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ABSTRACT 

In this paper, we have developed operational matrix for estimating the approximate solutions to water quality 

assessment model. The model is of the form of Convection-Diffusion Equation (CDE) with variable coefficients. An 

efficient spectral method has been utilized to assess the chemical oxygen demand (COD) in a river. The obtained numerical 

solutions have been compared with results of Runge-Kutta-Fehlberg fourth-fifth order method (RKF45M) and optimal 

homotopy asymptotic method (OHAM). The convergence and supporting analysis of the method are investigated 

Numerical experiments are given to demonstrate the accuracy and efficiency of the proposed method .A few numerical 

examples are provided to demonstrate the validity and applicability of the proposed method.  
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1. INTRODUCTION 

The water quality model requires the calculation 

of the substance dispersion given the water velocity in the 

channel [1, 2, 12]. Pochai et al. [1] developed a finite 

difference method for water pollution problem. Pochai and 

his workers [3, 18] had developed a mathematical model 

of water pollution with the help of finite difference 

method. Furthermore, Pochai and his coworkers [2-4] had 

used a few approximation methods for the solution of 

hydrodynamic model with constant coefficients in the 

uniform reservoir and stream. The Bernstein polynomial 

based operational matrix method for assessment of the 

chemical oxygen demand (COD) in a river is considered. 

Recently, Padma et al. [24] had introduced the homotopy 

analysis method (HAM) for solving the water quality 

model in a uniform channel. In this work, the proposed 

polynomial approximation method has been compared 

with HAM and finite difference method (FDM). 

FazleMabood and Pochai [33] introduced a new 

asymptotic solution for a water quality model.  

Recently, Doha et al. [26-28] developed a new 

Chebyshev spectral method for fractional order differential 

equations. Hariharan and Kannan [25] reviewed the 

wavelet methods for solving a few reaction-diffusions. 

Hariharan and his coworkers [6-9] introduced the Haar 

Wavelet Method (HWM) for solving a few partial 

differential equations. Ghasemi and Avassoli Kajani [5] 

applied the Chebyshev wavelet-based method for solving 

time-varying delay systems. Mason et al. [14] used the 

Chebyshev polynomials for solving differential equations. 

Hariharan [29] applied the Chebyshev wavelets method 

(CWM) for solving the convection-diffusion equations. 

Evans and Abdullah [10] used a new explicit method for 

the diffusion-convection equation. The boundary element 

method has been successfully developed for the 

convection-diffusion equations by Enokizono and Nagata 

[11]. Rahman and Abuduwaili [13] applied a new 

numerical method and application for convection diffusion 

equation.  

Horng and Chou [15] used the Chebyshev 

wavelet spectral method for solving the variational 

problems. Zhu et al. [16, 17] used the CWM for the 

fractional nonlinear Fredholm integro-differential 

equations. Sohrabi [19] used the Chebyshev wavelet 

methods for solving Abel’s integral equation. Li [20] 

presented the Chebyshev wavelet method for fractional 

order differential equation. Hojatollah Adibi and Pouria 

Assari [21] used the CWM for solving the Fredholm 

integral equations. Li Zhu and Qibin Fan [22] established 

the second kind Chebyshev wavelets for solving fractional 

nonlinear Fredholm integro-differential equations. Yanxin 

Wang and Qibin Fan [23] showed the second kind 

Chebyshev wavelet method for solving fractional 

differential equations. Yousefi and Behroozifar [30] 

developed the operational matrix-based polynomial basis 

for solving differential equations. 

 

2. MATHEMATICAL MODEL [18] 

Convection-diffusion equation (CDE) model by 

means of dispersion of COD is described by [18] 

 
2

2
0,x

d C dC
D U RC Q

dx dx
                                 (1) 

 

where  C x - Concentration of COD at the point 

 ,x a b   3/ ,kg m  

U - Flow velocity in x  directions  / ,m s  

xD - Diffusivity  2 / ,m s R -  Substrate decay rate 

 1 ,s Q


- Increasing rate substrate concentration due to 

a source  3/ .kg m s  
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 The corresponding BCs are 
0C C  at x a  

and 0

dC
T

dx
  at .x b  

 

3. PROPERTIES OF BERNSTEIN POLYNOMIAL 

[30, 32] 
B-Polynomials are defined on the interval [0,1] as 

 

 ( ) 1 ,i 0,..., n
n in i

i

n
b x x x

i

 
   
                          (2) 

 

