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ABSTRACT 

A local analysis of a foundation, based on Winkler's theory, was performed, in which a foundation line is idealized 

as a beam supported on uniformly distributed elastic supports. The deformability of the soil is represented by deformable 

supports idealized as displacement springs, and its stiffness constants depend on both the ground and the foundation used. A 

method was implemented in which the foundation is idealized as a beam, but unlike the Winkler Theory, the separation (loss 

of contact) between the ground and the foundation was allowed when normal tensile forces on the foundation were developed, 

and the interaction of the soil laterally(interaction between the springs) was added. These analyzes were proposed by means 

of matrix stiffness methods using the formulation of the beam-column element and considerations of the Winkler and Akin 

theory, implementing a case study in Maxima(GNU) which is contrasted with models performed in the finite element 

software, SAP2000 and Ansys, to validate the results. Finally, the results were compared, and the percentage change was 

established to conclude that it is possible to perform a realistic model of the structural problem of a foundation on elastic 

basis using matrix stiffness methods based on the beam-column element and the interaction of contact between the two elastic 

elements. 

 
Keywords: soil foundation, Winkler, interaction structure-soil, maxima(GNU), numerical integration, SAP2000, Ansys. 

 

1. INTRODUCTION 

In most structures, the foundation is supported on 

deformable soils, which, in practice, are considered elastic. 

Typical examples are isolated footing and grade beams. 

Therefore, when analyzing a foundation line, it can 

be idealized as a beam supported on uniformly distributed 

elastic supports, as shown in Figure-1. 

 

 
 

Figure-1. Idealization of a beam with elastic 

deformable supports. 

 

The stresses of a beam on elastic supports are 

related to its own deformation while the distribution of 

pressures in the foundation depends on the relative stiffness 

of the foundation and its elasticity. 

This problem has been extensively studied [1], [2] 

and most of the solutions that exist are based on Winkler's 

theory, which proposes that there is permanent contact 

between the ground and the beam, which means that the soil 

adheres completely to the beam. However, there are 

situations in which this assumption is not fulfilled [3] - [9], 

since the contact between the ground and the foundation can 

be lost in certain situations due to some static or dynamic 

loading conditions, such as a normal load of great 

magnitude applied eccentrically on the foundation or 

seismic loading [10] - [12]. 

This paper presents the results of a research, in 

which the formulation proposed by Akin [3] was adopted, 

wherein the foundation is idealized as a beam supported on 

elastic springs allowing separation (loss of contact) between 

the ground and the foundation, when normal tensile forces 

develop on the foundation, and the interaction of the soil is 

introduced laterally (interaction between the springs). 

This methodology for modeling foundations on 

elastic supports achieves reliable results when compared to 

finite element formulations. The proposed mathematical 

model was validated with the SAP2000 and Ansys 

software, to establish the effectiveness of the implemented 

method. 

 

2. METHODS 

 

2.1 Differential equation of equilibrium of a beam on    

      elastic supports [3], [7] 

In equation (1) is shown the differential equation 

of equilibrium of a beam on elastic supports, considering 

the loss of contact between the ground and the foundation 

when normal tension forces develop on the foundation, as 

well as the dimension of the areas where contact is lost: 

 

𝐸𝐼
𝑑4𝑤

𝑑𝑥4
+ 𝑁

𝑑2𝑤

𝑑𝑥2
− 𝑘𝑠

𝑑2𝑤

𝑑𝑥2
+ 𝑘𝑤𝑤 = 𝑞(𝑥)                  (1) 

 

Where the parameter EI is the stiffness bending of 

the beam, N is the axial tensile force, kw is the Winkler 

module, ks is the second foundation parameter and q is the 

normal load applied to the foundation. Thus, when a normal 

linear load q(x) is applied to the upper surface of the 

foundation, beam is bending, thereby the foundation resists 

this action with a linear reaction p(x). 

The classic model proposed by Winkler assumes 

that the foundation responds exclusively with a normal 

reaction p(x) to the beam, thereby this reaction is directly 

proportional to the deformation of the beam, as shown in 

equation (2). 

 

𝑝(𝑥) = 𝑘𝑤𝑤(𝑥)                                                              (2) 
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In practice, this model does not adequately 

represent the characteristics of some foundations as it 

assumes a line of uniformly distributed elastic springs that 

do not interact with each other. Therefore, several authors 

have introduced improvements to the classic Winkler model 

through an additional parameter,𝑘𝑠, that represents the 

interaction between the springs (Akin) as shown in equation 

(3). 

 

𝑝(𝑥) = 𝑘𝑤𝑤(𝑥) − 𝑘𝑠
𝑑2𝑤(𝑥)

𝑑𝑥2
                                 (3) 

 

The definition of the stiffness matrix of the 

element in local coordinates [𝑘′]ofthe beam shown in 

Figure-2 is given by equation (4). 

 

 
 

Figure-2. Idealization of the two-dimensional beam 

element on elastic supports. 

