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ABSTRACT 

This work presents the Euler-Maclaurin method with a first-order delay low-pass filter for reducing fluctuations in 

reactivity calculation. A Gaussian noise around the mean value of the measured neutron population density. This noise is 

simulated with different standard deviations, with a fixed seed to generate random numbers to reproduce the results. 

Different numerical experiments show that the proposed method offers high accuracy and low computational cost when 

compared to different methods reported in literature, especially when compared to the finite difference method and the FIR 

filter method for different forms of neutron population density. 
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INTRODUCTION 

The production of electricity at a nuclear power 

plants is based on the physical principle of nuclear fission. 

This process, discovered and studied by Austrian physicist 

Lise Meitner and German radiochemists Otto Hahn and 

Fritz Strassman, describes the division experienced by a 

nucleus of a heavy excited atom due to the interaction with 

thermal neutrons, resulting in a self-sustaining chain 

reaction. In this fission process approximately 200 MeV of 

energy are released, which are distributed among fission 

products, electrons and neutrinos. This released energy is 

controlled in the nuclear reactor by means of control bars, 

which are made of neutron absorbent materials to keep the 

neutron population constant and therefore ensure a 

controlled chain reaction. 

For the safety of a nuclear power plant, it is 

necessary to know the reactivity parameter; different 

methods have been developed to know its value more 

accurately; these methods are based on the discretization 

of neutron population density (Shimazu et al., 1987; 

Hoogenboom et al., 1988; Binney and Bakir, 1989; 

Ansari, 1991; Suescún et al., 2008; Suescún et al., 2013; 

Hessam and Vosoughi, 2013). Several of these works have 

not considered fluctuations in the reactor core (Stacey, 

2018) and can affect real-time measurements, as well as 

propagating errors in reactivity calculation. 

This work uses the Euler-Maclaurin method 

(Suescún et al., 2013) with a first-order delay low-pass 

filter (Shimazu et al., 1987) to reduce fluctuations in 

reactivity calculation, which is considered noise with 

Gaussian distribution around the mean density of neutrons. 

 

MATERIALS AND METHODS 

 

The inverse point kinetic equation  

Point kinetic equations are a set of seven 

equations: six equations for the concentration of delayed 

neutron precursors, and one for neutron population 

density.  (Duderstadt and Hamilton, 1976): 

 

dP(t)dt = [ρ(t) − β Λ ] P(t) + ∑ λi6i=1 Ci(t)                               (1) 

 dCi  (t)dt + λiCi =  βiΛ P(t)                                                     (2) 

 

Where 𝐶𝑖 is the concentration of the i-th group of 

delayed neutron precursors, P(t) is the neuron population 

density, 𝜌(𝑡) is reactivity, 𝛬 is the neutron generation 

time, 𝛽𝑖 is the i-th fraction of delayed neutrons, 𝛽 is the 

effective total fraction of delayed neutrons, and 𝜆𝑖 is the 

decay constant of the  i-th group of delayed neutron 

precursors. 

Equations (1) and (2) are subject to the following 

initial conditions that indicate the criticality of a reactor: 

 P(t = 0) = 𝑃0                                                                  (3) 

 Ci(t = 0) =  βiΛ 𝑃0                                                             (4) 

 

To calculate reactivity, it is first of all necessary to solve 

equation (2) and solve  𝜌(𝑡) of equation (1), and the 

following can be obtained: 

 ρ(t) =β +  ΛP(t) dP(t)dt −  〈P0〉P(t) ∑ βi6i=1 e−λit −1P(t) ∑ ∫ λiβie−λi(t−t′)P(t′) dt′t06i=1                                      (5) 

 

Equation (5) represents an expression for 

reactivity. It is used in the different methods which have 

been proposed, since it is the basis for the construction of 

digital reactivity meters, however there are difficulties in 

the implementation of this expression in real time, and it is 

therefore necessary to discretize the integral term known 

as neutron population density history.  

