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ABSTRACT 

Geodesic domes are self-supporting spatial structures without additional support. When these are broken down 

into their elements, geodesic lines are used. In this area, the research into geometric models of double-contour geodesic 

shells is conducted. The features of these works include the use of trihedral and hexagonal pyramidal structures as the first 

contour of the geodesic shell. However, for the formation of such structures, tetrahedral pyramids can also be used. The 

purpose of this research is to develop methods, algorithms and software for double-contour geodesic shells with tetrahedral 

pyramids. To solve these problems, the duality principle was used, in addition to methods of analytic geometry and 

programming in language GDL embedded in ArchiCAD. As a result, the ArchiCAD parametric object of a double-contour 

geodesic shell with tetrahedral pyramids has been developed. This program can be used in the architectural and structural 

design of unique buildings. 

 
Keywords: geodesic domes, double-contour geodesic sells, a duality principle, ArchiCAD parametric object, programming language 

GDL. 

 

INTRODUCTION 

Domes are self-supporting spatial structures 

without additional support. Geodesic domes are a class of 

domes that, when broken down into their elements, use 

geodesic lines. 

Double-contour geodesic domes, in addition to 

the basic lamellar contour, have a rod contour that 

provides the durability and stability of the structure.  

The configuration of the second contour can 

repeat the configuration of the first contour [1] or it can 

differ from it. In the latter case, the second contour can be 

based on heuristic approaches or the principle of the 

duality of polyhedrons/networks [2]. 

 

 
 

Figure-1. Configurations of the second contour: identical 

configuration with racks a) different configuration b). 

 

The duality principle has been widely applied in 

technical appendices. In the field of the theory of 

polyhedron duality in Platonic solids, there is the 

developed DPM mechanism of the creation of a dual body 

[3]. It is established that each polyhedron P has a dual 

polyhedron P*, which means that P* is similar to P. The 

algorithm of the construction of dual convex polyhedrons 

[4] is developed. If to consider non-convex polyhedrons, 

the dual polyhedron turns out also not to be convex and it 

has self-intersecting faces. For this case, it expands the 

concept of a polyhedron duality, having admitted there to 

be self-intersecting faces. 

In the mechanics area, the topological 

optimisation of truss is considered by the means of 

defining a subset of rods on the given discrete lattice. As 

the criterion functions, either the minimum compliance of 

the structure or the minimum volume of the structure is 

used. It is shown that these formulations of the 

optimisation problem are dual - solutions to both criteria 

will be equivalent for both problems [5]. 

In the field of geometry and topology, duality in 

non-polyhedral bodies is considered. The duality principle 

extends to the bodies with flat faces - polyliners. These 

polyliners bind to the structure of alternating nodes[6]. 

The triangular grid for the purpose of surface 

representation is considered. The duality grid which edges 

turn out by the means of moving the double vertices along 

a gradient of a function of weight is being built. It is 

established that this approach applies to self-supporting 

structures [7]. The application of the Minkowski sum and 

the difference of the convex polyhedrons is considered. An 

exact and effective algorithm for the computing of the 

Minkowski difference for polyhedrons is developed. Its 

duality to the contributing vertices concept of the 

Minkowski operations is shown [8].An oriented polygonal 

surface is considered. It is offered for the purpose of the 

storage of this surface to use the new combinatorial data 

structure PDER (vertices and faces, which are dual with 

the vertices). This ensures that the surface is a 2-manifold 

and that it has the property of primary / dual efficiency [9]. 

In the field of nonlinear optimisation, the 

problem of the optimisation of elastic structures is 

considered. For this problem decision, the method of penal 

functions is applied. It is underlined that there is a 

possibility of numerical instability in this method. It has 

been offered to solve this problem using Lagrangian 

duality [10].  
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METHOD OF CONFIGURATION DETERMINING  
For the determining of a configuration of the 

second contour of geodesic shells, first, it is offered to use 

a principle the duality of networks of the first and second 

contours. Second, it is offered to use a principle of 

uniformity (equal strength) in the network of the second 

contour. Thirdly, it is offered to use a principle of the 

connectivity of a network in the second contour.  

