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ABSTRACT 

An improved methodology for well test interpretation homogeneous and naturally fractured and compressible 
reservoirs with a single fluid is presented. New expression to find the permeability, permeability modulus and 
geomechanical skin factor from slope during radial flow regime have been introduced and corrections of for the minimum 
point and the intercept between the unit-slope line taking place during the transition period and the radial flow regime are 
given so existing equations in the literature can be applied for the determination of the naturally fractured reservoir 
parameters. These new expressions were successfully applied to synthetic examples.  
 
Keywords: stress sensitive formations, permeability modulus, radial flow regime. 
 
1. INTRODUCTION 

In compressible formations their permeability 
may depend upon formation effective stress. This effect 
cannot be negligible in unconsolidated formations since 
the permeability is a direct function of the pore pressure 
and can change during the reservoir productive life, 
Ostensen (1983). 

From the well testing point of view a 
homogeneous variation of the permeability is accounted 
by the permeability modulus which was introduced by 
Pedrosa (1986) and defined by Equation (10). Since then, 
several researchers have been presented. Escobar, Urazan 
and Trujillo (2018) recent presented a methodology for 
well test pressure interpretation in stress sensitive 
formations drained by horizontal wells. They did a good 
review of existing literature. Escobar et al (1996) studied 
the effect of the poisson ratio and the young modulus on 
well pressure behavior. Duan et al (1998) performed a 
sensitive analysis by numerical simulation and lab tests to 
study the influence of stress on naturally fractured 
parameters. They concluded that the sensitivities are 
generated mainly by the network of fractures. 

Escobar, Cantillo and Montealegre (2007) 
extended the TDS Technique, Tiab (1995), generating the 
pressure behavior using the model proposed by Celis et al 
(1994). They estimated the permeability using the pressure 
derivative slope during radial flow regime but the 
permeability is found by drawing a horizontal line 
throuout the falttest region. So they found and apparent 
permeability and depended on knowing a initial value. 
Since the pressure derivative minimum point taking place 
during the transition period is practically unaffected by 
stress sensitivity they do not provided corrections for such 
point. 

In this work, the work presented by Escobar et al 
(2007) has been further improved. Permeability is 
estimated from the slope of the pressure derivative during 
radial flow regime. So is the permeability modulus. An 
equation for the total skin factor -geomechanical plus 
mechanical skin factors- is introduced. An advantage of 

the TDS Technique is that in certain cases flow regimes 
can be artifitially created without risking the 
interpretation. Then, from the permeability, the pressure 
derivative value for nonstress sensitive case is determined. 
This is represented by a horizontal line on the pressure 
derivative versus time log-log plot. Then, this value is 
used for the estimation of the mechanical skin factor; 
therefore, the geometrical skin factor is readily estimated 
by substrating the mechanical skin factor from the toal 
skin factor. Well developed correlations are provided for 
correcting the minimum point affected by the stress and 
the intercept between the unit slope and horizonatl radial 
flow regime lines. With that, the equations already 
presented by Engler and Tiab can be readily estimated. 
The expressions were successfully applied to simulated 
examples. 
 
2. MATHEMATICAL BACKGROUND 

Celis et al (1994) presented the mathematical 
model to account for the well pressure behavior of 
naturally fractured and stress sensitive reservoir: 
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The dimensionless parameters used along this 

paper are given by: 
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being  the permeability modulus introduced by Pedrosa 
(1986): 
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2.1. Interpretation methodology       

Figure-1 presents the transient pressure behavior 
for the homogeneous reservoir case, that is, when λ =1 and 
 = 0. As the dimensionless permeability modulus 
increases so does both pressure and pressure derivative. 
The pressure derivative deviates upward from the classic 
zero-slope line which is governed by: 
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Figure-1. Dimensionless pressure and pressure derivative 
versus time behavior for a homogeneous and stress 

sensitive reservoir. 
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Figure-2. Dimensionless pressure derivative versus time 
behavior for a heterogenous and stress sensitive 

reservoir when λ =0.0001 and  = 0.01 
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A similar behavior of the homogeneous reservoir 

occurs after the transition period of a naturally fractured 
reservoir as given in Figure-2. Both pressure and pressure 
derivative deviate upward from the classic homogenous 
behavior. There is a period which can eb approached to a 
straight line of slope, m. The pressure derivative is then 
governed by: 
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Figure-3. Unification of the dimensionless pressure 
during radial flow for a homogenous and stress 

sensitive reservoir. 
 
which becomes: 
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 Suffix ss stands for stress sensitive effects during 
radial flow regime, r. After replacing the dimensionless 
parameters into Equation (13) and solving for reservoir 
permeability it yields: 
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The above equation applies to the radial flow 
regime of a homogeneous reservoir and the second radial 
flow regime (after the ¨trough”) of a naturally fractured 
reservoir. When m=0, non-stress sensitive case, Equation 
(14) will convert into: 
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Equation (15) was already developed by Tiab 

