

 

Substituting (20) into (16) we arrive at a system 

of three equations for determining the functions 𝐻2(𝑞), 𝜁2(𝜑), 𝑞2(𝜑), where𝑞2(𝜑)is the equation of the 

wave front AB on the plane of variables (𝑞, 𝜑). 

The system, thus obtained, is reduced to one 

equation for the function 𝜁2(𝜑): 

 𝜁2"(𝜁2′ 2 − 1) + 𝜁2′ 2𝐿2" (𝜑) = −1 
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After determining 𝐿2" (𝜑) from the condition of 

splicing solution (19) with a solution in the intermediate 

region to determine the shape of the shock wave front AB, 

we obtain the equation: 

 𝑍2′ = 1 + 1𝜋√𝜀 𝑍221−𝑍22 √1−𝜑2𝜑4  𝑙𝑛 (1 + 2𝑘0√𝜀 𝜑21−𝜑2),            (21) 

 

where𝑍2(𝜑) = 𝜁2′ (𝜑). 
From the conditions for the passage of a shock 

wave through point A(𝜁𝐴 = 12 ,   𝜑𝐴 = 1) and the 

impenetrability of the tangent vector to the front at this 

point, we have: 

 𝜁2(1) = 12,    𝜁2′ (1) = 1. 
 

At point B, the condition of perpendicularity of 

the shock wave to the wall gives𝜁2′ (0) = 0. This condition 

cannot be satisfied for all values of the parameter 𝑘0, since 

for 𝑘0 > 𝜋8, equation (21) has no solutions passing through 

the point(0, 0). Restricting ourselves to the case of 𝑘0 ≤ 𝜋8, 

for equation (21) we have two boundary conditions: 

 𝑍2(0) = 0,    𝑍2(1) = 1. 

 

However, it is easy to show that equation (21) 

does not have a continuous solution that satisfies both 

boundary conditions, despite the fact that points (0, 0) and 

(1, 1) are special points of this equation. In such a 

situation, it is necessary to assume the presence of a break 

in the front of a diffracted shock wave AB at a certain 

point.  Thus, in the vicinity of the break point, an irregular 

(Mach) configuration of shock waves with a reflected 

wave, a tangential discontinuity, and a Mach wave must 

occur. 

The shape of the front of the diffracted shock 

wave was determined by numerical integration of equation 

(21). Two solutions of this equation were constructed with 

initial conditions 𝑍2(1) = 1, 𝑍4(0) = 0respectively. In 

this case, the departure from the singular points was 

carried out with the help of approximate analytical 

solutions. 

 Z2(φ) = 1 + 2√3π√2ε (1 − φ)3 4⁄ √−ln(1 − φ), 
Z4(φ) = Aφ,   A = π4k0 (1 − √1 − 8k0π ), 
 

where 𝑍4(0) = 𝜁4′ (0) = 0, 𝜁(𝜑) is the Mach wave 

equation QB, and the position of the breakpoint Q is 

determined from the relation (𝑍2 ⋅ 𝑍4)𝑄 = 1. 

The figures below show the calculation results. 

They are grouped in such a way that it is easy to evaluate 

the influence of the main parameters of the problem on the 

change in the shape of the shock wave. 

ε=0,1

ε=1/6

x1,00,950,90

y

0,4

0,2

0

 
 

Figure-2. The shape of thedisturbed shock wave front. 

(𝑘0 = 2,0). 

 

 
 

Figure-3. The shape of thedisturbed shock wave front. 

(𝑘0 = 1,0). 

 

 
 

Figure-4. The shape of thedisturbed shock wave front . 

(𝜀 = 0,1). 
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Figure-5. The shape of thedisturbed shock wave front. 

(𝜀 = 1 6⁄ ). 

 

The calculations have shown that the position of 

the break point relative to the wall is very sensitive to 

small changes in the angle of deflection of the wall at 

point O, and hence, to the coefficient of permeability of 

the wall𝑘0.  

 

CONCLUSIONS 

Note that the presence of a triple point and a 

decrease in its distance from point B with an increase in 

the wall break angle is in qualitative agreement with 

experimental data on ashock wave diffraction [11]. 

The results obtained in this work can be useful in 

solving more complex non-stationary gas dynamics 

problems with intense shock waves, such as gas moving 

behind a strong shock wave front, taking into account dust, 

non-equilibrium, etc. The presented solution can be used 

as an intermediate asymptotic when building a solution 

that more adequately describes the gas flow (taking into 

account the finite Mach number) at considerable distances 

from the shock wave front, as well as at the initial design 

stage to identify specific points and areas of gas flow in 

the disturbed region. 
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