Accordingly, the principle of duality a networks 

assumes there to be conformity between the elements of 

two networks. For example, the face of one network 

corresponds to the vertex of another. In this case, we will 

put in conformity a top of a tetrahedral pyramid of the first 

contour and a vertex of the second contour. 

The principle of uniformity of the second contour 

assumes the same value of the degrees of the graph nodes 

that correspond to the same number of arcs converging in 

the node. In this case, this will ensure that there is no 

excessive network concentration in some of the nodes. 

The principle of connectivity of the second contour will 

provide equal strength in the second contour of the shell. 

Consequently, in order to implement this principle, it is 

necessary to solve the problem of ensuring connectivity 

for the rods located across the borders of the Moebius 

triangle. 

Stage 1. The initial parametric object is a single-

contour geodesic shell of class I1; 4 (see Figure-2, a) 

The task is not to use the initial plates, but instead 

to form pyramids. The shell surface consists mainly of flat 

quadrangular plates. It is necessary to find the coordinates 

of the centre of the quadrangle - P1 as an average value of 

corresponding coordinate (X, Y, Z) of all of the vertices of 

a quadrangle. 

 

  

 

Figure-2. The scheme of the formation of parametric 

object I1; P4: initial object I1; 4, the scheme of formation 

of a pyramid for object I1; P4 (where the following 

notation is used: I - icosahedron, 1 - single-contour shell, 4 

- quadrangular plates, P4 - tetrahedral pyramids). 

 

Next, we lift the point P1 perpendicularly to this 

quadrangle to the height of the pyramid h. To perform the 

lifting of point P1, we use the transition formulas from the 

spherical coordinate system to the Cartesian and back. The 

origin of this system of coordinates corresponds to the 

sphere centre. We transform the Cartesian coordinates of 

P1 into a spherical system.Next, we move the P1 along the 

ray connecting the centre of the sphere and P1 on the 

height of a pyramid in the spherical coordinate system. We 

get point P2. Next, we perform the inverse transformation 

on the Cartesian coordinate system. 

 𝑋 = 𝑟 ∗ sin(𝜃) ∗ cos⁡(𝜑) 𝑌 = 𝑟 ∗ sin(𝜃) ∗ sin⁡(𝜑) 𝑍 = 𝑟 ∗ cos⁡(𝜃) 𝑟 = √𝑋2 + 𝑌2 + 𝑍2 𝐹𝑖 = 𝐴𝑟𝑐𝑡𝑔 𝑌𝑋 𝐸𝑡 = 𝐴𝑟𝑐𝑡𝑔 (√𝑋2 + 𝑌2𝑍 ) 

Where X, Y, Z - the Cartesian coordinates, r, Fi, 

Et - spherical coordinates (r - sphere radius, Fi - a 

longitude, Et - polar distance). 

Stage 2. Next it is necessary to generate the 

second contour connecting part of the tops of the pyramids 

being guided by the formulated principles. The 

configuration of the second contour is that which includes 

the rods settling down across the borders of a triangle of 

Moebius. Therefore it is necessary to solve the problem of 

the visualisation of rods of the second contour belonging 

to various triangles of Moebius. 

The program of the parametric object has only 

one Moebius triangle. Other Moebius triangles are 

generated by the turns of this initial triangle. Therefore it 

is necessary to perform a visualisation only on the part of 

the rod that belongs to the initial Moebius triangle. 

Consequently, it is necessary to provide a connection for 

the parts of the rod belonging to various triangles. This is 

possible to reach using methods of analytic geometry [11]. 

 

 
 

Figure-3. The scheme of the formation of a connected rod 

of the second contour (P2 and P2 - tops of the pyramids, 

P0 - the centre of the circumscribed sphere, P1 and P1’ - 
the centres of quadrangles, P3, P4, P5, P6, P3’, P6’ - 

corners of quadrangles, P7 - projection P2 on P4-P5, P8 - 

projection P2 on P0-P7 (the middle of rod P2-P2’)). 
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The problem of the calculation of the foot of the 

perpendicular drawn from a given point to a given line is 

known. Accordingly, we use our decisions related to this 

problem to develop an algorithm for ensuring the 

connectivity of the second contour (see Figure-3).  

