
                                VOL. 14, NO. 23, DECEMBER 2019                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      3968 

FINITE FOURIER SINE INTEGRAL TRANSFORM METHOD FOR THE 

ELASTIC BUCKLING ANALYSIS OF DOUBLY-SYMMETRIC THIN-

WALLED BEAMS WITH DIRICHLET BOUNDARY CONDITIONS 

 
Onyedikachi Aloysius Oguaghamba

1
, Charles Chinwuba Ike

2
, Edwin Uchechukwu Ikwueze

2
 and 

Iheanyichukwu O. Ofondu
3
 

1Department of Civil Engineering, University of Nigeria, Nsukka, Nigeria 
2Department of Civil Engineering, Enugu State University of Science and Technology, Enugu State, Nigeria 

3Department of Mechanical and Production Engineering, Enugu State University of Science and Technology, Enugu State, Nigeria 

E-Mail: onyedikachi.oguaghamba@unn.edu.ng 

 
ABSTRACT 

The finite Fourier sine transform method was used in this work to solve the elastic buckling problem of thin-

walled beams for the case of pinned ends, and uniform moments applied at the ends. The problem is a boundary value 

problem given by a fourth order ordinary differential equation and Dirichlet boundary conditions at the pinned ends. The 

Dirichlet boundary conditions at the pinned ends make the finite Fourier sine transform method ideally suited for the 

solution. The transformation of the governing domain equation converted the problem to an algebraic eigenvalue problem. 

The condition for nontrivial solution was used to obtain the characteristic buckling equation as a fourth degree polynomial. 

The eigenvalues of the characteristic buckling equation were used to obtain the n buckling moments. The critical buckling 

moment was found to correspond to the first buckling mode. The expressions obtained for the n buckling modes and the 

critical buckling moment were identical to those by other researchers who used other methods of analysis. 

 
Keywords: Finite Fourier sine transform method, algebraic eigenvalue problem, characteristic buckling equation, Dirichlet boundary 

conditions, critical buckling moment, thin-walled beams with doubly-symmetric cross-sections. 

 

INTRODUCTION 
Thin-walled steel beam structures are commonly 

used in structural applications due to the high strength of 

steel. The small thicknesses of the cross-section walls 

make them susceptible to instabilities [1 - 9]. One of the 

general forms of instabilities that could develop for thin-

walled beams in bending is the lateral - torsional buckling. 

Consequently, in the analysis and design of thin-walled 

steel beams, lateral torsional buckling analysis should be 

considered as it can significantly reduce the load carrying 

capacity, and thus affect the safety of the entire structures 

[7 - 11]. 

At the imminence of lateral - torsional buckling, 

the structural behaviour charges from mainly in-plane 

bending to combined lateral deflection and twisting, and it 

is one of the most significant stability problems, which 

may frequently be a controlling consideration in the 

analysis and design of steel beams [12, 13, 14]. 

Lateral torsional buckling (LTB) is the buckling 

of a thin-walled beam loaded in the plane of its strong axis 

and buckling about the weaker axis accompanied by 

twisting (torsion). The load at which such a beam buckles 

can be much less than the load causing the development of 

the full moment capacity of the beam. LTB should be 

investigated in slender (thin walled) beams that have 

greater major axis bending stiffness then minor axis 

bending stiffness, or considerably large laterally 

unsupported lengths. 

Lateral torsion - flexure buckling of thin-walled 

steel I - beams subject to flexure is hence a vital 

consideration in their analysis and design [15 - 21]. 

In general, when a slender steel beam with I – 

cross section is subjected to flexural loads about its axis of 

greatest flexural rigidity and the beam has insufficient 

lateral bracing, out - of - plane bending and twisting may 

occur when the applied load attains a certain critical value. 

At this critical load, the beam is said to have failed by 

lateral torsion flexure [15, 22 - 25]. 

Thus, lateral - torsional buckling (LTB) 

phenomenon occurs when the bending action attains a 

certain critical load. It generates a sudden and 

simultaneous lateral bending deformation and a 

longitudinal torsional deformation along the unrestrained 

length of the beam. 

