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ABSTRACT 

In this work we deduce Milstein’s iterative scheme of Itô-Taylor expansion from the Itô Lemma. This scheme 

allows solving numerically stochastic differential equations. Particularly, we apply this scheme to the stochastic point 

kinetics model, which is more adequate to describe the stochastic behavior of the neutron population inside a nuclear 

reactor. The results are obtained using numerical experiments, considering one and six groups of neutron precursors with 

constant reactivities, different time steps, initial conditions and Wiener processes. These results are compared with values 

reported on the literature and with the deterministic point kinetic model. With the comparison we show that the Milstein 

model is efficient in the numerical solution to the stochastic point kinetic equation. 
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INTRODUCTION 
The stochastic nature inside a nuclear reactor is 

very significative when there is the need to start or shut 

down the reactor. In the subcritical state, the movement of 

the control rods and the coolant force the stochastic effects 

to be taken into account [1]. 

Different methods have solved the stochastic 

point kinetic equations numerically, among which we can 

name: Monte Carlo and Stochastic Piecewise Constant 

Approximation [2], Euler-Maruyama and Taylor 1.5 [3], 

Fractional Stochastic Point-Kinetics [4], Simplificated 

Stocachastic Point Kinetics Equations [5], Analytical 

Exponential Model [6], Double Diagonalization-

Descomposition Method [7], Efficient Stochastic Model 

[8], Implicit Euler Maruyama [9]. 

In this work we propose to implement Milstein’s 

scheme, which will be deduced in the next section from 

the Itô-Taylor expansion starting from Itô’s lemma. We 

seek to improve the mean value approximation of the 

neutron density and the precursor concentration in the 

stochastic point kinetics, making use of an approximation 

of the variance matrix. 

 

THEORETICAL CONSIDERATIONS 
 

Itô-Taylor expansion. 
The differential for an arbitrary function with a 

random variable is defined by the Itô lemma [10] of the 

following form: 

 df(xt) = [a ∂∂x f(xt) + 12 b2 ∂2∂x2 f(xt)] dt + b ∂∂x f(xt)dωt  (1) 

 

Where 𝑎 = 𝑎(𝑥𝑡) is the drift coefficient, 𝑏 =𝑏(𝑥𝑡) is the diffusion coefficient and 𝜔𝑡 is Wiener’s 

process, characterized for being a stochastic process of 

continuous time with statistically independent and 

stationary increases that are not differentiable in time. 

Equation (1) can be written in the integral form: 

 f(xt) = f(xt0) + ∫ L0f(xτ1)tt0 dτ1 + ∫ L1f(xτ1)tt0 dωτ1       (2) 

 

Where the operators 𝐿0 and 𝐿1 are defined as: 

 L0 = a ∂∂x + 12 b2 ∂2∂x2L1 = b ∂∂x                                                           (3) 

 

The second integral on equation (2) is not a 

conventional Riemann or Lebesgue integral, instead it is a 

stochastic Itô integral. For𝑓(𝑥𝑡) = 𝑥𝑡, then 𝐿0𝑓(𝑥𝜏𝑡) = 𝑎 

and 𝐿1𝑓(𝑥𝜏𝑡) = 𝑏, it is possible to obtain 𝑥𝑡 of the form: 

 xt = xt0 + ∫ a(τ1)tt0 dτ1 + ∫ b(τ1)tt0 dωτ1                        (4) 

 

To approximate the result of the integrals, we 

apply Itô’s lemma according to equation (1) for 𝑓(𝑥𝑡) =𝑎(𝑥𝑡) and 𝑓(𝑥𝑡) = 𝑏(𝑥𝑡). The results obtained are 

replaced on equation (4) such that we obtain the following 

expression: 

 xt = xt0 + a(t0) ∫ dτ1tt0 + b(to) ∫ dωτ1tt0 + R                 (5) 

 

where 𝑅 are the remaining terms: 

  R = ∫ ∫ L0aτ2t0tt0 dτ1dτ2 + ∫ ∫ L1aτ2t0tt0 dτ1dωτ2 + ∫ ∫ L0bτ2t0tt0 dωτ1dτ2 + ∫ ∫ L1bτ2t0tt0 dωτ1dωτ2            (6) 

 

