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ABSTRACT 

The Gaussian and exponential weighting functions have been used for a long time as standard functions in the 

conventional nonlocal means (NLM) filtering method and its variants.  In this paper, a new weighting function is proposed 

and tested experimentally in the NLM method. This function is a power-of-two function that is used to measure the 

similarity between pixels in the reference and search patches of the image pixels. Six images of different features and 

amounts of details are used in the simulations. Those images were subject to zero mean Gaussian noise with various levels 

of standard deviation. Peak signal to noise ratio (PSNR) and structural similarity (SSIM) have been used as quantitative 

indices to measure the performance quality of the proposed weighting function compared to that of the exponential and 

Gaussian functions. The proposed function outperforms the exponential function in all the tested images and for all values 

of noise standard deviations, and produces similar results and sometimes slightly better than those of the Gaussian 

weighting function. 
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INTRODUCTION 
Images are often subject to several types of noise 

during acquisition and transmission. Reduction of this 

noise through image filtering process has gained more 

attention as a result of its use in many practical 

applications. Many filtering algorithms have been 

proposed by researchers in this regard [1]. One approach 

in this filtering of images uses neighborhood processing in 

which some function is applied to a local neighborhood of 

pixels around a center pixel in a sliding window or kernel 

to estimate the restored or denoised pixel [2-9].  

Structure similarity between regions or patches in 

an image was first used for image restoration in another 

scheme of filtering called nonlocal means (NLM) filter 

[10]. The NLM filtering scheme has attracted much 

attention of researchers and has been used thereafter in 

several applications such as image in painting [11], 

segmentation [12], and super resolution [13]. Moreover, it 

has also been used successfully in synthetic aperture radar 

(SAR) imaging [14-16]. 

The conventional NLM method is mainly based 

on the fact that images often have repeated structures. The 

idea then is to search for similar pixels to those in the 

sliding window or kernel, and average them with 

appropriate weights that are proportional to this similarity. 

Thus, the noise-free restored pixel at the center of the local 

neighborhood of pixels being processed is replaced by a 

weighted average of pixels in a nonlocal region in the 

image that have similar pixels [10, 17, 18].  

Many variants of the NLM method were 

proposed to improve its performance quality. The 

proposed method in [19] is for medical ultrasound imaging 

and it is based on multi-scale nonlocal means to improve 

the computational complexity of the traditional NLM 

filter. In [20], the presented method uses the NLM filtering 

scheme to address the potential noise problem in in-vivo 

human super-resolution imaging. 

The proposed method in [21] is primarily for the 

spectral computed tomography (SCT) image restoration. 

In [22], the presented algorithm combines the use of the 

locally adaptive principal component analysis and the 

quadtree-based NLM method to reduce the image noise.  

The introduced method in [23] addressed the 

spatial distortion problem based on the multi-resolution 

analysis (MRA) methods in which the NLM method is 

exploited to extract the spatial details. Modified versions 

of the NLM method are proposed in [24, 25] for 

restoration of low-dose computed tomography (CT) 

images. A variant NLM method using a hard threshold 

scheme in curvelet domain is presented in [26]. The 

method proposed in [27] utilizes the affine invariant self-

similarities in the images for reducing the noise.  

In the modified version of the NLM proposed in 

[28], the weights whose values are less than a specific 

threshold are neglected. The introduced method in [29] 

applies the NLM method for improving temperature 

measurements during real-time magnetic resonance 

thermometry. The weights in the variant NLM method 

presented in [30] are estimated using the spectral angle 

mapper method. The proposed scheme in [31] reduces the 

computational complexity of the traditional NLM method 

based on Intel Xeon Phi hardware.  

The proposed algorithm in [32] uses local self-

weight estimation algorithms by utilizing the direct bounds 

and re-parameterization based on the Baranchik's minimax 

estimator. In [33], the method is based on patch similarity 

where only a specific number of the most similar patches 

are chosen in the computation of the restored pixels. The 

proposed algorithm for image denoising in [34] utilizes the 

NLM scheme to address the problem of learning the 

mapping functions between the low resolution and high 

resolution images.  

The weighting function plays an important role in 

the NLM filtering method in two aspects: finding the most 

similar window to the reference window and estimating 
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the restored pixel value. This paper is focused on 

proposing a new weighting function for the NLM method.  