(1995). Tiab (1995) used the following pressure behavior 
during radial flow regime: 
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Figure-3 shows a unified plot for homogeneous 

behavior. For information of the determination of unified 
behaviors, the reader is referred to Escobar, Bonilla and 
Hernandez (2018) and Escobar et al. (2018. In this plot 
can be seen that the dimensionless pressure to the power 
(1-gD) are very close at early radial flow regime, then, 
Equation (16) is assumed for a stress sensitive reservoir to 
be: 
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Dividing Equation (17) by Equation (13) and 

solving for the geomechanics and mechanical skin factor, 
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When m=0 and D = 0, then, the mechanical skin 

factor equation is obtained, Tiab (1995): 
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Since the pressure drop curve is also affected by 

stress, then, it is recommended to remove such effect by 
modifying Equation (19) as: 
 

1

2

Δ1
ln 7.43

2 ( *Δ ')

  
    

  

D
fb ssss

m

r t w

k tP
s

t P c r




                 (20) 

 
Equation (14), (15), (18) and (20) applies to a 

heterogenous reservoirs on the radial flow regime once the 
transition period has ceased. 
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Figure-4. Correlation between the pressure derivative 
slope during radial flow regime and the dimensionless 
permeability modulus. 
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Figure-5. Correlation between the minimum point 
pressure derivative, at the “trough”, and the dimensionless 
permeability modulus. 
 
2.2. Determination of the permeability modulus 

As observed in Figures -1 and -2, the pressure 
derivative is affected by the dimensionless permeability 
modulus. Although, at some time during radial flow 
regime the pressure derivative deviates upwards, a short 
straight line can be seen. The slope of such line can be 
correlated with the permeability modulus. The curve at the 
right of Figure-4 displays a perfect correlation between the 
slope and the minimum once the transition period 
vanishes. Then, a correlation is developed to obtain D 
from the slope of the radial flow regime,  
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Figure-6. Correction factor for the unit-slope and radial 
flow intersection. 
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The wellbore storage effects on pressure tests run 

in naturally fractured systems are normally much higher 
than those in homogenous reservoirs. This is because 
storage can also take place in the fractured network. In the 
hypothetical case that the radial flow regime before the 
“trough” is free of these effects another correlation -see 
left curve in Figure-4 is provided for the estimation of D 

from such slope, mbt, such as:  
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2.3. Correction of the minimum pressure derivative  

       and the intersect of the unit-slope line and the  

       radial flow regime lines 

As indicated by Engler and Tiab (1996) the 
minimum point during the pressure derivative is meant to 
be used for the estimation of both the interporosity flow 
parameter, λ, and the, especially, the dimensionless 
storativity coefficient, . This minimum point is affected 
by the permeability modulus as indicated in Figure-2. 
Figure-5 displays a perfect correlation between these two 
key parameters. Then, the observed minimum point can be 
corrected from the following expression: 
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By the same token, the correction of the 

intersection formed between the unit-slope line occurring 
during the transition period and the radial flow regime 
line, Figure-6, allows finding the following fitting 
equation: 
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As indicated by both Engler and Tiab (1996) and 

Tiab, Igbokoyi and Restrepo (2007) the minimum point 
may be affected by wellbore storage. In such cases both 

provided criteria for its quantification and their way of 
correction. 
 
2.4. Determination of naturally fractured reservoir  

       parameters 

Once the minimum point is corrected, the 
naturally fractured reservoir parameters can be obtained 
from the expressions developed by Engler and Tiab 
(1996), Tiab et al (2007) and Tiab and Escobat (2003) 
presented in appendix A. 
 

3. STEP-BY-STEP PROCEDURE 

 
Step 1. Once the pressure and pressure derivative versus 

time log-log plot is obtained and a naturally 
fractured and stress sensitive reservoir is 
identified, find the radial flow regime and draw 
the most straight line on it. Determine the slope, 
m, of such line. Read also an arbitrary point on 
such line: tss  and (t*DP’)ss. Read also the 
corresponding pressure drop, DPss.  at the same 
arbitrary time. 

 
Step 2. In the remote case that wellbore storage allows 

developing the first radial flow regime (before the 
transition period), do as in step 1 on this line and 
find the slope, mbt, 

 
Step 3. Use Equations (20) and (21) to estimate the 

dimensionless permeability modulus. Find an 
average is given the case. 

 
Step 4. Use Equation (14) to find the fracture-bulk 

permeability. 
 
Step 5. Use Equation (15) to find the pressure derivative 

during radial flow regime, (t*P’)r,  free of stress 
effects. It is recommended to draw a horizontal 
line through it on the pressure and pressure 
derivative plot. 