 

[𝑘′] = [𝑘1] + [𝑘2] + [𝑘3] + [𝑘4]                                    (4) 

 

Where [𝑘1] is the conventional stiffness matrix of 

a beam element, [𝑘2] is the geometric stiffness matrix that 

includes the axial load 𝑁, [𝑘3] is the stiffness matrix related 

to the second foundation parameter 𝑘𝑠 and [𝑘4] is the 

foundation stiffness matrix of Winkler. For the beam shown 

in Figure-2, the matrices are as follows: 

 

[𝑘1] = [

𝑟𝑎𝑎𝑥 𝑟𝑎𝑏𝑥 −𝑟𝑎𝑎𝑥 𝑟𝑏𝑎𝑥
𝑟𝑎𝑏𝑥 𝑟11𝑥 −𝑟𝑎𝑏𝑥 𝑟𝑙2𝑥
−𝑟𝑎𝑎𝑥 −𝑟𝑎𝑏𝑥 𝑟𝑎𝑎𝑥 −𝑟𝑏𝑎𝑥
𝑟𝑏𝑎𝑥 𝑟21𝑥 −𝑟𝑏𝑎𝑥 𝑟22𝑥

]                       (5) 

 

[𝑘2] = [

𝑟𝑔1𝑥 𝑟𝑔2𝑥 −𝑟𝑔1𝑥 𝑟𝑔2𝑥
𝑟𝑔2𝑥 𝑟𝑔3𝑥 −𝑟𝑔2𝑥 −𝑟𝑔4𝑥
−𝑟𝑔1𝑥 −𝑟𝑔2𝑥 𝑟𝑔1𝑥 −𝑟𝑔2𝑥
𝑟𝑔2𝑥 −𝑟𝑔4𝑥 −𝑟𝑔2𝑥 𝑟𝑔3𝑥

]                       (6) 

 

[𝑘3] =
𝑘𝑠

𝑁
[𝑘2]                                                                   (7) 

 

[𝑘4] = {

𝑟𝑤𝑙𝑥 𝑟𝑤2𝑥 𝑟𝑤4𝑥 −𝑟𝑤5𝑥
𝑟𝑤2𝑥 𝑟𝑤3𝑥 𝑟𝑤5𝑥 −𝑟𝑤6𝑥
𝑟𝑤4𝑥 𝑟𝑤5𝑥 𝑟𝑤𝑙𝑥 −𝑟𝑤2𝑥
−𝑟𝑤5𝑥 −𝑟𝑤6𝑥 −𝑟𝑤2𝑥 𝑟𝑤3𝑥

}                   (8) 

 

Where the coefficients 𝑟𝑎𝑎𝑥 , 𝑟𝑎𝑏𝑥 , 𝑟𝑏𝑎𝑥 , 𝑟11𝑥 and 

𝑟12𝑥 are the terms of the elastic stiffness matrix that is 

defined using the flexibilities method. 

 

2.2 Stiffness matrix in local coordinates of a  

      generalized beam-column element [7] 

The stiffness matrix in local coordinates of a 

generalized beam element is defined using the flexibility 

method, developing a calculation program in 

Maxima(GNU) Computational Algebra System, which 

allows solving the problem of numerical incorporation of 

the terms used in the flexibility matrix, as shown in the 

equation (9). 

 

𝑓] = {

𝑓11 0 0
0 𝑓22 𝑓23
0 𝑓32 𝑓33

}                                                     (9) 

 

Where the terms of the flexibility matrix are 

described by equations (10) to (13). 

 

𝑓11 = ∫
𝑑𝑧

𝐸𝐴(𝑧〉

𝑙

0
                                                                  (10) 

 

𝑓22 = ∫
𝑧2𝑑𝑧

𝐸𝐼𝑥(𝑧)

𝑙

0
+ ∫

𝑑𝑧

𝐺𝐴𝑐𝑦(𝑧)

𝑙

0
                                             (11) 

 

𝑓23 = ∫
𝑧𝑑𝑧

𝐸𝐼𝑋(𝑧〉

𝑙

0
= 𝑓32                                                      (12) 

 

𝑓33 = ∫
𝑑𝑧

𝐸𝐼𝑋(𝑧)

𝑙

0
                                                                (13) 

 

The stiffness matrix is obtained by inverting the 

flexibility sub-matrices, so its terms are implicitly defined. 

The global stiffness matrix in local coordinates of the two-

column beam-column element of Figure-3 is expressed as 

showing equation (14). 

 

 
 

Figure-3. Two-dimensional beam element with 

a variable section. 

 

[𝐾] = [
𝑘11 𝑘12
𝑘21 𝑘22

]                                                          (14) 

 

The stiffness submatrices are determined by 

equations (15) to (18). 