 

PROPOSED METHOD 

To discretize the neutron population density 

history of equation (5), the Euler-Maclaurin formula is 
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used, which permits to change from continuous space to 

discrete space: 

 ∫ F(k)dk =n0∑ F[x] + 12 [F[0] + F[n]] − ∑ Bm(2m)! [F(2m−1)[n] −∞m=1n−1x=1F(2m−1)[0]]                             (6) 

 

Term 𝐵𝑚 refers to the Bernoulli numbers. 

By replacing the value of m by the unit, it is 

possible to rewrite equation (6) considering only the first 

Bernoulli number 

 ∫ F(k)dk = ∑ F[x] + 12 [F[0] + F[n]] − B12! [F(1)[n] −n−1x=1n0F(1)[0]]                                                                             (7) 

 

where 𝐵1 = 1/6. 

 

The continuous response of the system to a unit 

impulse function (Suescún et al., 2008) is defined by: 

 hi(t − t′) = λiβie−λi(t−t′)                                                (8) 

 

By replacing equation (8) in the integrand of 

equation (5), we can express: 

 F(t′) = hi(t − t′)P(t′)                                                     (9) 

 

A discrete version of equation (9) will be: 

 F[x] = hi[n − x]P[x]                                                     (10) 

 

Since the final term of equation (7) indicates the 

first derivative, it is necessary to derive equation (10) 

once, this is: 

 F(1)[x] = hi(1)[n − x]P[x] + hi[n − x]P(1)[x]              (11) 

 

Equation (10) is evaluated in 𝑥 = 𝑛  and 𝑥 = 0 

respectively. Obtaining: 

 F[n] = hi[0]P[n]                                                           (12) 

 F[0] = hi[n]P[0]                                                           (13) 

 

By replacing equations (12) and (13) in equation 

(11) we have: 

 F(1)[n] = hi(1)[0]P[n] + hi[0]P(1)[n]                          (14) 

 F(1)[0] = hi(1)[n]P[0] + hi[n]P(1)[0]                          (15) 

 

By subtracting (14) and (15) the final term of 

equation (7) can be rewritten in the following way:  

 F(1)[n] − F(1)[0] = [hi(1)[0]P[n] + hi[0]P(1)[n]] −[hi(1)[n]P[0] + hi[n]P(1)[0]]                                        (16) 

 

Replacing the value of  𝐵1 in equation (7) we 

have: 

 ∫ F(k)dk = ∑ F[x] + 12 [F[0] + F[n]] −n−1x=1n0 112 [F(1)[n] −F(1)[0]]                                                                           (17) 

 

Now, replacing equations (9-10) in equation (17) 

the following is obtained:  

 ∫ hi(t − t′)P(t′)dt′ =n0 ∑ hi[n − x]P[x] +n−1x=112 [F[0] + F[n]] − 112 [F(1)[n] − F(1)[0]]                        (18) 

 

Replacing equations (12-13) along with equation 

(16) in equation (18) the following is obtained:  

 ∫ hi(t − t′)P(t′)dt′ =n0 ∑ hi[n − x]P[x]nx=1 −12 [hi[n]P[0] + hi[0]P[n]]] −  112 [hi(1)[0]P[n] +hi[0]P(1)[n] − hi(1)[n]P[0] − hi[n]P(1)[0]]                 (19) 

 

It is important to note that there is a relationship 

of equivalence between continuous time and discrete time, 

given by 𝑡 = 𝑛𝑇, where T is the time step in the reactivity 

calculation.   

Replacing equation (19) in equation (5) we obtain: 

 ρ[n] = β + ΛP[n] P(1)[n] −  〈P0〉P[n] ∑ βi6i=1 e−λinT −TP[n] ∑ [∑ hi[n − x]P[x]nx=1 − 12 [hi[n]P[0] +6i=1hi[0]P[n]]]] +  T212P[n] ∑ [hi(1)[0]P[n] + hi[0]P(1)[n] −6i=1hi(1)[n]P[0] − hi[n]P(1)[0]]                                          (20) 

 

In equation (20) the first four terms represent a 

FIR filter with trapezoidal correction (Suescún et al., 

2008). Equation (20) was obtained by (Suescún et al., 

2013), but the noise present in neutron density was not 

considered when making real-time measurements in a 

nuclear reactor (Stacey, 2018). 