   1 , 0..........n

j in
n j

i

j i

n n i
b x x i

i j i





  
      
    (3) 

 

In [24], one can express 

 

 

0

( ) ( ),
n

n T

i i

i

f x c b C B x



                                       (4) 

 

where the B-coefficient vector C and the Bernstein vector 

( )B x  

 0 1 2, , ,................T

n
C c c c c  

 

0 1( ) [ ( ), ( ),.............. ( )]n n n T

nB x b x b x b x
  

 

Dual basis functions is defined by the coefficients  

 

  min( , )

0

1 11
(2 1)

j k j k

jk

i

n i n i n i n i
i

n n n j n j n k n k

j k






          
                 
   
   



                                                                     (5) 

 

 

for , 0,1,...,j k n
 

 

3.1 The operational matrix of the derivative [32] 

The operational matrix of derivative of the vector 

 B x can be expressed by 

 

   1( )
,

dB x
D B x

dx
                                                

(6) 

 

where 
 1

D  
 is the    1 1n n    operational matrix of 

derivative and is given in [24] as  

 
 1

D AVB
                                                               (7) 

 

3.2 Method of solution 
Convection-diffusion equation in the form of 

water quality assessment model [18] 

 

     .c p x c q x c r x                        (8) 

 

Using the aforesaid method described in Section 

3 with 2m ,  

 

           2T T T
C D x p x C D x q x C x r x         (9) 

 

Then 

 

 2

2 2 2

4 4 4

2 2 2

D

 
     
 
 

,  1

2 1 0

2 0 2

0 1 2

D

  
    
 
 

 

 
 
 

2

2

1
2

2 1

x

x x x

x


 
 

   
 
 

,  

 0 1 2
2

T
C c c c




 
 

4. NUMERICAL EXAMPLES 

 

Example 4.1: Consider the convection-diffusion 

equation with variable coefficients described in Ref. [18] 

 

     .c p x c q x c r x                                     (10) 

 

Let the physical parameter values are: diffusion 

coefficient 2 
2 / ,m s  flow velocity

 5 / , 0,2u x m s x   , substance decay rate 

13s


 and rate of change of substance concentration due to 

the source 
31 / .Kg m s   
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 
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p x

D
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q x

D

Q
r x

D

 
  


     

  
        

                                             (11) 

 

Eq. (10) becomes 

5 3 1
.

12 12 12

x
c c c

             
     

                           (12) 

 

Subject to the conditions   0 1.25c    and  2 0.c  (13) 

 

We solve Eq. (12) using the procedure described 

in Section 3, for the case corresponds to 2m  to get an 

approximation solution  c x . B-polynomial operational 

matrix scheme is given by  

 

     2 5 3 1
0

12 12 12

T T Tx
C D x C D x C x       

 
 (14) 

 

2
0 1

531 1
5 0

8 8 2

c
c c                     (15) 

 

Furthermore, the initial conditions are given by 

 

 0 1.25T
c      0 1.25c                   (16) 

  

 2 0T
c D     1 20.25 0.4c c     (17) 

 

Solving equations (15), (16) and (17), we obtain 

 

0 1 21.25; 0.8479; 0.646875c c c     

 

Consequently, 

 

   
 

 

2

2

2

1

1.25 0.8479 0.646875 2 1

0.2011 0.8042 1.25

x

c x x x

x

x x

 
 
  
 
 
 

  

 (18) 

 

which is the exact solution. 

Zero order problems [33] is  

 

0 0 0

5 3 1
0

2 2 2
c c c                      (19) 

 

with the boundary conditions 

   0 00 1.25, 2 0c c      (20) 

 

The solution of (19) with boundary conditions 

(20) is 

 

   
3

0 7

77 1
.

312 6 1

x
e

c x
e

 


                 (21) 

 

Using B-polynomial operational algorithm, Eq. 

(19) can be written 

 

     2 5 3 1
0

2 2 2

T T T
c D x c D x c x     

   

(22) 

 

which is equivalent to the following expression 

 

0 1

33 3
6 0

8 2
c c        (23) 

 

Furthermore, the initial conditions are given by 

 

 
 

0

0 1 2

0 1.25 1.25

2 0 2 10 4 0

T

T

c c

c D c c c





   


     

  (24) 

 

Solving Eqs. (23) and (24), we get the wavelet 

coefficients. 