 

[𝑘11] = {

𝑟𝑎𝑧 0 0
0 𝑟𝑎𝑎𝑥 𝑟𝑎𝑏𝑥
0 𝑟𝑎𝑏𝑥 𝑟11𝑥

}                                            (15) 

 

[𝑘12] = {

−𝑟𝑎𝑧 0 0
0 −𝑟𝑎𝑎𝑥 𝑟𝑏𝑎𝑥
0 −𝑟𝑎𝑏𝑥 𝑟12𝑥

}                                      (16) 

 

[𝑘21] = [𝑘12]
𝑇                                                                (17) 
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[𝑘22] = {

𝑟𝑎𝑧 0 0
0 𝑟𝑎𝑎𝑥 −𝑟𝑏𝑎𝑥
0 −𝑟𝑏𝑎𝑥 𝑟22𝑥

}                                      (18) 

  

The seven terms of these stiffness sub matrices are 

defined by equations (19) to (26). 

 

𝑟𝑎𝑧 =
1

𝑓11
                                                                         (19) 

 

𝐷𝑒𝑡𝑥 = 𝑓22𝑓33 − 𝑓232                                                    (20) 

 

𝑟11𝑥 =
𝑓22

𝐷𝑒𝑡𝑋
                                                                     (21) 

 

𝑟12𝑥 =
𝑓23𝐿−𝑓22

𝐷𝑒𝑡𝑋
                                                                (22) 

 

𝑟22𝑥 =
𝑓33𝐿

2−2𝑓23𝐿+𝑓22

𝐷𝑒𝑡𝑋
                                                     (23) 

 

𝑟𝑎𝑎𝑥 =
𝑟11𝑥+𝑟22𝑥+2𝑟12𝑥

𝐿2
                                                     (24) 

 

𝑟𝑎𝑏𝑥 =
𝑟11𝑥+𝑟12𝑥

𝐿
                                                              (25) 

 

𝑟𝑏𝑎𝑥 =
𝑟22𝑥+𝑟12𝑥

𝐿
                                                              (26) 

 

2.3 Foundation stiffness matrices: Matrix related to the  

      second parameter of the foundation [𝒌𝟑]and 

      Winkler matrix [𝒌𝟒][3], [7] 

The coefficients of the geometric stiffness matrix 

are shown in equations (27) to (30): 

 

𝑟𝑔1𝑥 = −
36𝑁

30𝐿
= −

6𝑁

5𝐿
                                                      (27) 

 

𝑟𝑔2𝑥 = −
3𝑁𝐿

30𝐿
= −

𝑁

10
                                                      (28) 

 

𝑟𝑔3𝑥 = −
4𝑁𝐿2

30𝐿
= −

2𝑁𝐿

15
                                                   (29) 

 

𝑟𝑔4𝑥 = −
𝑁𝐿2

30𝐿
= −

𝑁𝐿

30
                                                      (30) 

 

For the case of the stiffness matrix of Winkler, the 

coefficients are shown in equations (31) to (36): 

 

𝑟𝑤1𝑥 =
156𝑘𝑤

420
=

39𝑘𝑤

105
                                             (31) 

 

𝑟𝑤2𝑥 =
22𝑘𝑤𝐿

420
=

11𝑘𝑤𝐿

210
                                             (32) 

 

𝑟𝑤3𝑥 =
4𝑘𝑤𝐿

2

420
=

𝑘𝑤𝐿
2

105
                                             (33) 

 

𝑟𝑤4𝑥 =
54𝑘𝑤

420
=

27𝑘𝑤

210
                                             (34) 

 

𝑟𝑤5𝑥 =
13𝑘𝑤𝐿

420
                                                                  (35) 

𝑟𝑤6𝑥 =
3𝑘𝑤𝐿

2

420
=

𝑘𝑤𝐿
2

140
                                                      (36) 

In the previous equations, 𝑘𝑤 has the units of 

stiffness (force per unit length) and 𝑘𝑠 has units of force. In 

some references, 𝑘𝑤 = 𝑠𝐿𝑒  is usually expressed, where 𝑠 is 

a contact stress and 𝐿𝑒 is an effective length of ground 

contact with the foundation. 

 

2.4 Matrix system of stiffness equations in local  

      coordinates [7] 

Performing a correctly assembling the global 

stiffness matrix of the foundation structure [𝐾], the system 

is shown in equation (37). 

 

{𝐹} = [𝐾]{𝑢}                                                                 (37) 

 

Where {𝑢} is the vector of the global 

displacements of the foundation and {𝐹} is the vector of 

external forces applied to the foundation. The matrix system 

of equations to solve in local coordinates is represented by 

equation (38). 

 

{
{𝐹1}

{𝐹2}
} = {

[𝑘11][𝑘𝑙2]

[𝑘21][𝑘22]
} {
{𝑢1}

{𝑢2}
}                                         (38) 

 

Where the force vectors {F} and displacements 

{u} of the matrix system (38) are defined by equations (39) 

to (42). 