Similarly, for f(xt) = L1b(xt), we obtain: 

 xt = xt0 + a(t0) ∫ dτ1tt0 + b(to) ∫ dωτ1tt0 + L1b(to) ∫ ∫ dωτ1dωτ2τ2t0tt0 + R̃                                                                          (7) 

Where the new remaining terms are: 
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 R̃ = ∫ ∫ L0aτ2t0tt0 dτ1dτ2 + ∫ ∫ L1aτ2t0tt0 dτ1dωτ2 + ∫ ∫ L0bτ2t0tt0 dωτ1dτ2 +∫ ∫ ∫ L0L1bτ3t0τ2t0tt0 dωτ1dωτ2dτ3 + ∫ ∫ ∫ L1L1bτ3t0τ2t0tt0 dωτ1dωτ2dωτ3                                                                                 (8) 

 

Equation (7) can be rewritten in terms of Itô’s 

integrals: 

 xt = xt0 + a(t0)I(0) + b(to)I(1) + L1b(to)I(1,1) + R̃      (9) 

 

A more extensive expression for the Itô-Taylor 

expansion as a function of the Itô integrals can be obtain 

[10]. The Itô-Taylor expansion is the base for the different 

iterative schemes that give numerical solution to the 

stochastic differential equations, which is not possible to 

achieve analytically, similarly to the Taylor expansion. 

Truncating the expansion given by equation (9) in 

its fourth term, the Milstein scheme is obtained, which has 

a convergence order of 1.0. However, to reach to this 

point, it is critical to solve the 𝐼(0), 𝐼(1), 𝐼(1,1) integrals. 

Integrals 𝐼(0) 𝑎𝑛𝑑 𝐼(1) are intuitive, but 𝐼(1,1) requires some 

work, but it has the following solution: 

 I(1,1) = 12 [(wt − wt0)2 − (t − t0)]                                (10) 

 

Therefore, Milstein’s scheme written in its 

discrete form is simply: 

 xn+1 = xn + anh + bnΔω + 12 bn ∂∂xn bn[(Δω)2 − h]    (11) 

 

Where 

 h = tn+1 − tn                                                                 (12) 

 Δω = ωn+1 − ωn                                                           (13) 

 

Equation (13) represents a Wiener process, with 

the characteristic that: 𝜔𝑡=0 = 0 with probability 1 and 𝜔𝑡 − 𝜔𝑠  ~ ℵ(0, 𝑡 − 𝑠) for 0 ≤ 𝑠 ≤ 𝑡, where ℵ(𝜇, 𝜎2) 

denotes the normal distribution with expected value 𝜇 and 

variance  𝜎2[11]. 

In the following section we present a stochastic 

model for the point kinetics and we show a numerical 

solution for it, using the Milstein scheme given by 

equation (11). 

 

STOCHASTIC POINT KINETICS 
Stochastic point kinetics was presented [2] and 

consists in a set of 𝑚 + 1 stochastic differential equations 

of Itô which are non-linear and have strong variable 

coupling. This system represents the temporal evolution of 

the neutron and precursor population for a given reactivity. 

The matrix expression of this system is:  

 d|P(t)⟩ =  [Â|P(t)⟩ + |Q(t)⟩]dt + B̂1 2⁄  d|ω(t)⟩           (14) 

 

Where 

 

|P(t)⟩ = [  
  n(t)C1(t)C2(t)⋮Cm(t)]  

  
                                                            (15) 

 

Â =
[  
   
 ρ(t)−βΛ λ1 λ2 ⋯ λmβ1Λ −λ1 0 ⋯ 0β2Λ 0 −λ2 ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮βmΛ 0 0 ⋯ −λm]  

   
 
                            (16) 

 

|Q(t)⟩ = [  
  q(t)00⋮0 ]  

  
                                                               (17) 

 

B̂1/2 = [  
   √ξ 0 0 … 00 √r1 0 … 00 0 √r2 … 0⋮ ⋮ ⋮ ⋱ ⋮0 0 0 … √rm]  

                                (18) 

 

|ω(t)⟩ = [   
 ω1ω2ω3⋮ωm+1]  

  
                                                            (19) 

 

Where n is the neutron density, 𝐶𝑚 is the 

precursor concentration of the 𝑚 − 𝑡ℎ group, 𝜌 is the 

reactivity which gives information about the neutron 

production, 𝛽 is the total fraction of the delayed neutron 

precursors, Λ is the median time of neutron generation, 𝜆𝑚 

is the decay constant for the 𝑚 − 𝑡ℎ class of the delayed 

neutron precursors, q is the magnitude of the external 

source of neutrons, 𝜔𝑚 are the Wiener processes that are 

characterized for being stochastic processes of continuous 

time and independent stationary increments.  