 
Step 6. Estimate the skin factors with Equations (18) and 

(20). 
 
Step 7. Read the observed minimum pressure derivative, 

(t*DP’)minO,  and corrected by stress effects using 
Equation (23). Also, correct this point if wellbore 
storage affects such point as indicated by Engler 
and Tiab (1996) or Tiab et al (2007). 

 
Step 8. Read the intercept between the unit-slope line, if 

observed during the transition period, and the 
horizontal line, tus_ss_i, drawn in step 5 and 
estimate the interporosity flow parameter using 
Equation (26). 

 
Step 9. Read the maximum point pressure derivative 

during wellbore storage, tx  and (t*DP’)x, the end 
time of the first radial flow regime, te1, and the 
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start time of the second radial flow regime, tb2, 
and estimate the naturally fracture reservoir 
parameters with the equations given in appendix 
A and the directions of Engler and Tiab (1996) 
and/or Tiab et al (2007) which are compiled by 
Escobar (2019). 

 
4. EXAMPLES 

 
Table-1. Reservoir and fluid data for examples. 

 

Parameter Example 1 Example 2 

rw, ft 0.35 0.35 

h, ft 72 129 

, % 15 6 

kfb, md 120 315 

q, Bbl/D 300 110 

B, rb/STB 1.2 1.35 

ct, 1/psi 1x10-6 2x10-5 

sm 0 0 

C, bbl/psi 1x10-7 0.0001 

, cp 3.5 7 

 0.005 0.01 

 1x10-5 41x10-6 

D 0.03 0.05 

 

4.1. Synthetic example 1 

Figure-7 contains pressure and pressure 
derivative versus time data for a synthetic example 
generated with data of the second column of table 1. It is 
required to characterize this pressure test. 
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Figure-7. Pressure and pressure derivative log-log plot for 
synthetic example 1. 

 
Solution 

The following information is read from Figure-7. 
 
tF = tmin = 0.00547 hr    (t*P’)minO = 0.349 psi 
tus_ss_i = 0.26 hr     tss = 5.47 hr                      
Pss = 183.16 psi  (t*P’)ss = 14 psi 

Additionally, the slope during radial flow regime 
was estimated to be 0.025. Use of Equation (21) allows 
finding the dimensionless permeability modulus. 
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Use Equation (14) to determine reservoir 

permeability, 
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Use Equation (15) to find the pressure derivative 

during radial flow free of stress effects: 
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A horizontal line throughout this value is drawn 

on Figure-7. 
Find the skin factors with Equations (20) and 

(18): 
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Then, the Geomechanical skin factor is found by 

the difference between the above. Then, sg = sgm- sm = 
0.73-0.1= 0.63. 

The minimum pressure derivative and the 
intersect between radial flow and unit-slope line are 
corrected with Equations (23) and (24), respectively. 
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The dimensionless storativity coefficient is 

estimated with Equation (A.7) 
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The interporosity flow parameter is estimated using 

Equations (A.1) and (A.4) 
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Figure-8. Pressure and pressure derivative log-log plot for 
synthetic example 2. 
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Synthetic example 2 

Figure-8 contains pressure and pressure 
derivative versus time data for a synthetic example 
generated with data of the third column of Table-1. It is 
required to characterize this pressure test. 
 
Solution. 

The following information is read from Figure-8. 
 
tF = tmin = 0.584 hr    (t*P’)minO = 0.1623 psi  
tus_ss_i = 0.26 hr     tss = 103.85 hr                      
Pss = 39.2 psi  (t*P’)ss = 3.95 psi 
 

A procedure like example 1 was performed. Results 
are reported in Table-2 along with some other data. 

 
Table-2. Results and comparison. 

 

Parameter 
Equation 

used 

Input 

Example 1 

Input 

Example 2 

Obtained 

Example 1 

Obtained 

Example 2 

Abs. error 

Example 1 

Abs. error 

Example 2 

kfb, md 14 120 315 128 319.8 6.7 1.52 

 A.7 0.005 0.01 0.0051 0.012 2 20 

 
A.1 

1x10-5 1x10-6 
9.5x10-6 1.09x10-6 5 9 

A.4 8.2x10-6 1.17x10-6 18 17 

D 21 0.03 0.05 0.034 0.05 13 0 

sm 20 0 0 0.1 0.79 - - 

sgm 18 - - 0.73 1.44 - - 

sg - - - 0.63 0.65 - - 

 
5. COMMENTS ON THE RESULTS 

Notice that more values can be estimated in both 
exercises, but it is enough for practical purposes. Also, in 
both examples the ratio between the maximum time during 
wellbore storage and the minimum point during the 
transition period is higher than 10 and, according to Engler 
and Tiab (1996) there is no need of correction due to 
wellbore storage effects. 