This study analyses the accuracy of the method 

for calculating reactivity when the first four terms of 

equation (20) are combined, representing a FIR filter, with 

the correction of the first Bernoulli number in the presence 

of noise in neutron density. 

In order, the method can be applied when the 

neutron population density measurement presents random 

noise; the fluctuations in the input signal of the neutron 

population density are considered to have Gaussian noise 

around the mean value (Kitano et al., 2000): 

 Pi̅ = 1N ∑ PjNj=1                                                                   (21) 

 

To reduce fluctuation in the neutron population 

density signal, a digital filter called first-order delay low-

pass filter is applied (Shimazu et al., 1987), being used to 
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filter noise in low-frequency signals, and is given by the 

expression: 

 Pi = Pi−1 + TT+τ (Pi̅ − Pi−1)                                             (22) 

 

Where τ is named the filtration constant, and for this case τ 
= 0.1 s and τ = 1.5 s is considered. 

 

 

 

RESULTS AND DISCUSSIONS 

The results of the numerical simulations 

performed for different forms of the neutron population 

density are shown below, where the term 
Λ𝑃[𝑛] 𝑃(1)[𝑛]  in 

equation (20) is not taken into account, taking different 

time step in the calculation of the reactivity. The standard 

deviation is varied, for all the examples, between σ = 0.01 

and σ = 0.001, the low pass filter is applied with 10 
numbers of samples in all the numerical experiments and a 

filtering constant of τ = 0.1 s in the first two examples. 
Then, the filtering constant is increased for τ = 1.5 s. To 
generate noise with Gaussian distribution, a seed 

generating random numbers of 231 − 1 is used. The 

physical constants considered to develop this research are 

presented in Table-1. The reference method is obtained by 

solving analytically the equation (5). All simulations were 

performed with a time step of T = 0.1 s. 

 

Table-1. Typical precursor coefficients for 
235 

U. 
 

Group 1 2 3 4 5 6 

i [s
-1

] 0.0127 0.0317 0.115 0.311 1.4 3.87 

i  0.000266 0.001491 0.001316 0.002849 0.000896 0.000182 

Λ=2× 10−5 [s] 

β=7 × 10−3 

 

Case I 

Tables 2-3 show the results obtained by 

comparing the Euler-Maclaurin method with the finite 

difference method by applying low-pass filter, with 

filtering constant τ=0.1 and a sample number of 10; the 
population density of neutrons is of the form 𝑃(𝑡) = 𝑎 +

𝑏𝑡3  with  𝑏 = 3.67x10−11  and a standard deviation of σ 
= 0.001 and  σ =0.01 respectively. 

For the numerical experiments under the same 

conditions presented in the finite difference method 

(Suescún and Senra, 2010), it is evident that the proposed 

Euler-Maclaurin with low-pass filter method gives 

significant reduction in neutron population density 

fluctuations without causing attenuation. 

 

Table-2. Maximum difference in pcm for a neutron population density of the form 𝑃(𝑡) = 𝑎 + 𝑏𝑡3 with 𝑏 = 3.67𝑥10−11  with σ =0.001. 
 𝐏(𝐭) = 𝐚 + 𝐛𝐭𝟑 𝐭𝐟 = 𝟏𝟎𝟎𝟎𝟎 𝐬 

σ=0.001, τ=0.1 

Maximum Differences in reactivity [pcm] 

Finite Diff 

+ 

Low-Pass Filter 

Euler-Maclaurin 

+ 

Low-Pass Filter 𝑎 = 1 b = 3.67x10−11 0.76 in t=5374 s 0.60 in t=1697.1 s 

 