The elements of the 𝐵̂1/2  matrix are described by: 

 ξ =  γ n(t) + ∑ λiCi(t)mi=1 + q(t)                                  (20) 

 γ = −1−ρ+υ(1−β)2+2βΛ                                                       (21) 

 rm = ν βm2Λ n(t) + λmCm(t)                                             (22) 

Where 𝜐 is the average number of generated 

neutrons by each fission event.  
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For simplicity we choose to work with the square 

root of the variance matrix on this work, as presented by 

[5] given by equation (18), since this simplifies the 

implementation of the Milstein scheme. 

If we use the iterative Milstein scheme, given by 

equation (11), to the stochastic point kinetics, we obtain 

the system of equations: 

 nk+1 = nk + [ρk−βΛ nk + ∑ λiCi kmi=1 + qk] h + √ξk ∆ω1 + 14 γ[(Δω1)2 − h]    Cm k+1 = Cm k + [βmΛ nk − λmCm k] h + √rm k∆ωm+1 + 14 λm[(Δωm+1)2 − h]                                                               (23) 

 

Equation system (23) provides an approximated 

numerical solution to the stochastic point kinetics. 

However, equation (23) can be re-written in the matrix 

form: 

 Pk+1 = Pk + [AkPk + Qk − C ]∆ + [Bk1/2 + C∗Wk]Δωk(24) 

 

Where 

 

Pk = [  
  nkC1 kC2 k⋮Cm k]  

  
                                                                     (25) 

 

Ak =
[  
   
 ρk−βΛ λ1 λ2 ⋯ λmβ1Λ −λ1 0 ⋯ 0β2Λ 0 −λ2 ⋯ 0⋮ ⋮ ⋮ ⋱ ⋮βmΛ 0 0 ⋯ −λm]  

   
 
                           (26) 

 

Qk = [   
 qk00⋮0 ]   

 
                                                                       (27) 

 

C = 14 [  
  γλ1λ2⋮λm]  

  
                                                                      (28) 

 

C∗ = 14 [  
  γ 0 0 … 00 λ1 0 … 00 0 λ2 … 0⋮ ⋮ ⋮ ⋱ ⋮0 0 0 … λm]  

  
                                        (29) 

 

Wk = [  
  Δω1 0 0 … 00 Δω2 0 … 00 0 Δω3 … 0⋮ ⋮ ⋮ ⋱ ⋮0 0 0 … Δωm]  

  
                          (30) 

 

Bk1/2 = [  
   √ξk 0 0 … 00 √r1 k 0 … 00 0 √r2 k … 0⋮ ⋮ ⋮ ⋱ ⋮0 0 0 … √rm k]  

                        (31) 

 

Equation (24) is the numerical solution to the 

stochastic point kinetics that is developed on this work. 

This scheme will be tested using constant reactivities and 

diverse initial conditions, as well as one and six precursor 

groups. This is 𝑚 = 1 and 𝑚 = 6 respectively. The results 

are presented in the following section. 

 

RESULTS  
In this section we present four simulations with 

constant reactivities, from which two are realized for a 

precursor group and two are for six precursor groups. The 

numerical simulations were realized, we implemented a 

variety of initial conditions, time steps, precursor groups 

and Wiener processes. The reproduction of the results of 

these stochastics processes is achieved using 231 − 1 as 

seed. The results obtained on this work are compared on 

median values and standard deviation with the schemes 

reported on the literature, such as: SPCA (Stochastic 

piecewise Constant Approximation) y MC (Monte Carlo)  

[2], EM  (Euler Maruyama) and T 1.5 (Taylor 1.5)  [3], 

FSNPK (Fractional stochastic point kinetic equations) [4], 

SSPK (Simplificated Stocachastic Point Kinetics 

Equations) [5], AEM (Analytical Exponential Model) [6], 

Double DDM (Double Diagonalization-Descomposition 

Method) [7], ESM (Efficient Stochastic Model) [8], IEM 

(Implicit Euler Maruyama)  [9]. The values reported on 

the literature have been written with four significative 

figures. In cases where the number of significative figures 

is less, we have added zeros. On the other hand, the results 

obtained through the stochastic model are compared with 

the median values with the deterministic formulation, 

because the last does not have values for the standard 

deviation in the tables, said information will be stated as 

non-applicable (NA). The values of the deterministic 

model have been calculated using the Euler method in its 

implicit version. The time steps for this scheme are the 

same as for the proposed scheme. 