 

{𝑢1} = {

𝑢1𝑧
𝑢1𝑦
𝜃𝑙𝑥

}                                                                  (39) 

 

{𝐹1} = {

𝐹1𝑧
𝐹1𝑦
𝑀1𝑥

}                                                                (40) 

 

{𝑢2} = {

𝑢2𝑧
𝑢2𝑦
𝜃2𝑥

}                                                                  (41) 

 

{𝐹2} = {

𝐹2𝑧
𝐹2𝑦
𝑀2𝑥

}                                                                (42) 

 

Once the element's stiffness matrix is defined in 

the local coordinates of equation (4), it is incorporated in a 

calculation system (matrix or finite element software). The 

stiffness matrix of the element in global coordinates is 

obtained using transformation matrices, and the 

connectivity between elements is defined using the 

assembly rule. 

 

2.5 Mechanical elements [3], [7] 

The mechanical elements in the foundation beam 

and the reaction forces that are transmitted to the continuous 

elastic area are defined by equation (43). 

 
{𝐹′} = [𝑘′]{𝑢′} + {𝐹𝑓

′}                                                   (43) 
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Where {𝐹′} is the vector with the mechanical elements of 

the beam in local coordinates, {𝑢′} is the vector of 

displacements of the beam in local coordinates, and {𝐹𝑓
′} is 

the vector of the fixing forces of the beam (moments and 

fixed end reactions) and [𝑘′] is the stiffness matrix of the 

element that includes the stiffness of the beam and the 

stiffness of the elastic supports, as shown in equation (44). 

 

{𝐹′} = [[𝑘1] + [𝑘2] + [𝑘3] + [𝑘4]]{𝑢
′} + {𝐹𝑓

′}             (44) 

 

The reactions that are transmitted to the elastic 

area are calculated using the equation (45): 

 

{𝐹𝑐𝑖𝑚
′ } = −[[𝑘3] + [𝑘4]]{𝑢

′}                                         (45) 

 

Therefore, equation (43) can be rewritten as 

equation (46). 

 

{𝐹′} = [[𝑘1] + [𝑘2]]{𝑢
′} − {𝐹𝑐𝑖𝑚

′ } + {𝐹𝑓
′}                     (46) 

 

Thus, the reactions transmitted to the foundation 

and the mechanical elements in the foundation are 

calculated from equations (43) to (46). 

In most footings the local axes of the foundation 

coincide with the global axes of the foundation system; 

thereby, [𝑘′] = [𝑘], {𝑢′} = {𝑢} and {𝐹′} = {𝐹} since the 

transformation matrix turns out to be the identity matrix. 

 

2.6 Angles of rotation and fixed end moments of the  

      generalized beam-column element [7] 

 
 

Figure-4. Fixed beam element with loading. 

 

In a fixed beam with a loading condition in its main plane 

of bending as shown in Figure-4, the angles of rotation can 

be determined using the conjugate beam method as shown 

in Figure-5, using an equilibrium equation and considering 

the shear deformations. The angles of rotation at the ends 1 

and 2 of the beam are calculated according to equations (47) 

and (48). 

 

 
 

Figure-5. Conjugate beam. 

 

𝜃2𝑥 =
1

𝐿
∫

𝑧𝑀0𝑥

𝐸𝐼𝑋(𝑧)

𝐿

0
𝑑𝑧 +

1

𝐿
∫

𝑉0𝑦

𝐺𝐴𝑐𝑦(𝑧)

𝐿

0
𝑑𝑧                                   (47) 

 

𝜃1𝑥 = ∫
𝑀0𝑥

𝐸𝐼𝑋(𝑧)

𝐿

0
𝑑𝑧 − 𝜃2𝑥                                                          (48) 

 

The fixed end moments in the main bending 

direction are calculated, as shown in Figure-6, using the 

equations (49) and (50). 

 

 
 

Figure-6. Fixed end moments as a function of the angles of 

rotation and stiffness of the beam. 

 

𝑀1𝑥 = 𝑟11𝑥𝜃1𝑥 − 𝑟12𝑥𝜃2𝑥                                               (49) 

 

𝑀2𝑥 = 𝑟22𝑥𝜃2𝑥 − 𝑟12𝑥𝜃1𝑥                                               (50) 

 

For a uniformly distributed load in the main plane 

of bending (𝜔𝑥), the momentum and shear equations of the 

isostatic structure are shown in equations (51) and (52). 

 

𝑀0𝑥 =
𝜔𝑥𝐿

2
𝑧 −

𝜔𝑥𝑧
2

2
                                                        (51) 

 

𝑉0𝑦 =
𝜔𝑥𝐿

2
−𝜔𝑥𝑧                                                            (52) 

 

Therefore, the fixing rotations are shown in 

equations (53) and (54). 

 

θ2x =
ωx

2E
[∫

z2dz

Ix(z〉

L

0
−

1

L
∫

z3dz

Ix(z)

L

0
] +

ωx

G
[
1

2
∫

dz

Acy(z)

L

0
−

1

L
∫

zdz

Acy(z)

L

0
]                                                                      (53) 

 

𝜃1𝑥 =
𝜔𝑥

2𝐸
[𝐿 ∫

𝑧𝑑𝑧

𝐼𝑥(𝑧〉

𝐿

0
− ∫

𝑧2𝑑𝑧

𝐼𝑥(𝑧〉

𝐿

0
] − 𝜃2𝑥                             (54) 

 

Substituting the fixed angles of rotation (53) and 

(54) in equations (49) and (50), the fixed end moments of 

the beam are obtained. 