Table-3. Maximum difference in pcm for a neutron population density of the form 𝑃(𝑡) = 𝑎 + 𝑏𝑡3 with 𝑏 = 3.67𝑥10−11with σ =0.01. 
 𝐏(𝐭) = 𝐚 + 𝐛𝐭𝟑 𝐭𝐟 = 𝟏𝟎𝟎𝟎𝟎 𝐬 

σ=0.01, τ=0.1 

Maximum Differences in reactivity [pcm] 

Finite Diff 

+ 

Low-Pass Filter 

Euler-Maclaurin 

+ 

Low-Pass Filter 𝑎 = 1 b = 3.67x10−11 6.61 in t=2932 s 5.79 in t=1697.1 s 

 

Case II 

Tables 4-7 show a comparison of mean errors and 

maximum difference in reactivity for the Euler-Maclaurin 

method and the FIR filter method, applying the low-pass 

filter, for an exponential neutron population density with 

different values of 𝜔 and different time step in reactivity 

calculation. In these experiments, it is shown that applying 

the Euler-Maclaurin method with first-order delay low-

pass filter, a reduction in the reactivity fluctuation is 

obtained. Although the first four terms of equation (13) 

determine the FIR filter, the correction of the first 
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Bernoulli number improves the results when comparing with the FIR filter. 

 

Table-4. Absolute mean error for a neutron population density of the form P(t)=exp(𝜔𝑡) 

with different values of  𝜔 with σ =0.001. 
 

P(t)=exp(wt) σ=0.001, τ=1.5 

Mean absolute error [pcm] 

Trapezoidal FIR 

+ 

Low-Pass Filter 

Euler-Maclaurin 

+ 

Low-Pass Filter 𝑡𝑓 = 1000 𝜔 = 0.00243 0.43 0.09 𝑡𝑓 = 800 𝜔 = 0.01046 0.55 0.28 𝑡𝑓 = 600 𝜔 = 0.02817 0.86 0.69 

 

Table-5. Maximum difference in pcm for a neutron population density of the form P(t)=exp(𝜔𝑡) 

with different values of  𝜔 with σ =0.001. 
 

P(t)=exp(wt) 

σ=0.001, τ=1.5 

Maximum Differences in reactivity [pcm] 

Trapezoidal FIR 

+ 

Low-Pass Filter 

Euler-Maclaurin 

+ 

Low-Pass Filter 𝑡𝑓 = 1000 𝜔 = 0.00243 2.18 in t=4 s 1.79 in t=4 s 𝑡𝑓 = 800 𝜔 = 0.01046 7.42 in t=3 s 7.04 in t=3 s 𝑡𝑓 = 600 𝜔 = 0.02817 18.52 in t=3 s 18.13 in t=3 s 

 

Table-6. Absolute mean error for a neutron population density of the form P(t)=exp(𝜔𝑡) 

with different values of  𝜔 with σ =0.01. 
 

 

P(t)=exp(wt) 

σ=0.01, τ=1.5 

 

Mean absolute error [pcm] 

Trapezoidal FIR 

+ 

Low-Pass Filter 

Euler-Maclaurin 

+ 

Low-Pass Filter 𝑡𝑓 = 1000 𝜔 = 0.00243 0.74 0.65 𝑡𝑓 = 800 𝜔 = 0.01046 0.82 0.72 𝑡𝑓 = 600 𝜔 = 0.02817 1.06 0.95 

 

Table-7. Maximum difference in pcm for a neutron population density of the form 

P(t)=exp(𝜔𝑡) with different values of 𝜔 with σ =0.01. 
 