The first two simulations were executed for one 

precursor group and reactivities of 𝜌 = −1 3⁄ 𝑝𝑐𝑚 and 𝜌 = 300 𝑝𝑐𝑚. In the first we used the parameters: neutron 

generation time Λ = 2 3⁄ (𝑠), decay constant 𝜆1 =0.1(𝑠−1), delayed neutron total precursor fraction 𝛽 = 0.05, average of generated neutrons for each fission 
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event 𝜐 = 2.5, and neutron external source 𝑞(𝑡) = 200. 

The initial conditions where 𝑛(0) = 400 and 𝐶(0) = 300. 

This simulation was realized with 40 iterations in a time 

interval of [0,2] seconds, making use of 5000 Wiener 

processes. However, in the second simulation we modeled 

a TRIGA reactor with the parameters: neutron generation 

time Λ = 0.0001 (𝑠), decay constant 𝜆1 = 0.077(𝑠𝑒𝑔−1), 

delayed neutron total precursor fraction 𝛽 = 0.0079, 

average of generated neutrons for each fission event 𝜐 = 2.432, neutron external source 𝑞(𝑡) = 10000, and 

initial conditions 𝑛(0) = 0, 𝐶(0) = 0. This simulation is 

realized with 100 iterations for a time interval of  [0,0.1] 
seconds and using 10000 Wiener processes. For this last 

simulation we have increased the time step by a factor of 104 with respect to the reported value in [5]. The results 

obtained with the proposed scheme for the first simulation 

are shown on Table-1. These results are satisfactory, 

because in the median value of the neutron density, it has a 

good approximation to the deterministic value, making it 

better than most of the schemes reported in the literature, 

and only being beaten by Monte Carlo and Implicit Euler-

Maruyama*. The standard deviation values agree with the 

reported values. It is worth noting that the Efficient 

stochastic model and Implicit Euler-Maruyama* schemes 

have modifications to the square root of the variance 

matrix and the median value matrix respectively, which 

allows them to reduce the variance in the random 

variables. The results for the TRIGA reactor are presented 

on Table-2 and show how the Milstein scheme provides 

good approximations in both the median values as in the 

standard deviation respect to the reported values and the 

deterministic model. On Figure-1 we show the neutron 

density for the deterministic model and the stochastic 

model. The values of the stochastic model fluctuate around 

the values of the deterministic model, which is a behavior 

also observable on Figure-2. The small fluctuations make 

the stochastic model for the point kinetics able to describe 

in a more real way the behavior of the neutron population 

inside a nuclear reactor. 

 

Table-1. Result comparison of the proposed scheme (M), the schemes reported in the 

literature and the deterministic model (DM). 
 

Method 𝑬[𝒏(𝟐𝒔)] 𝝈[𝒏(𝟐𝒔)] 𝑬[𝑪(𝟐𝒔)] 𝝈[𝑪(𝟐𝒔)] 
SPCA 395.3200 29.4110 300.6700 8.3564 

MC 400.0300 27.3110 300.0000 7.8073 

EM 412.2300 34.3910 315.9600 8.2656 

T 1.5 412.1000 34.5190 315.9300 8.3158 

FSNPK 412.2300 34.3918 315.9690 8.2656 

AEM 396.2800 31.2120 300.4200 7.9576 

Double DDM 402.3500 28.6100 305.8400 7.9240 

ESM 396.6200 0.9199 300.3900 0.0016 

IEM 399.7100 31.4310 299.7700 7.9411 

IEM* 399.9874 0.5439 299.8730 6.8405 

M 400.1790 31.8185 299.9753 7.9038 

DM 400.0000 NA 300.0000 NA 
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Figure-1. Neutron density by the stochastic model and the deterministic model (DM) 

for a TRIGA reactor with reactivity 𝜌 = 300 𝑝𝑐𝑚. 