 

2.7 Mathematical model of grade beam with  

      distributed loading 

The calculation algorithm using the software 

Maxima(GNU) performs the following calculations: 
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− Data entry: cross-sectional dimensions, length of 

sections, E, G. 

− Statement of variables for each section: hw(z), A(z), 

Acy(z), Y(z), I(z). 

− Calculate the stiffness coefficients of the matrix [𝑘1], 
which are related to the deformation of the beam in 

local coordinates. 

▪ Calculation of the integrals of the terms of flexibility 

and the integrals of the torsion factors for each section: 

Romberg approximation. 

▪ Sum of the terms of flexibility of the beam. 

▪ Sum of the terms of torsion of the beam. 

▪ Calculation of the fixed angles of rotation for a uniform 

distributed loading. 

▪ Determination of the terms of the stiffness matrix based 

on the flexibility factors. 

− Calculate the coefficients for the geometric stiffness 

matrix [𝑘2] in local coordinates. 

− Calculate the coefficients of the matrix [𝑘3]related to 

the second parameter of the foundation, ks. 

− Calculate the stiffness matrix of each element in local 

coordinates: [𝑘 ′] = [𝑘1] + [𝑘2] + [𝑘3] + [𝑘4]. 
− Calculate the foundation stiffness matrix as: 

{𝑘𝑐𝑖𝑚
′ } = −[[𝑘3] + [𝑘4]]. 

− Separate the stiffness sub-matrices of each element into 

local coordinates. 

− Assemble the stiffness matrix of the beam. (using the 

assembly rule to obtain the stiffness matrix in global 

coordinates from the stiffness sub-matrices of each 

element). 

− Calculate the fixed end moments for a uniform 

distributed loading 𝜔𝑥. 

− Calculate the shear strength at the ends of the beam V1y 

andV2y. 

− Assembly of the fixed end forces vector. 

− Stiffness matrix equation: [Fn-FFn]=[Knn][δn]. 

− Determination of the displacements [δn] 

− Matrix stiffness equation: Reaction forces: 

[Fa]=[Kan][δn]+ [FFa]. 

− Calculation of the foundation and mechanical elements 

reaction forces. 

▪ Calculate the foundation reaction forces for each 

element: {𝐹𝑐𝑖𝑚
′ } = −[𝑘𝑐𝑖𝑚

′ ]{𝑢′}. 

▪ Calculate the mechanical elements for each section: 

{𝐹′} = [𝑘 ′]{𝑢′} + {𝐹𝑓
′ }.. 

 

In Figure-7, a grade beam of a rectangular section, 

with a uniformly distributed loading in its length and 

supported on an elastic foundation, is showed. The beam 

model is represented by a discretization of four elements of 

equal length (shear deformations were not considered). 

 

 
 

Figure-7. Grade beam with a distributed loading. 

 

The cross section of the beam is 30 × 90 cm, the 

modulus of elasticity of the beam is E = 200 Ton/cm2, the 

Winkler stiffness module per unit length is 𝑘𝑤 = 5 Ton/cm, 

𝑘𝑠 = 20 Ton, 𝑁 = 5 Ton. The normal load applied to the 

beam is w=0, 01 Ton/m, and the geometric properties of the 

beam are 𝐴 = 2,700𝑐𝑚2 and 𝐼 = 1,822,500𝑐𝑚4. 
According to the discretization of the beam 

illustrated in Figure-7, and since the beam is restricted from 

movement at its ends (fixed), the degrees of freedom of the 

vector {𝑢} are: 

 

{𝑢} =

{
 
 

 
 
𝑢𝐽𝑦
𝜃1𝑥
𝑢2𝑦
𝜃2𝑥
𝑢3𝑦
𝜃3𝑥}

 
 

 
 

; 

 

Since the sections are equal and the local axes 

coincide with the global ones, only the stiffness matrices in 

local coordinates should be obtained. For beams on elastic 

supports, the stiffness matrix in local coordinates is 

calculated as: [𝑘′] = [𝑘1] + [𝑘2] + [𝑘3] + [𝑘4]. Therefore: 

 

[𝑘1
1] = [𝑘1

2] = [𝑘1
3] = [𝑘1

4]. 
 

[𝑘2
1] = [𝑘2

2] = [𝑘2
3] = [𝑘2

4]. 
 

[𝑘3
1] = [𝑘3

2] = [𝑘3
3] = [𝑘3

4]. 
 

[𝑘4
1] = [𝑘4

2] = [𝑘4
3] = [𝑘4

4]. 
 

Generally: [𝑘′
1
] = [𝑘′

2
] = [𝑘′

3
] = [𝑘′

4
]. 