 

P(t)=exp(wt) 

σ=0.01, τ=1.5 

 

Maximum Differences in reactivity [pcm] 

Trapezoidal FIR 

+ 

Low-Pass Filter 

Euler-Maclaurin 

+ 

Low-Pass Filter 𝑡𝑓 = 1000 𝜔 = 0.00243 4.05 in t=5 s 3.66 in t=5 s 𝑡𝑓 = 800 𝜔 = 0.01046 8.96 in t=4 s 8.59 in t=4 s 𝑡𝑓 = 600 𝜔 = 0.02817 19.28 in t=4 s 18.91 in t=4 s 

 

Figures 1-2 shows the reactivity curve when 

carrying out simulations without applying the low pass 

filter, and when the low pass filter is applied, respectively. 

Gaussian noise is generated with a standard deviation σ = 

0.01. It can be seen that considering the Euler-Maclaurin 

method only is not satisfactory for reactivity calculation 

because it produces errors of approximately 35% of its real 

value, and when combined with the first-order delay low-

pass filter, there is a reduction in fluctuation, obtaining a 

maximum difference of 8.59 pcm in t=4 s, close to 11% of 

the real value, but with a very low absolute mean error of 

0.72 pcm, which is shown in Figure-3, for 𝜔 = 0.01046. 
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Figure-1. Comparison of reactivity for neutron population 

density of the form P(t)=exp(𝜔𝑡) with 𝜔 = 0.01046 

without applying low-pass filter with 𝜎 = 0.01. 
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Figure-2. Comparison of reactivity for neutron population 

density of the form P(t)=exp(𝜔𝑡) with 𝜔 = 0.01046 

applying low-pass filter with 𝜎 = 0.01. 
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Figure-3. Comparison of absolute mean error for a neutron population density of the form 

P(t)=exp(𝜔𝑡) with 𝜔 = 0.01046 using low-pass filter with con 𝜎 = 0.01. 

 

Case III 

Tables 8-11 show the results of simulations for 

neutron population density of the form of  𝑃(𝑡) = 𝑎 + 𝑏𝑡3 

where a=1 is fixed and the value of b is varied, obtaining a 

constant value in absolute mean error when using the 

Euler-Maclaurin method with a σ =0.001 standard 

deviation. It is shown that Euler-Maclaurin methods with 

low-pass filter significantly reduce the fluctuations which 

are present in neutron population density.  
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Table-8. Absolute mean error for a neutron population density of the form 𝑃(𝑡) = 𝑎 + 𝑏𝑡3 

with different values of b with σ =0.001. 
 𝑷(𝒕) = 𝒂 + 𝒃𝒕𝟑 , 𝒕𝒇 = 𝟏𝟎𝟎𝟎𝟎 𝒔 

 

σ=0.001 , τ=1.5 

Mean absolute error [pcm] 

Trapezoidal FIR 

+ 

Low-Pass Filter 

Euler-Maclaurin 

+ 

Low-Pass Filter 𝑎 = 1 b= (0.0127)
 5 

/9 0.40 0.06 𝑎 = 1 b= (0.0127)
 4 

/40 0.40 0.06 𝑎 = 1 b= (0.0127)
 4 

/4 0.40 0.06 

 

Table-9. Maximum difference in pcm for a neutron population density of the form 𝑃(𝑡) = 𝑎 + 𝑏𝑡3 with different values of b with σ =0.001. 
 𝑷(𝒕) = 𝒂 + 𝒃𝒕𝟑 , 𝒕𝒇 = 𝟏𝟎𝟎𝟎𝟎 𝒔 

 

σ=0.001, τ=1.5 

Maximum Differences in reactivity [pcm] 

Trapezoidal FIR 

+ 

Low-Pass Filter 

Euler-Maclaurin 

+ 

Low-Pass Filter 𝑎 = 1 b= (0.0127)
 5 

/9 0.76 in t=4503 s 0.36 in t=4503 s 𝑎 = 1 b= (0.0127)
 4 

/40 0.78 in t=1697 s 0.39 in t=1697 s 𝑎 = 1 b= (0.0127)
 4 

/4 0.79 in t=307 s 0.39 in t=307 s 

 