 

Table-2. Result comparison of the proposed scheme (M), the schemes reported in the 

literature and the deterministic model (DM) for a TRIGA reactor. 
 

Method 𝑬[𝒏(𝟎. 𝟏𝒔)] 𝝈[𝒏(𝟎. 𝟏𝒔)] 𝑬[𝑪(𝟎. 𝟏𝒔)] 𝝈[𝑪(𝟎. 𝟏𝒔)] 
SPCA 204.5200 174.0300 1.2940x103 620.6800 

MC 199.1500 152.6300 1.2545x103 613.9400 

SSPK 208.1400 174.3000 1.2932x103 622.1200 

M 203.2214 166.8899 1.2757 x103 613.2044 

DM 203.9027 NA 1.2861x103 NA 
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Figure-2. Neutron density by the stochastic model and the 

deterministic model (DM) for a reactivity 𝜌 = 700 𝑝𝑐𝑚. 

 

The last two simulations are executed for six 

precursor groups with subcritical and critical reactivities 

of𝜌 = 300 𝑝𝑐𝑚 and 𝜌 = 700 𝑝𝑐𝑚 respectively, and the 

following parameters: neutron generation time Λ =0.00002(𝑠), decay constants 𝜆𝑖 = [0.0127, 0.0317, 0.1150, 0.3110 1.4000, 3.8700](𝑠−1), 

delayed neutron total precursor fraction 𝛽 = 0.007, 

delayed neutron precursor fraction of the i-th group βi = [0.000266, 0.001491, 0.001316,0.002849, 0.000896, 0.000182], 
average of generated neutrons by each fission event 𝜐 = 2.5, external neutron source 𝑞(𝑡) = 0, and initial 

conditions [n(0), C1(t), C2(t), … , C6(t)]T = 100 [1, β1λ1Λ , β2λ2Λ , … , β6λ6Λ]T, 

employing 5000 Wiener processes and 40 iterations.  

The time interval in which the nuclear reactor is 

simulated with subcritical and critical reactivity is [0,0.1] 



                                VOL. 14, NO. 23, DECEMBER 2019                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      4005 

and[0,0.001] seconds respectively. Tables 3 and 4 show 

the results obtained by the proposed scheme (M) and the 

reported in the literature along with the values for the 

deterministic model (DM). In these is clear that the 

Milstein scheme is excellent for the calculation of the 

expected values in comparison with the methods that do 

not have a reduction in the variance. It is to expect that 

when implementing a method with reduction of the 

variance to this scheme, it will be the one that 

approximates the most to the deterministic model values. 

 

Table-3. Result comparison of the proposed scheme (M), the schemes reported in the 

literature and the deterministic model (DM) for subcritical reactivity. 
 

Method 𝑬[𝒏(𝟎. 𝟏𝒔)] 𝝈[𝒏(𝟎. 𝟏𝒔)] 𝑬[𝑪(𝟎. 𝟏𝒔)] 𝝈[𝑪(𝟎. 𝟏𝒔)] 
SPCA 186.3100 164.1600 4.4910x105 1.9172x103 

MC 183.0400 168.7900 4.4780x105 1.4957x103 

EM 208.6000 255.9500 4.4980x105 1.2333x103 

T 1.5 199.4080 168.5470 4.4970x105 1.2188x103 

FSNPK 208.5990 255.9540 4.4981 x105 1.2333 x103 

SSPK 184.8000 186.9600 4.4890x105 0.9826x103 

AEM 186.3000 164.1400 4.4900x105 1.9119x103 

Double DDM 187.0500 167.8300 4.4880x105 1.4756x103 

ESM 179.9300 10.5550 4.4890x105 0.0947x103 

IEM 178.2700 165.1100 4.4886x105 1.2536x103 

IEM* 179.9461 0.2178 4.4888x105 0.0604x103 

M 180.5300 227.1684 4.4881 x105 2.0703 x103 

DM 179.9485 NA 4.4888x105 NA 

 

Table-4. Result comparison of the proposed scheme (M), the schemes reported in the 

literature and the deterministic model (DM) for critical reactivity. 
 