 

On the other hand, the foundation matrix is, 

{𝑘𝑓𝑜𝑢𝑛
′ } = −[[𝑘3] + [𝑘4]] 

 

Hence: [𝑘𝑓𝑜𝑢𝑛
′ 1

] = [𝑘𝑓𝑜𝑢𝑛
′ 2

] = [𝑘𝑓𝑜𝑢𝑛
′ 3

] = [𝑘𝑓𝑜𝑢𝑛
′ 4

]. 

 

And the stiffness sub-matrices of each element in 

local coordinates, used to apply the assembly rule, are: 

 

[𝑘11
1 ] = [𝑘11

2 ] = [𝑘11
3 ] = [𝑘11

4 ]. 
 

[𝑘12
1 ] = [𝑘12

2 ] = [𝑘12
3 ] = [𝑘12

4 ]. 
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[𝑘21
1 ] = [𝑘21

2 ] = [𝑘21
3 ] = [𝑘21

4 ]. 
 

[𝑘22
1 ] = [𝑘22

2 ] = [𝑘22
3 ] = [𝑘22

4 ]. 
 

The fixed forces vector {𝐹𝑓} of each element is: 

 

{𝐹𝑓} =

{
  
 

  
 
𝐹𝑓1𝑦
𝑀𝑓1𝑥
𝐹𝑓2𝑦
𝑀𝑓2𝑥
𝐹𝑓3𝑦
𝑀𝑓3𝑥}

  
 

  
 

=

{
 
 

 
 
150
0
150
0
150
0 }

 
 

 
 

 (Ton) 

 

and, {𝐹} − {𝐹𝑓} = [𝐾]{𝑢}. The global displacement vector 

is,  

 

{𝑢} =

{
 
 

 
 
𝑢1𝑦
𝜃𝜃1𝑥
𝑢2𝑦
𝜃2𝑥
𝑢3𝑦
𝜃3𝑥 }

 
 

 
 

. 

 

The reaction forces of the foundation and the 

mechanical elements are calculated from: {𝐹𝑓𝑜𝑢𝑛
′ } =

−[𝑘𝑓𝑜𝑢𝑛
′ ]{𝑢′}. Therefore,{𝐹′} = [[𝑘1] + [𝑘2]]{𝑢

′} −

{𝐹𝑓𝑜𝑢𝑛
′ } + {𝐹𝑓

′}, or simply, {𝐹′} = [𝑘′]{𝑢′} + {𝐹𝑓
′}and{𝐹} −

{𝐹𝑓} = [𝐾]{𝑢}. 

 

Element 1 

{𝑢1} = {𝑢′1} = {
{𝑢𝐴}

{𝑢1}
} = {

𝑢𝐴𝑦
𝜃𝐴𝑥
𝑢𝑙𝑦
𝜃𝑙𝑥

}. 

{𝐹𝑓𝑜𝑢𝑛
′1 } = −[𝑘𝑓𝑜𝑢𝑛𝑑

′1 ]{𝑢′1} =

{
 
 

 
 
𝐹𝐴𝑦𝑓𝑜𝑢𝑛
′1

𝑀𝐴𝑥𝑓𝑜𝑢𝑛
′1

𝐹1𝑦𝑓𝑜𝑢𝑛
′1

𝑀1𝑥𝑓𝑜𝑢𝑛𝑑
′1

}
 
 

 
 

. 

 

{𝐹′1} = [𝑘′1]{𝑢′1} + {𝐹𝑓
′1} =

{
 
 

 
 𝐹𝐴𝑦

′1

𝑀𝐴𝑥
′1

𝐹1𝑦
′1

𝑀1𝑥
′1
}
 
 

 
 

. 

 

Element 2 

{𝑢2} = {𝑢′2} = {
{𝑢1}

{𝑢2}
} = {

𝑢1𝑦
𝜃1𝑥
𝑢2𝑦
𝜃2𝑥

}. 

 

{𝐹𝑓𝑜𝑢𝑛
′2 } = −[𝑘𝑓𝑜𝑢𝑛

′2 ]{𝑢′2} =

{
 
 

 
 
𝐹1𝑦𝑓𝑜𝑢𝑛
′2

𝑀1𝑥𝑓𝑜𝑢𝑛
′2

𝐹2𝑦𝑓𝑜𝑢𝑛
′2

𝑀2𝑥𝑓𝑜𝑢𝑛
′2

}
 
 

 
 

. 

{𝐹′2} = [𝑘′2]{𝑢′2} =

{
 
 

 
 
𝐹1𝑦
′2

𝑀1𝑥
′2

𝐹2𝑦
′2

𝑀2𝑥
′2}
 
 

 
 

. 

 

Element3 

{𝑢3} = {𝑢′3} = {
{𝑢2}

{𝑢3}
} = {

𝑢2𝑦
𝜃2𝑥
𝑢3𝑦
𝜃3𝑥

}. 

 

{𝐹𝑐𝑖𝑚
′3 } = −[𝑘𝑐𝑖𝑚

′3 ]{𝑢′3} =

{
 
 

 
 
𝐹2𝑦𝑓𝑜𝑢𝑛
′3

𝑀2𝑥𝑓𝑜𝑢𝑛
′3

𝐹3𝑦𝑓𝑜𝑢𝑛
′3

𝑀3𝑥𝑓𝑜𝑢𝑛
′3

}
 
 

 
 

. 