The critical load that causes lateral buckling has 

been found in the literature  to depend upon the laterally 

unbraced length of the beam, the type of loading, the 

location of the load with respect to the shear centre of the 

beam cross-section, the mechanical properties of the 

beams cross-section; geometric properties of the cross-

section such as the torsion constant, warping constant and 

the moment of inertia about the minor axis, material 

properties such as the Young’s modulus of elasticity and 

the shear modulus [26 – 31]. Lateral torsional buckling 

failure can occur in straight single or multi-span beams, 

under simple bending about their strong axis, with bi-

symmetric or mono-symmetric cross-sections about their 

plane of bending. 

The position of the applied load with respect to 

the shear centre of the beam cross-section is often 

neglected by most codes of practice for steel design 

despite that loads can be applied at an eccentricity with 

respect to the shear centre of the cross-section. 

For design purposes, most codes of practice 

permit the application of equivalent moment factors as 

modification factors to the critical moment causing lateral 
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torsion flexure buckling for simply supported beam 

subjected to uniform bending moment in order to 

determine the critical buckling load capacities for other 

load types. 

Lateral torsional buckling failures can occur in 

doubly symmetric I shaped (cross-section) beams, I 

section loaded in the plane of their webs, I section singly 

symmetric with compression flanges. It is not possible for 

LTB to occur if the moment of inertia of the cross-sections 

about the bending axis is equal to or less than moment of 

inertia out of plane. Hence, the limit state of LTB is not 

applicable for shapes bent about their minor axis, and for 

circular or square cross sections. 

A beam can fail by reaching the plastic moment 

and becoming fully plastic or fail prematurely by lateral 

torsional buckling (LTB) (elastically or inelastically) 

flange local buckling (FLB) (elastically or inelastically) or 

web local buckling (WLB) (elastically or inelastically) [4]. 

If the maximum bending stress is less than the 

proportional limit of elasticity at the incipience of 

buckling failure, the buckling failure is called elastic; 

otherwise, the buckling failure is called inelastic. 

Attard and Kim [12] derived the equilibrium and 

buckling equations for the lateral buckling of a straight 

beam with prismatic cross-section considering shear 

deformations and using hyperelastic formulation. They 

used a consistent finite strain constitutive law, based on a 

hyperelastic model for an isotropic material. They also 

derived second order approximations to the displacements, 

curvatures, twist and internal actions. They found the 

constitutive relations for the internal actions to contain 

new coupling terms between the bending moments, torsion 

and bimoment which depend on the cross-sectional 

warping and shear deformations. They obtained solutions 

to the lateral buckling problems of prismatic, 

monosymmetric beams under pure flexure and the flexural 

torsional buckling under axial compression. 

Chan et al [24] presented a novel approach for 

the determination of the critical lateral - torsional buckling 

loads of beams subjected to arbitrary transverse loads. 

Their new formulation was based on classical energy 

methods. The difference between their method and the 

traditional energy methods is the formulation of the 

potential energy of the external loads which was expressed 

in terms of internal bending moment and internal shear 

force in the pre-buckling stage regardless of the type of 

loading. Their presentation was simple and unified for the 

accurate calculation of critical load of lateral torsional 

buckling of beams. 

Bijak [32, 33] obtained approximate solutions to 

the stability equations for simply supported, unrestrained, 

monosymmetric beams with the influence of 

displacements in the plane of bending using the Bubnov -

Galerkin method. He found that the lateral - torsional 

buckling (LTB) moment depends on the bending 

distribution and on the load height effect. He solved 

numerical problems to show good consistency of his 

obtained results with those obtained using Finite Element 

Method (FEM) software. 

Piotrowski and Szychowski [34] presented 

theoretical investigations into the lateral torsional buckling 

of bisymmetric I-section beams elastically restrained 

against warping and rotation in the plane of lateral 

torsional buckling (i.e. against lateral rotation) at the 

support nodes. Their presented analysis considered the full 

range of variation of node stiffnesses from complete 

warping freedom to full warping restraint, and from 

complete lateral rotation freedom to full lateral rotation 

restraint. They further assumed the beams to be simply 

supported against bending about the major axis of the 

cross-section. They determined the critical lateral - 

torsional buckling moment by using polynomials to 

describe the twist angle function and the lateral deflection 

function of the beam and the aid of computer programmes 

based on symbolic algebra computations; and obtained 

satisfactory results when compared with results from FEM 

software. 