Method 𝑬[𝒏(𝟎. 𝟎𝟎𝟏𝒔)] 𝝈[𝒏(𝟎. 𝟎𝟎𝟏𝒔)] 𝑬[𝑪(𝟎. 𝟎𝟎𝟏𝒔)] 𝝈[𝑪(𝟎. 𝟎𝟎𝟏𝒔)] 
SPCA 134.5500 91.2420 4.4640x105 19.4440 

MC 135.6700 93.3760 4.4640x105 16.2260 

EM 139.5680 92.0420 4.4630x105 6.0710 

T 1.5 139.5690 92.0470 4.4630x105 18.3370 

AEM 134.5400 91.2340 4.4640x105 19.2350 

Double DDM 135.8600 93.2100 4.4630x105 17.8450 

ESM 134.9600 6.8527 4.4640x105 2.5290 

IEM 134.0200 93.2730 4.4636x105 18.7760 

IEM* 134.9218 5.9661 4.4636x105 6.0686 

M 135.1546 92.3398 4.4636 x105 18.0927 

DM 135.0010 NA 4.4636x105 NA 

 

In this section we presented simulations for one 

and six groups of precursors with different initial 

conditions, time steps and Wiener processes for constant 

reactivities. The results obtained by Milstein have been 

compared in expected value and standard deviation with 

other methods reported in the literature. Also, we 

compared with the expected value of the deterministic 

model for the point kinetics. This comparison determines 

the efficiency of the proposed scheme for the numerical 

solution of the stochastic point kinetics. 

 

CONCLUSIONS 
This work deduces the Itô-Taylor expansion 

successfully from the Itô lemma. The iterative Milstein 

scheme has been presented and then applied to the 

stochastic point kinetics using an approximated form of 

the square root of the variance matrix. The results obtained 



                                VOL. 14, NO. 23, DECEMBER 2019                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2019 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      4006 

by the proposed scheme have been analyzed and compared 

with schemes reported in the literature. This comparison 

showed that the Milstein scheme has a good 

approximation to the median values and the standard 

deviation for the neutron density and the precursor 

concentration, being possible to determinate the mean 

value of the neutron density. 

 

ACKNOWLEDGEMENTS 
The authors thank the research seed of 

Computational Physics, the research group in Applied 

Physics FIASUR, and the academic and financial support 

of the Universidad Surcolombiana. 

 

REFERENCES 
 

[1] Stacey W. 2018. Nuclear Reactor Physics. Weinheim, 

Germany: Wiley-VCH Verlag. 

[2] Hayes J. G., Allen E. J. 2005. Stochastic point kinetic 

equations in nuclear reactor dynamics. Ann. Nucl. 

Energy. 32: 572-587. 

[3] Saha R. 2012. Numerical simulation of stochastic 

point kinetic equations in the dynamical system of 

nuclear reactor. Ann. Nucl. Energy. 49: 154-159. 

[4] Saha R., Patra A. 2013. Numerical solution of 

fractional stochastic neutron point kinetic equation for 

nuclear reactor dynamics. Ann. Nucl. Energy. 54: 

154-161. 

[5] Ayyoubzadeh S. M., Vosoughi N. 2014. An 

alternative stochastic formulation for the point 

kinetics. Ann. Nucl. Energy. 63: 691-695.  

[6] Nahla A. A., Edress A. M. 2016a. Analytical 

exponential model for stochastic point kinetic 

equations via eigenvalues and eigenvectors. Nucl. Sci. 

Technol. 27: 19-27.  

[7] Da Silva M. W., Vasques R., Bodman B. E. J., 

Vilhena M. T. 2016. A nonstiff solution for the 

stochastic neutron point kinetics equations. Ann. 

Nucl. Energy. 97: 47-52. 

[8] Nahla A. A., Edress A. M. 2016b. Efficient stochastic 

model for the point kinetics equations. Stochastic 

Analysis and Applications. 34: 598-609. 

[9] Suescún D. D., Oviedo Y. M., Girón L. E. 2018. 

Solution of the stochastic point kinetics equations 

using the implicit Euler-Maruyama method. Ann. 

Nucl. Energy. 117: 45-52. 

[10] Kloeden P. E., Platen E. 1992. Numerical Solution of 

Stochastic Differential Equations. Springer-Verlag, 

New York. 

[11] Le Gall J. 2016. Brownian motion, Martingales, and 

Stochastic Calculus. Orsay Cedex, France: Springer. 