 

{𝐹′3} = [𝑘′3]{𝑢′3} =

{
 
 

 
 𝐹2𝑦

′3

𝑀2𝑥
′3

𝐹3𝑦
′3

𝑀3𝑥
′3
}
 
 

 
 

. 

 

Element4 

{𝑢4} = {𝑢′4} = {
{𝑢3}

{𝑢𝐵}
} = {

𝑢3𝑦
𝜃3𝑥
𝑢𝐵𝑦
𝜃𝐵𝑥

}. 

 

{𝐹𝑐𝑖𝑚
′4 } = −[𝑘′4]{𝑢′4} =

{
 
 

 
 
𝐹3𝑦𝑓𝑜𝑢𝑛
′4

𝑀3𝑥𝑓𝑜𝑢𝑛
′4

𝐹𝐵𝑦𝑓𝑜𝑢𝑛
′4

𝑀𝐵𝑥𝑓𝑜𝑢𝑛
′4

}
 
 

 
 

. 

{𝐹′4} =

{
 
 

 
 𝐹3𝑦

′4

𝑀3𝑥
′4

𝐹𝐵𝑦
′4

𝑀𝐵𝑥
′4
}
 
 

 
 

. 

 

2.8 SAP2000and Ansys Modeling 

The modeling of the foundation beam problem in 

the Ansyssoftware is developed using the finite elements 

BEAM3 and COMBIN14. 

BEAM3 is based on Timoshenko's theory of 

beams and includes shear deformations effects. It is a two-

node linear beam element that has three degrees of freedom 

in each node: translations in the nodal directions x, y and 

torsion around the nodal axis z. The element is defined by 

the two nodes, the cross-sectional area, the moment of 

inertia of the area, the height and the properties of the 

material. 
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COMBIN14is a damping element that has 

longitudinal and torsional capacity in 1-D, 2-D or 3-D 

applications. When it acts as a longitudinal spring damper, 

it is a uniaxial compression element with up to three degrees 

of freedom in each node: translations in the nodal directions 

x, y and z. The element does not consider bending or 

rotation. When it acts as a torsional spring damper, it is a 

rotating element with three degrees of freedom in each 

node: rotations around the x, y and z nodal axes. The 

element is defined by two nodes, a spring constant (k) and 

two damping coefficients (cv). The longitudinal spring 

constant must have units of Force/Length. 

The finite element model of the foundation beam 

using Ansysis shown in Figure-8 and Figure-9. 

 

 
 

Figure-8. Grade beam model using Ansys. 

 

 
 

Figure-9. Beam model using Ansysand loading. 

 

Using SAP2000, the T-beam model is made with 

a two-node “frame” bar element that includes the damping 

effect. The distributed load is applied in the length of the 

beam, and performing a static analysis, the degrees of 

freedom and the reaction forced in the nodes of the ends and 

the internal forces in the element are obtained. 

The finite element model of the beam on the elastic 

foundation developed using SAP2000is shown in Figure-

10. 

 

 
 

Figure-10. Beam model with springs using SAP2000. 

3. RESULTS AND DISCUSSIONS 

The integrals of the matrix formulation were 

determined and then developed in a calculation software, 

the free CAS Maxima(GNU), in order to solve the problem 

of the beam on an elastic foundation subject to uniform 

distributed loading (𝜔𝑥). The results of the mathematical 

model developed using Maxima(GNU) are compared with 

identical models of finite elements using the Ansys and 

SAP2000 software, in order to find similarity that leads us 

to conclude that the mathematical calculation of integration 

of flexibility matrices and the improvements introduced to 

the original Winkler model, are an economical and efficient 

option for the analysis of beams on an elastic foundation. 

The calculation code developed allows to consider 

the shear deformations and the haunch (taper beam). On the 

other hand, the Romberg integration technique was used to 

calculate the flexibility and rotation factors. 

As shown in Figure-11 and Figure-12, the 

illustrated results of the foundation reaction forces, and the 

mechanical elements are obtained from the flexibility 

model developed using Maxima(GNU). The units of the 

forces are Newton and the units of length are centimeters. 

 

 
 

Figure-11. Free body diagram of the beam divided  

by elements. 

 

 
 

Figure-12. Free body diagram of the beam. 

 

The foundation reaction forces obtained from the 

flexibility model developed using Maxima(GNU), and the 

finite element models using Ansys and SAP2000 

software are compared as shown in Table-1 and Table-2, in 

order to validate the matrix formulation used. The variation 

in the reaction forces of the foundation is minimal. The 

improved Winkler formulation allows to know the moment 

of the reaction forces of the foundation, this situation can 

only be validated when the torsional stiffness of the springs 

in the direction of bending is known, in this case, it was 

estimated as -6387.35 Ton. 