The obtained results have been compared with 

Pochai [18], Padma et al. [24], Fazle Mabood and 

Pochai‘s [33] results. By the approximate solutions, it can 

be obtained that the COD concentration along a uniform 

channel will be decreasing. Table-1 shows the comparison 

of RKF45M, optimal homotopy asymptotic method 

(OHAM) and Bernstein operational matrix method 

(BOMM). 

 

Table-1. Comparison of  xc  via BOM and 

other methods. 
 

x  RKF45 [33] OHAM [33] 
Our method 

BOM 

0.0 1.2500 1.2500 1.2500 

0.1 1.2031 1.2031 1.2031 

0.2 1.1580 1.1580 1.1580 

0.3 1.1147 1.1146 1.1145 

0.4 1.0731 1.0731 1.0730 

0.5 1.0333 1.0332 1.0333 

0.6 0.9952 0.9951 0.9952 

0.7 0.9588 0.9588 0.9588 

0.8 0.9242 0.9242 0.9242 

0.9 0.8914 0.8913 0.8912 

1.0 0.8604 0.8602 0.8604 
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Figure-1. BOM solution for Eq. (18). 

 

Example 4.2:  Let the steady-state convection-

diffusion equation [9]  

 

   0, 0 0, 1 1xx xc c c c                         (25) 

 

where   and    are constants.   

Exact solution: 

 

  1

1

x

e
c x

e











                                                           (26) 

 

*

1

Pe x

Pe

dc Pe e

dx e



                                                          (27) 

 

The obtained solution can be compared with the 

Chebyshev wavelet solution. One increases the p´eclet 

number Pe from 1 to 10, 50,100 and compares the 

*

1

Pe x

Pe

dc Pe e

dx e



  at x=1. On the other hand, the 

Bernstein operational matrix (BOM) method provides a 

stable and acceptably accurate solution. 

Using the aforesaid scheme, one can obtain  

 

   2 0T T
C D x C D x         (28) 

 

1,Setting we get  
 

 

    2 0T T
c D x c D x                                   (29) 

 

which is equivalent to 

0 23 0c c                                                                 (30) 

 

Furthermore, the initial conditions are given by 

 

 0 0T
c      0 0c                    (31)  

 

 1 1T
c      

1 2 1c c                   (32) 

 

Example. 4.3 We consider the convection-

diffusion problem [29] 

 

  
2

2 2

2
2 2 tan

d u
x x u

dx
                    (33) 

 

Using the aforesaid scheme, one can obtain  

 

      2 2 22 2 tan T T
x x C x C D x      (34) 

 

      2 2 24 2 tan 0T T
c D x x x c x      (35) 

 

Using Eq. (35), the linear system can be solved 

with the aid of Newton’s iterative method. It is worth 

noting that applying the scheme proposed above for the 

Eq. (35), the solution in a closed form 

   2cos , 0,
4

u x x x
    

 
 can be compared with 

the CW solution. Our results can be compared with 

Hariharan’s results [29].  Figure-1 and Figure-2 show the 

BOM solutions for various values of x. 

 

Example 4.4 Consider the equation 

 

     " ' 0,xy x y x xy x       (36) 

 

with the initial conditions 

 

   0 1, y' 0 0y        (37) 

 

Using the aforesaid method with 2m , we 

approximate solution as Eq. (36) becomes 

 

     2 0T T T
xC D x C D x xC x            (38)  

 

By collocation Eq. (82) at
1

2
x  , we gain 
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       3 2

0 1 2 0 1 0 1 2 0 0 12 2 2 4 2 2 0x c c c x c c x c c c xc c c                                                       (39) 

 

Using Eq. (36), we gain 

 

0 1 213 17 0c c c   ,      (40) 

 

From Eq.(37) 

 

 
0

0 1 1

(0) 0 1

0 0 2 2 0 1

y c

y c c c

  

      
 

 

Finally, we gain 

 

0 1 2

12
1, 1,

17
c c c  

 
 

Consequently  

 

 
 
 

2

2

1
12

1,1, 2 1
17

x

y x x x

x

 
     

  
 

 

  25
1

17
y x x                                                          (41) 

 

 
 

Figure-2. BOM solution for Eq. (41). 

 

5. CONCLUSIONS 

An efficient B-Polynomial approximation method 

has been successfully employed to water quality 

assessment model problem. Numerical experiments show 

that the proposed spectral method can match exactly with 

the analytical solution very efficiently. It has been 

concluded that the proposed B-polynomial method is very 

powerful and efficient in finding analytical as well as 

numerical solutions for nonlinear differential equations.  
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