In this work, the finite Fourier sine integral 

transform method is used as an analytical tool to solve the 

boundary value problem (BVP) of the elastic buckling 

analysis of thin-walled beams (under uniform bending 

moments at the supports) with doubly symmetric cross-

sections, for the case of simply supported ends. 

 

THEORETICAL FRAMEWORK 

The elastic buckling analysis of simply supported 

thin-walled beams with doubly-symmetric cross-sections 

is considered. The beam cross-section is in the xy 

coordinate plane while the z axis is the longitudinal axis of 

the beam of length, l. The case of uniaxial bending for the 

specific case of a uniform moment M0 causing 

compression in the top flange, the governing equation for 

the elastic buckling of the beam is given by the fourth 

order ordinary differential equation [10]: 

 
2

0
0( ) ( ) ( )iv

w

y

M
EI z GJ z z

EI
       (1) 

 

(for  0 z l  ) 

where 

E is the Young’s modulus of elasticity 

Iw is the warping constant or Saint Venant warping 

constant 

EIy is the flexural rigidity (minor axis) 

G is the shear modulus, or the modulus of rigidity 

J is the Saint Venant torsion constant 

Iy is the moment of inertia 

(z) is the twist (rotational) displacement 

 

The primes denote differentiation with respect to 

the longitudinal axis coordinate, zz is the longitudinal 

coordinate axis, and l is the unbraced length of the beam 

subjected to constant moment in plane of the web. 

 Equation (1) is the domain governing differential 

equation for the lateral torsional buckling (LTB) of beams 

with symmetric cross-sections. Equation (1) can be 

expressed alternatively as: 
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or, 
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where, 
1
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METHOD 

 

Finite Fourier sine transformation method 

 For thin-walled beams with simply supported 

ends, the Dirichlet boundary conditions which are satisfied 

by the kernel function of the finite Fourier sine transform 

are given by Equations (6) and (7). 

 

0 0( ) ( )z z l         (6) 

 

0 0( ) ( )z z l         (7) 

 

Hence, Equation (3) can be solved by the finite 

Fourier sine transformation method. Application of the 

finite Fourier sine transformation to Equation (3) yields: 

 

1 2

0
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l

iv n z
z z z dz

l

          (8) 

n = 1, 2, 3, 4, … 

 

or, 
4 2
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0
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( ) sin

l

d z d z n z
z dz

ldz dz

   
      

   (9) 

 

Application of the linearity properties of the finite 

Fourier sine transform, and simplification yields: 
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 (10) 

 

Hence we denote: 
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l


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where(n) is the finite Fourier sine transform of (z). 

Equation (10) becomes the algebraic equation: 
4 2
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n n
n n n

l l
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 (12) 

 

Factoring out (n) we have the algebraic 

eigenvalue problem: 
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Let 
n

l


      (14) 

 

Then Equation (13) becomes: 

 
4 2

1 2
0( ) ( )n        (15) 

 

For non-trivial solutions, 0( )n  , the 

characteristic buckling equation is the fourth degree 

polynomial in  given by: 

 
4 2

1 2
0        (16) 

 

Solving, we obtain the roots as: 
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Thus, 
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Hence, the four roots of the characteristic 

buckling equation are found as: 
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where, 
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RESULTS 
 The buckling moments are obtained using the 

eigenvalues as follows: 
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Squaring both sides, we have: 
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Simplifying, 
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Further simplification yields: 
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Hence, 

 
2 2 2

0

2 1

w y

Mn n

l l EI EI

              
     

 (28) 

 

Thus, 
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or, 
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The buckling moments are obtained for the 

buckling modes as: 
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Also from Equation (20) we have: 
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Squaring, 
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Simplifying, 
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Further simplification yields 
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This Equation (35) yields the same result for the 

elastic buckling load (moment) which is given as Equation 

(31). 