The remainder of this paper is structured as follows: the 

research method is introduced in section 2, simulation 

results and discussion are presented in section III and the 

conclusions are finally given in section IV. 

 

RESEARCH METHOD 

The kernel function, used to compute the 

weighting factors of a search neighborhood of pixels in the 

conventional NLM filtering method, has a crucial effect on 

the performance of the method, and thus on  the quality of 

the output filtered image. The conventional Gaussian and 

exponential functions commonly used in the NLM method 

are defined as follows: 

 

Gaussian Kernel Function:  

 𝑤(𝑖, 𝑗) = 𝑒𝑥𝑝 (−‖𝑁(𝑖)−𝑁(𝑗)‖22ℎ2 )                                          (1) 

 

Exponential Kernel Function:  

 𝑤(𝑖, 𝑗) = 𝑒𝑥𝑝 (−‖𝑁(𝑖)−𝑁(𝑗)‖2ℎ )                                          (2) 

 

In this paper, a power-of-two proposed function 

is defined as follows: 

 

Proposed Function: 

 𝑤(𝑖, 𝑗) = 2(−‖𝑁(𝑖)−𝑁(𝑗)‖2ℎ2 )  ,
                                                 (3) 

 

where ℎ is a smoothing filtering factor that controls 

decaying of the function, and ‖𝑁(𝑖) − 𝑁(𝑗)‖2 is the 

weighted Euclidean distance between the pixels in the 

noisy patches 𝑁(𝑖) and 𝑁(𝑗). The value of the weight 𝑤(𝑖, 𝑗) varies between 0 and 1, i.e.,  

 0 ≤  𝑤(𝑖, 𝑗)  ≤  1                                                            (4) 

 

Several performance measuring metrics are 

typically used by researchers to compute the quality of the 

image restoration algorithms, i.e., the similarity or 

closeness between the output (restored) image and the true 

image before being corrupted, and the capability of 

preserving image details and edges. In this paper, the peak 

signal to noise ratio (PSNR) and the structural similarity 

(SSIM) indices are used in the simulations. These 

performance measuring quality indices are defined as 

follows: 

 𝑀𝑆𝐸 = 1𝑀𝑁 ∑  ∑(𝐹𝑖,𝑗 − 𝑇𝑖,𝑗)2𝑁
𝑗=1

𝑀
𝑖=1                                        (5) 

 𝑃𝑆𝑁𝑅 = 10 𝑙𝑜𝑔10 ((𝐿 − 1)2𝑀𝑆𝐸 )    dB,                                   (6) 

 

where MSE is the mean squared error between the filtered 

output image (F) and the original true image (T),  𝐿 = 2𝑛 

and 𝑛 is the bit depth or the number of bits in each pixel 

(for 8-bit images, for example, 𝑛=8 and 𝐿=256), M and N 

are the total number of pixels in the horizontal and vertical 

dimensions of the image (rows and columns of the matrix 

representing the image), and 𝐹𝑖,𝑗 and 𝑇𝑖,𝑗 are the pixel 

values in the (𝑖, 𝑗)𝑡ℎ locations of the filtered image and the 

true clean image, respectively.  

The structural similarity (SSIM) index is a full 

performance measuring metric that is generally used to 

measure the closeness or similarity between a specific 

image and a reference one. Typically, it is used for 

measuring the quality of the restored output image with 

the original clean image used as a reference. Unlike peak 

signal-to-noise ratio (PSNR), the SSIM metric is based on 

visible structures in the image.  It is claimed to be an 

improvement over other traditional metrics such as PSNR 

and MSE, which might not be consistent with human eye 

perception. It combines the luminance, contrast, and 

structure of the images into one single performance 

measuring index. In particular, the SSIM quality metric 

between two image signals 𝑥 and 𝑦 is a function of three 

components: luminance (l), contrast (c), and structure (s), 

where the luminance is a function of the mean intensities 

of these two images, the contrast is a function of their 

standard deviations, and the structure is a function of their 

covariance. The SSIM quality index can be defined as 
follows [35].  

  𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(x, y)]∝. [𝑐(x, y)]𝛽 . [𝑠(x, y)]𝛾,              (7) 

 

where 𝑙(x, y), is the luminance comparison function,  𝑐(x, y) is the contrast comparison function and 𝑠(x, y) is 

the structure comparison function. If we choose  𝛼 =  𝛽 = 𝛾 = 1, the SSIM is simplified to 

 𝑆𝑆𝐼𝑀(x, y) = (2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)(𝜇𝑥2+𝜇𝑦2+𝐶1)(𝜎𝑥2+𝜎𝑦2+𝐶2)  ,                           (8)  

 

where 𝜇𝑥 and 𝜇𝑦 are the mean values of the 𝑥 and 𝑦 

images, respectively, 𝜎𝑥2 and  𝜎𝑦2 are their variances, and 𝜎𝑥𝑦 is their covariance. The constants 𝐶1 and 𝐶2 are 

selected to avoid instability of the luminance, contrast and 

structure comparison functions that constitute the SSIM 

index. It should be noted that in the expression of the 

SSIM shown above, the relative importance of these three 

functions or components are assumed to be the same.  

 

RESULTS AND DISCUSSIONS 

In the computer simulations of this paper, six 

images shown in Figure 1 have been tested. These images 

are corrupted by zero-mean Gaussian noise with a 

standard deviation that varies between 10 and 80 and 

applied as inputs to the NLM filter using three different 

kernel functions: the conventional Gaussian and 

exponential functions, and a power-of-2 proposed 

function. The values of the NLM parameters used in the 

computer simulations are as follows: the neighborhood 
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size is chosen to be 7×7 and the size of the search window 

is 21×21.  

Tables 1-6 show the performance measuring 

quality of the NLM method using Gaussian, exponential 

and a proposed kernel function for images corrupted with 

zero-mean Gaussian noise and a standard deviation that 

varies from 10 to 80. These tables use the six tested 

images, i.e., Pirate, Street, Trees, Cat, Mountain and 

Baboon, respectively.  

The proposed kernel function outperforms the 

exponential function for all the tested images and for all 

values of noise standard deviation as shown in Tables 1-6. 

Compared with the Gaussian function, the proposed 

function produces comparable results and sometimes 

better performance quality results. To clarify the visual 

quality of these filters, Figure-2 shows the performance 

quality of the NLM method using the Gaussian, 

exponential and proposed weighting functions for Baboon 

image contaminated by zero mean Gaussian noise with 

standard deviation of 40. The superiority of the proposed 

function over the exponential function and to a less extent 

over the Gaussian function is depicted clearly in this 

figure. 

 

   
 

   
 

Figure-1. Tested images from left to right. First row: Pirate, Street, Trees. Second row: 

                                            Cat, Mountain and Baboon. 

 

Table-1. PSNR and SSIM of the NLM method with different kernel functions using Pirate image corrupted 

                         with Gaussian noise of zero mean and several values of standard deviation. 
 

 
Gaussian Function Exponential Function Proposed Function 

PSNR SSIM PSNR SSIM PSNR SSIM 

σ =10 32.29 0.8700 25.65 0.6387 31.87 0.8726 

σ =20 28.83 0.7628 24.67 0.6020 28.85 0.7733 

σ =30 26.96 0.6907 24.19 0.5831 27.29 0.6979 

σ =40 25.77 0.6407 23.89 0.5707 26.08 0.6334 

σ =50 24.99 0.5988 23.64 0.5598 25.22 0.5785 

σ =60 24.40 0.5640 23.43 0.5490 24.46 0.5286 

σ =70 23.89 0.5312 23.30 0.5390 23.80 0.4831 

σ =80 23.47 0.5022 23.09 0.5259 23.30 0.4439 
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Table-2. PSNR and SSIM of the NLM method with different kernel functions using Street image corrupted 

                         with Gaussian noise of zero mean and several values of standard deviation. 
 

 
Gaussian Function Exponential Function Proposed Function 

PSNR SSIM PSNR SSIM PSNR SSIM 

σ =10 31.69 0.8414 24.57 0.6147 31.35 0.8486 

σ =20 28.35 0.7536 22.82 0.5634 28.22 0.7626 

σ =30 26.28 0.6862 22.03 0.5382 26.34 0.6917 

σ =40 24.77 0.6285 21.62 0.5233 25.06 0.6293 

σ =50 23.73 0.5826 21.33 0.5108 23.99 0.5698 

σ =60 22.90 0.5414 21.17 0.5004 23.21 0.5192 

σ =70 22.15 0.5028 21.02 0.4902 22.55 0.4756 

σ =80 21.65 0.4722 20.85 0.4767 21.95 0.4344 

 

 

Table-3. PSNR and SSIM of the NLM method with different kernel functions using Trees image corrupted 

                         with Gaussian noise of zero mean and several values of standard deviation. 
 