Table-10. Absolute mean error for a neutron population density of the form 𝑃(𝑡) = 𝑎 + 𝑏𝑡3 

with different values of b with σ =0.01. 
 𝑷(𝒕) = 𝒂 + 𝒃𝒕𝟑 , 𝒕𝒇 = 𝟏𝟎𝟎𝟎𝟎 𝒔 

σ=0.01, τ=1.5 

Mean absolute error [pcm] 

Trapezoidal FIR 

+ 

Low-Pass Filter 

Euler-Maclaurin 

+ 

Low-Pass Filter 𝑎 = 1 b= (0.0127)
 5 

/9 0.73 0.65 𝑎 = 1 b= (0.0127)
 4 

/40 0.73 0.65 𝑎 = 1 b= (0.0127)
 4 

/4 0.72 0.64 

 

Table-11. Maximum difference in pcm for a neutron population density of the form 𝑃(𝑡) = 𝑎 + 𝑏𝑡3 with different values of b with σ =0.01. 
 𝑷(𝒕) = 𝒂 + 𝒃𝒕𝟑 , 𝒕𝒇 = 𝟏𝟎𝟎𝟎𝟎 𝒔 

σ=0.01,τ=1.5 

Maximum Differences in reactivity [pcm] 

Trapezoidal FIR 

+ 

Low-Pass Filter 

Euler-Maclaurin 

+ 

Low-Pass Filter 𝑎 = 1 b= (0.0127)
 5 

/9 3.91 in t=4503 s 3.51 in t=1697 s 𝑎 = 1 b= (0.0127)
 4 

/40 3.90 in t=4503 s 3.49 in t=1697 s 𝑎 = 1 b= (0.0127)
 4 

/4 3.90 in t=4503 s 3.49 in t=4502.9 s 

 

Figures 4-6 show a comparison between the FIR 

Filter method and the Euler-Maclaurin method by 

applying Gaussian noise with σ =0.001 standard deviation. 

When applying the low-pass filter in both methods, it can 

be seen that the Euler-Maclaurin method overlaps the 

reference method given by the analytical solution of 

equation (5), while the FIR filter with low-pass filter is 

below this method, obtaining an absolute mean error 

greater than that obtained using the Euler-Maclaurin 

method. This is, when using the proposed method, in other 

words, using the Euler - Maclaurin method with the first-

order delay low-pass filter, there are no attenuations in 

reactivity calculation, distinct from what happens in the 

case of the FIR filter and the finite difference method 

(Suescún et al., 2010) with a first-order delay low-pass 

filter. 
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Figure-4. Comparison of reactivity for a neutron 

population density of the form 𝑃(𝑡) = 𝑎 + 𝑏𝑡3 with 𝑏 = (0.0127)5/9 without applying low-pass filter with 𝜎 = 0.001. 
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Figure-5. Comparison of reactivity for a neutron 

population density of the form  𝑃(𝑡) = 𝑎 + 𝑏𝑡3 with 𝑏 = (0.0127)5/9 applying low pass filter with 𝜎 =0.001. 
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Figure-6. Comparison of absolute mean error for a 

neutron population density of the form 𝑃(𝑡) = 𝑎 + 𝑏𝑡3 

with 𝑏 = (0.0127)5/9 using low-pass filter with 𝜎 =0.001. 

 

CONCLUSIONS 

Numerical experiments were carried out to reduce 

fluctuations in the calculation of reactivity for different 

forms of neutron population density, generating random 

numbers with a seed of 231 − 1, to simulate noise with 

different standard deviations around a mean nuclear 

density value, ignoring the term 
Λ𝑃[𝑛] 𝑃(1)[𝑛] in equation  

(20). The filtering constant of the low-pass filter varied 

from τ=0.1 to τ=1.5, and the corresponding simulations 
were carried out, leaving the time step fixed at T=0.1 s. 

The numerical experiments show that when the proposed 

method is used, there is no attenuation, and the reduction 

of fluctuation in reactivity calculations is successfully 

achieved.  
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