 

Critical buckling moment M0cr 
 The lowest value of the buckling moment for bi-

symmetrical cross-section beams occurs from the 

expression for M0 when n = 1. The critical buckling 

moment M0cr for the case of beams with bi-symmetric 

cross-sections, under uniform moment is thus obtained as: 
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PEyy is the Euler (flexural) buckling load about the 

minor axis 

P is the torsional buckling load 

0
r  is the polar radius of gyration of the cross-section 

about the shear centre. 

 

DISCUSSIONS 

The finite Fourier sine transform method has 

been successfully used in this work as an analytical tool to 

solve the boundary value problem (BVP) of the elastic 

stability under uniform bending moment of a thin-walled 

beam with both ends 0( , )z z l   pinned. The governing 

equation is represented by the fourth order ordinary 

differential equation (ODE) given as Equation (1) for 

beams with longitudinal axis defined by the z axis. The 

finite Fourier sine transformation method is ideally suited 

to the solution of the BVP since the integral kernel 

function satisfies the Dirichlet boundary conditions at the 

pinned ends. Application of the finite Fourier sine 

transformation to the governing domain equation gave the 
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integral equation given as Equation (8). The linearity 

properties of the finite Fourier sine transform was used to 

express the integral equation in algebraic form as Equation 

(13). Equation (13) which is a homogeneous equation is an 

algebraic eigenvalue problem. The characteristic buckling 

equation was obtained for non-trivial solutions as the 

fourth degree polynomial given by Equation (16). The four 

eigenvalues (zeros) of the fourth degree polynomial were 

obtained as Equations (20) and (21). 

The buckling moments for the n buckling modes 

were found from the eigenvalues as Equation (31). The 

critical buckling moment was found to correspond to the 

first buckling mode and was obtained as Equation (36), 

which was expressed in terms of the flexural and torsional 

buckling loads as Equation (37). The expressions obtained 

for the elastic buckling moment and the critical elastic 

buckling moment agreed with the solutions presented in 

literature by researchers who used various other methods. 

 

CONCLUSIONS 

The following conclusions are made: 

a) The finite Fourier sine transformation method is an 

ideal analytical tool for the analysis of the elastic 

buckling moments of thin-walled beams (under 

uniform moments) with pinned ends at z = 0, z = l 

because the integral kernel function satisfies the 

Dirichlet boundary conditions at the pinned ends. 

b) The finite Fourier sine transform method simplified 

the boundary value problem by transforming the 

governing domain ODE to an algebraic eigen value 

problem represented/given by an algebraic 

homogeneous equation. 

c) The conditions for non-trivial solutions gave the 

characteristic buckling equation as a fourth degree 

polynomial equation. 

d) The eigenvalues were found as the roots (zeros) of the 

characteristic polynomial (equation), and were used to 

find the n buckling moments for the n buckling 

modes. 

e) The critical buckling moment was obtained as the 

minimum of the buckling moments and occurred at 

the first buckling mode. 

NOMENCLATURE 

M0 uniform (applied) bending moment 

E Young’s modulus of elasticity 

Iw Saint Venant warping constant or warping 

constant 

EIy flexural rigidity 

G shear modulus or the modulus of rigidity 

J Saint Venant torsion constant 

Iy moment of inertia 

(z) twist (rotational) displacement 

z longitudinal coordinate axis of the beam 

l unbraced length of the beam 

1 parameter defined in terms of GJ, and EIw 

2 parameter defined in terms of M0, EIw and EIy 

n integer 

 (n) finite Fourier sine transform of (z) 

 parameter defined in terms of n, l and  

1, 2 parameters defining the roots of the characteristic 

buckling equation 

PEyy Euler (flexural) buckling load about the minor 

axis 

P torsional buckling load 

0r  polar radius of gyration about the shear centre 

 integration 

 

Subscripts 

cr critical 

xy Cartesian coordinate plane of the cross-section 

 

Superscript: 

 second derivative with respect to z 

iv fourth derivative with respect to z 
2

2

( )
( )

d z
z

dz

 
 

4

4

( )
( )iv d z
z

dz


 

 
 

Abbreviations 

ODE Ordinary differential equation 

LTB Lateral torsional buckling 

FEM Finite element method 

BVP Boundary value problem 

FLB Flange local buckling 

WLB Web local buckling 
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