Algorithm. Calculating the centre of a rod. 

Step 1. We will calculate the coordinates of the 

foot of the perpendicular drawn from point P2 to straight 

line P4-P5. Thus, we will get point P7. 

Step 2. We will calculate the coordinates of the 

foot of the perpendicular drawn from point P2 to straight 

line P0-P7. Thus, we will get point P8. It will be the 

middle of rod P2-P2’. 
 

 
 

Figure-4. The scheme used for the calculation of the 

coordinates of the foot of the perpendicular (M0 - a point 

in space, L - a straight line, P1, P2 - the points on a 

straight line, K - the foot of the perpendicular). 

 

Point M0 and straight line L is located in space. It 

is necessary to find the foot of the perpendicular drawn 

from this point to straight line L. Plane R passes through 

point M0 and line L. Plane Q passes through point M0 and 

point K, and this plane is perpendicular to line L. It is 

known that the coordinates of point K can be found by 

solving together a system of three equations representing 

line L(1), plane Q(2), and plane R(3). 

It is used following the sub-algorithm at at each 

step of the main algorithm (see Figure-4). 

Sub-algorithm. The calculation of the foot of the 

perpendicular. 

Step 1.Calculating the coefficients of a linear 

equation system. 
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Where 
121 XXl  , 

121 YYm  , 
121 ZZn  . 

For example, after some of the transformations 

involved in the calculation of the foot of the perpendicular 

drawn from the given point P2 to the given straight line 

P4-P5, the linear equations system look like: 
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Where 541 XXl  , 541 YYm  , 541 ZZn  , 

    12512531 mZZnYYK  , 

    12512532 lZZnYYK  , 

    12512533 lZZmYYK  . 

Step 2.The solution of the linear equation system. 
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To solve the system of linear equations (4), we 

used Cramer’s rule (the calculation of the coordinates of 

point P7) [12]. 

 

Implementation in THE GDL language 

In NNGASU, the system of the automated 

architectural designing and strength analysis of the 

geodesic domes and shells [13, 14] is developed. It 

includes a library of ArchiCAD parametric objects of the 

geometrical models of the geodesic shells in language 

GDL. This contains objects of various classes of the 

geodesic shells. In the library GeoDomeLib v.1.0, 

parametric objects of double-contour shells of classes I2; 

P3 with trihedral pyramids and I2 P6 with hexahedral 

pyramids have been presented. However, there was no 

program implementation of a library object of class I2; P4. 

Therefore there arose the task of developing ArchiCAD 

parametric objects of the geometrical models of geodesic 

double-contour shells with tetrahedral pyramids. 

Stage 1. At first, we comment on the code 

fragments which drawing plates. For the computing of the 

coordinates of the centre of a quadrangle, we use the 

subroutine which computes the coordinates of the centre 

as an average value of the coordinates of all four vertices 

of a quadrangle. Next, we will perform a recalculation of 

the coordinates in the spherical system from Cartesian and 

back using subroutine 9500. At the input, the subroutine 
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receives the coordinates of the point laying in the plane of 

a quadrangle and at the output;it computes the coordinates 

of the point lifted on some of the given height. 

Listing.1. The subroutine Computation of point 

P2. 

9500: 

IF XTMP=0 THEN XTMP=0.00001 

FITMP=atn(YTMP/XTMP) 

ETTMP=atn(sqr(XTMP^2+YTMP^2)/ZTMP) 

RTMP=1+hhh/r 

! offset on the radius 

XTMP=RTMP*sin(ETTMP)*cos(FITMP) 

YTMP=RTMP*sin(ETTMP)*sin(FITMP) 

IF YTMP<0 THEN YTMP=1*abs(YTMP) 

ZTMP=RTMP*cos(ETTMP) 

RETURN 

Then we form pyramid faces. To do this, we use the slab 

function of GDL, which receives the three vertices of the 

formed face as parameters. Since there are four faces in 

each pyramid, the slab function will be called upon four 

times. 

Listing. 2. An example of the formation of a 

pyramid of the first contour. 