Although the estimation of naturally fractured 
reservoir parameters accepts one order of magnitude, Table-
2 reports a good agreement between the simulated and the 
estimated parameters. 

The input mechanical skin factors were taken as 
zero. The estimated values are close to these values. No 

errors were estimated for this case since this parameter 
allows a unit of difference. 
 
6. CONCLUSIONS 

a) New expressions for the determination of the 
reservoir permeability and total skin factor 
(geomechanical and geometric) using a point during 
the inclined radial flow regime are successfully 
developed. 

b) Both dimensionless permeability modulus and 
permeability depends upon the estimation of the slope 
of the best straight line found during radial flow 
regime. 
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c) A procedure for the determination of the 
geomechanical and mechanical skin factor is outlined. 

d) Correction ways for the pressure derivative minimum 
point and the intercept formed by transition unit slope 
and the radial flow regime under normal conditions 
are presented. This guarantees the application of 
existing equations for characterization of the naturally 
fractured reservoir parameters. 

 
B Oil volume factor, bbl/STB 
b Fraction of penetration/completion 
c Compressibility, 1/psia 
C Wellbore storage coefficient, bbl/psia 

D1 Minimum point correction parameter 
D2 Minimum point correction parameter 
ct Total or system compressibility, 1/psia 

f(z) Matrix-fracture transfer function 
h Formation thickness, ft 
k Permeability, md 

kfb Bulk fractured network permeability, md 

K0 
First class modified Bessel function, zero 

order 

K1 
Second class modified Bessel function, one 

order 
P Pressure, psia 

PD’ Dimensionless pressure derivative 
PD Dimensionless pressure 
Pi Initial reservoir pressure, psia 
q Liquid flow rate, BPD 
r Radius, ft 
rw Well radius, ft 
sg Geomechanical skin factor 
sm Mechanical skin factor 
sgm Geomechanical plus mechanical skin factor 
t Time, hr 

tp 
Production (Horner) time before shutting-in a 

well, hr 
tD Dimensionless time based on well radius 

t*P’ Pressure derivative, psia 
z Laplace parameter 

 

Greek 
 

 Change, drop 

 Porosity, fraction 
γ Permeability modulus, psi-1 

 Interporosity flow coefficient 

 Viscosity, cp 

 Dimensionless storativity coefficient 
 
 
 
 
 
 
 
 
 

Suffices 

 

b2 Start of second radial flow regime 
D Dimensionless 
e1 End of first radial flow regime 
F Inflection point 
fb Fracture network or fracture bulk 
i Intersection or initial conditions 
m Matrix or slope 

max Maximum point 
min Minimum point 

minO Observed minimum point 
r radial flow 
r1 Radial flow before transition period 
r2 Radial flow after transition period 
ss Stress sensitive 
usi Intersect of the pressure derivative lines of 

the unit-slope line during the transition and 
nonstress sensitive radial flow regime 

pressure derivative 
us_ss_i Intersect of the pressure derivative lines of 

the unit-slope line during the transition and 
stress sensitive radial flow regime pressure 

derivative 
x Maximum point of the pressure derivative 
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APPENDIX - Expression for the Determination of 

naturally fractured reservoir parameter 

 
Determination of λ, 

 
23792( ) 1

ln
        

t f m w

fb F

c r

k t

 
 


               (A.1) 
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tt t t
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t f m w

fb usi

c r
 = 

k t
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                                              (A.5) 

 

min( * ')1

10 ( * ')D x

t P
 = 

t PC
 


                                              (A.6) 

 
Determination of , 
 

2

min min( * ') ( * ')
0.15866  0.54653

( * ') ( * ')
r r

t P t P
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t P t P

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              (A.11) 

 

min
min 2

0.0002637

( )
D

t f m w

kt
t

c r 

                              (A.12) 

 
Table-A.1. Conditions for the minimum pressure derivative 
being affected by wellbore storage, after Tiab et al (2007). 
 

 CD 

10-4 
CD > 10 

10-5 CD > 100 

10-6 CD > 103 

10-7 CD > 104 

10-8 
CD > 105 

 
Correction for wellbore storage effect of the minimum 

point: 

 

 
min

min 1 2

2 2

( * ') ( * ')

( * ') ( * ') 1 2

1 ln 2 0.8801
( ) 
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   
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D s
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where; 
 

min
1 2

ln 2 4.17
( * ') ( )

O

r t f m w

qBt
D s

t P c hr 

  
           

(A.14) 

 
and; 
 

2

min

( * ')48.02 r

O

t PC
D

qB t

 
  

 
                             (A.15) 

 
Equation A.1 was presented by Tiab and Escobar 

(2003). Equation A.2 through A.12 were presented by 
Engler and Tiab (1996) and the others by Tiab et al 
(2007). All those are compiled by Escobar (2019). 