 

 

1

X

Y

Z

                                                                                

ELEMENTS

U

ROT

1

1 2 3 45 6 7X

Y

Z

                                                                                

ELEMENTS

ELEM NUM

PRES

1
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Table-1. Reaction forces in the foundation. 
 

 Force - ReactionN 

NODE ANSYS SAP2000 MAXIMA VAR.(%) 

1 --- --- 0.29 --- 

2 2.545 2.54 2.46 3.34 

3 4.521 4.52 4.12 8.87 

4 2.545 2.54 2.46 3.34 

5 --- --- 0.29 --- 

 

Table-2. Reaction moments in the foundation. 
 

 Moment - ReactionN-cm 

NODE ANSYS SAP2000 MAXIMA VAR.(%) 

1 --- --- 9.66 --- 

2 --- --- 28.89 --- 

3 --- --- 0 --- 

4 --- --- -28.89 --- 

5 --- --- -9.66 --- 

 

The mechanical elements obtained from the 

flexibility model developed in Maxima(GNU) and the finite 

element models using Ansys and SAP2000 are compared 

in Tables 3 to 6, in order to validate the matrix formulation 

implemented. As shown, the variation of the results does 

not exceed 1%. 

 

Table-3. Results of moment at node i of the beam. 
 

 Moment-i N-cm 

ELEM ANSYS SAP2000 MAXIMA VAR.(%) 

1 -29375 -29374.67 -29393.27 0.06 

2 3654.6 3654.57 -3688.47 0.93 

3 14566 14565.53 -14636.56 0.48 

4 3654.6 3654.57 -3688.47 0.93 

 

Table-4. Results of moment at node j of the beam. 
 

 Moment-j N-cm 

ELEM ANSYS SAP2000 MAXIMA VAR.(%) 

1 3654.6 3654.57 3688.47 0.93 

2 14566 14565.53 14636.56 0.48 

3 3654.6 3654.57 3688.47 0.93 

4 -29375 -29374.67 -29393.27 0.06 
 

Table-5. Results of shearing forces at node i of the beam. 
 

 Shear-i N 

ELEM ANSYS SAP2000 MAXIMA VAR.(%) 

1 -295.19 -295.20 295.19 0.00 

2 -147.74 -147.74 146.18 1.05 

3 -2.2603 -2.26 0.00 --- 

4 145.19 145.20 -146.18 0.68 

Table-6. Results of shearing forces at node j of the beam. 
 

 Shear-j N 

ELEM ANSYS SAP2000 MAXIMA VAR.(%) 

1 -145.19 -145.20 -146.18 0.68 

2 2.2603 2.26 0.00 --- 

3 147.74 147.74 146.18 1.05 

4 295.19 295.20 295.19 0.00 

 

The results of the modeling of the beam on the 

elastic foundation using Ansys and SAP2000 are shown 

from Figure-13 to Figure-19. These results are equal to the 

results of the improved Winkler model, therefore, the 

accuracy of the method implemented using Maxima(GNU) 

is verified. 

 

 
 

Figure-13. Isocontour of displacement in Y,  

using Ansys. 

 

 
 

Figure-14. Isocontour of the shear force using Ansys. 
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Figure-15. Isocontour of moments - Ansys. 

 

 

 

Figure-16. Isocontour Axial forces of the  

springs - Ansys. 

 

 
 

Figure-17. Results of the shear force - SAP2000. 

 

 
 

Figure-18. Results of the moment - SAP2000. 

 
 

Figure-19. Reaction forces on the foundation - SAP2000. 

 

4. CONCLUSIONS 

▪ The matrix calculation system developed in 

Maxima(GNU) based on the numerical integrals of the 

terms of flexibility, and the improved Winkler theory 

shows similar results to the results obtained with 

Ansys and Sap2000 for beams on elastic 

foundations, which allowed validating the accuracy of 

the model. 

▪ The calculation code developed integrates elements of 

beams of variable cross section, and shear 

deformations, which makes it very efficient when 

performing these types of analysis. 

▪ The improved Winkler theory allows to know the 

moments of the reaction forces of the foundation, a 

situation that can only be validated when the torsional 

stiffness of the springs in the direction of bending is 

known, which in this case, it was estimated as -6387.35 

Ton. 

▪ When using this type of model, it is very important to 

make an accurate discretization, using a reasonable 

number of elements to represent the foundation, in 

order to obtain a reliable response, especially if the 

foundation is considered displaced in a semi-space 

without lateral boundaries that fix its deformation. . 

▪ It was possible to demonstrate that a methodology of a 

classical calculation of a systematic and reasonable 

implementation, based on numerical integration and 

interaction theories, can equal the results obtained from 

robust finite element software, becoming a reliable and 

accurate option. 

▪ The effectiveness and precision of the model 

developed were verified, showing significant 

advantages in the analysis of beams on an elastic 

foundation. 

▪ The calculation possibilities that computer programs 

offer us nowadays and the advances in mathematical 

calculation techniques, leads to know that it is possible 

to solve problems of great importance in structural 

engineering without the expensive use of commercial 

software of finite elements. 
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