!tria 6-300-10 

! pyramid faces 

slab 3,c, 

r*x[6],r*y[6],r*z[6], 

r*x[300],r*y[300],r*z[300], 

r*x[10],r*y[10],r*z[10] 

!tria 10-300-12 

slab 3,c, 

r*x[10],r*y[10],r*z[10], 

r*x[300],r*y[300],r*z[300], 

r*x[12],r*y[12],r*z[12] 

!tria 12-300-7 

slab 3,c, 

r*x[12],r*y[12],r*z[12], 

r*x[300],r*y[300],r*z[300], 

r*x[7],r*y[7],r*z[7] 

!tria 7-300-6 

slab 3,c, 

r*x[7],r*y[7],r*z[7], 

r*x[300],r*y[300],r*z[300], 

r*x[6],r*y[6],r*z[6] 

Stage 2. After lifting all of the points and 

forming the faces of the pyramids, we transfer control to 

the program code fragment that generate the second 

contour. We will perform the formation of the second 

contour inside the Moebius triangle by adding rods 

connecting the tops of some of the tetrahedral pyramids. 

To do this, we use the lin _ function of GDL which 

receives two vertices of the formed line as parameters. 

Listing.3. An example of the formation of the 

internal rods of the second contour. 

lin_ r*x[335],r*y[335],r*z[335], 

r*x[302],r*y[302],r*z[302]  

lin_ -r*x[335],r*y[335],r*z[335], 

r*x[302],r*y[302],r*z[302] 

lin_ -r*x[335],r*y[335],r*z[335], 

r*x[335],r*y[335],r*z[335] 

lin_ r*x[342],r*y[342],r*z[342], 

r*x[335],r*y[335],r*z[335] 

lin_ r*x[336],r*y[336],r*z[336], 

r*x[300],r*y[300],r*z[300] 

lin_ r*x[304],r*y[304],r*z[304], 

r*x[300],r*y[300],r*z[300] 

lin_ -r*x[336],r*y[336],r*z[336], 

-r*x[300],r*y[300],r*z[300] 

lin_ -r*x[304],r*y[304],r*z[304], 

-r*x[300],r*y[300],r*z[300] 

lin_ r*x[302],r*y[302],r*z[302], 

r*x[300],r*y[300],r*z[300] 

lin_ r*x[302],r*y[302],r*z[302], 

-r*x[300],r*y[300],r*z[300] 

lin_ r*x[336],r*y[336],r*z[336], 

r*x[335],r*y[335],r*z[335] 

 

It is necessary to solve the problem of ensuring 

connectivity for the rods located at the boundary of the 

Moebius triangle. 

The calculation of the foot of the perpendicular 

for step 1 of the main algorithm performed in subroutine 

449700. The input data for the subroutine is the 

coordinates of points P4, P5, P2. The output is the 

coordinates of point P7. 

Listing.4. Subroutine Point on the line. 

449700: 

!1 equation 

LSTR1= XSTR4-XSTR1: MSTR1=YSTR4-YSTR1: 

NSTR1=ZSTR4-ZSTR1 

ASTR11=1/LSTR1: ASTR12=-1/MSTR1: ASTR13=-

1/NSTR1 

BSTR1=-

XSTR1/LSTR1+YSTR1/MSTR1+ZSTR1/NSTR1 

!2 equation 

ASTR21=LSTR1: ASTR22=MSTR1: ASTR23=NSTR1 

BSTR2=-XSTR0*LSTR1-YSTR0*MSTR1-

ZSTR0*NSTR1 

!3 equation 

ALFSTR31=(YSTR1-YSTR0)*NSTR1-(ZSTR1-

ZSTR0)*MSTR1 

ALFSTR32=(XSTR1-XSTR0)*NSTR1-(ZSTR1-

ZSTR0)*LSTR1 

ALFSTR33=(XSTR1-XSTR0)*MSTR1-(YSTR1-

YSTR0)*LSTR1 

ASTR31=ALFSTR31: ASTR32=-ALFSTR32: 

ASTR33=ALFSTR33 

BSTR3=-

XSTR0*ALFSTR31+YSTR0*ALFSTR32+ZSTR0*ALFS

TR33 

! Decision of linear equation system 

GOSUB 449800 

!output point3 XSTR3, YSTR3, ZSTR3 

XSTR7=XSTR3: YSTR7=YSTR3: ZSTR7=ZSTR3 

 

RETURN 

The calculation of the foot of the perpendicular 

for step 2 of the main algorithm performed in subroutine 

4410000. The input data for the subroutine is the 

coordinates of points P7, P0, P2. The output is the 
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coordinates of point P8.This subroutine (Middle of the 

external rod) is similar to the subroutine of the Point on 

the line. 

The decision of the linear equation system from 

the three equations is performed in subroutine 449800. 

The input data for the subroutine is the coefficient values 

a11, a12, a13, a21, a22, a23, a31, a32, a33. The output is 

the roots X3, Y3, Z3. 

Listing.5. Subroutine Decision of the linear 

equation system. 

449800: 

! determinants 

DSTR1=ASTR11*(ASTR22*ASTR33-

ASTR23*ASTR32) 

DSTR2=(ASTR12)*(ASTR21*ASTR33-

ASTR23*ASTR31) 

DSTR3=(ASTR13)*(ASTR21*ASTR32-

ASTR22*ASTR31) 

DSTR=DSTR1-DSTR2+DSTR3 

DSTRX1=(-BSTR1)*(ASTR22*ASTR33-

ASTR23*ASTR32) 

DSTRX2=ASTR12*(-BSTR2*ASTR33-ASTR23*(-

BSTR3)) 

DSTRX3=ASTR13*(-BSTR2*ASTR32-ASTR22*(-

BSTR3)) 

DSTRX=DSTRX1-DSTRX2+DSTRX3 

DSTRY1=ASTR11*((-BSTR2)*ASTR33-ASTR23*(-

BSTR3)) 

DSTRY2=(-BSTR1)*(ASTR21*ASTR33-

ASTR23*ASTR31) 

DSTRY3=ASTR13*(ASTR21*(-BSTR3)-(-

BSTR2)*ASTR31) 

DSTRY=DSTRY1-DSTRY2+DSTRY3 

DSTRZ1=ASTR11*(ASTR22*(-BSTR3)-(-

BSTR2)*ASTR32) 

DSTRZ2=ASTR12*(ASTR21*(-BSTR3)-(-

BSTR2)*ASTR31) 

DSTRZ3=(-BSTR1)*(ASTR21*ASTR32-

ASTR22*ASTR31) 

DSTRZ=DSTRZ1-DSTRZ2+DSTRZ3 

!coordinates 

XSTR3=DSTRX/DSTR: YSTR3=DSTRY/DSTR: 

ZSTR3=DSTRZ/DSTR 

RETURN 

As a result, first, the parametric object of single-

contour geodesic shells of class I1; P4 (the program 

GDL_System_L1.gsm) is developed. With its help, it is 

possible to form geometrical models of single-contour 

geodesic shells with tetrahedral pyramids (without the 

second contour).  

 

 
 

Figure-5. Geometric model of one Moebius triangle of a 

class I2;P4 geodesic shell. 

 

Second, the parametric object of double-contour 

geodesic shells of class I2; P4 (the program GDL_ 

System_L2.gsm) is developed. With its help, it is possible 

to form geometrical models of double-contour geodesic 

shells with tetrahedral pyramids as the first contour and a 

rod network as the second contour. You thus get a 

geometric model corresponding to one Moebius triangle 

(see Figure-5.) or a shell in the form of a whole sphere 

(see Figure-6.). 

 

 
 

Figure-6. Geometric model of a class I2;P4 geodesic shell 

in the form of a sphere. 
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CONCLUSIONS 
This study has investigated the research on the 

application of the duality principle in technical 

applications. It has been found that this principle can be 

used for the formation of double-contour geodesic shells. 

Programs for the geometrical modelling of double-contour 

geodesic shells have been considered. It is found, that 

there is no software implementation of geodesic double-

contour shells with tetrahedral pyramids. As a result, a 

ArchiCAD parametric object of a dopuble-contour 

geodesic shell with tetrahedral pyramids was developed. 

This program can be used in the architectural and 

structural design of unique buildings. 
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