 
Gaussian Function Exponential Function Proposed Function 

PSNR SSIM PSNR SSIM PSNR SSIM 

σ =10 30.64 0.8484 22.35 0.5650 30.52 0.8559 

σ =20 26.67 0.7489 21.33 0.5207 26.43 0.7627 

σ =30 24.56 0.6672 20.88 0.4999 24.65 0.6862 

σ =40 23.09 0.6030 20.63 0.4862 23.52 0.6156 

σ =50 22.13 0.5495 20.43 0.4758 22.62 0.5532 

σ =60 21.52 0.5099 20.31 0.4668 21.92 0.4999 

σ =70 21.03 0.4738 20.15 0.4551 21.34 0.4537 

σ =80 20.63 0.4424 20.08 0.4438 20.90 0.4153 

 

 

Table-4. PSNR and SSIM of the NLM method with different kernel functions using CAT image corrupted 

                          with Gaussian noise of zero mean and several values of standard deviation. 
 

 
Gaussian Function Exponential Function Proposed Function 

PSNR SSIM PSNR SSIM PSNR SSIM 

σ =10 32.11 0.8806 26.25 0.6431 31.73 0.8891 

σ =20 28.63 0.7469 25.59 0.6212 28.89 0.7684 

σ =30 27.22 0.6811 25.24 0.6088 27.46 0.6835 

σ =40 26.37 0.6334 24.95 0.5972 26.48 0.6164 

σ =50 25.74 0.5952 24.76 0.5843 25.70 0.5580 

σ =60 25.21 0.5579 24.55 0.5712 25.05 0.5072 

σ =70 24.81 0.5253 24.42 0.5587 24.57 0.4626 

σ =80 24.43 0.4919 24.23 0.5393 24.06 0.4249 
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Table-5. PSNR and SSIM of the NLM method with different kernel functions using Mountain image 

        corrupted with Gaussian noise of zero mean and several values of standard deviation. 
 

 
Gaussian Function Exponential Function Proposed Function 

PSNR SSIM PSNR SSIM PSNR SSIM 

σ =10 29.18 0.9211 19.08 0.4734 29.08 0.9216 

σ =20 24.22 0.8056 17.67 0.3893 23.98 0.8225 

σ =30 21.83 0.6803 17.16 0.3571 21.74 0.7246 

σ =40 20.21 0.5763 16.87 0.3386 20.54 0.6368 

σ =50 19.01 0.4949 16.70 0.3256 19.66 0.5575 

σ =60 18.16 0.4354 16.57 0.3164 18.90 0.4916 

σ =70 17.62 0.3943 16.48 0.3090 18.30 0.4412 

σ =80 17.26 0.3619 16.42 0.3024 17.76 0.3984 

 

 

Table-6. PSNR and SSIM of the NLM method with different kernel functions using Baboon image 

           corrupted with Gaussian noise of zero mean and several values of standard deviation. 
 

 
Gaussian Function Exponential Function Proposed Function 

PSNR SSIM PSNR SSIM PSNR SSIM 

σ =10 29.95 0.9099 21.03 0.4597 29.72 0.9105 

σ =20 25.67 0.7765 20.34 0.4019 25.39 0.7992 

σ =30 23.05 0.6260 20.10 0.3819 23.68 0.6894 

σ =40 21.64 0.5249 19.97 0.3710 22.41 0.5866 

σ =50 20.97 0.4660 19.89 0.3649 21.52 0.5075 

σ =60 20.56 0.4236 19.81 0.3575 20.92 0.4519 

σ =70 20.26 0.3955 19.76 0.3534 20.51 0.4081 

σ =80 20.07 0.3727 19.71 0.3467 20.20 0.3756 
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Figure 2. From left to right. 1
st
 row: Baboon image corrupted by zero mean Gaussian noise with σ =40, 

                             restored image using Gaussian weighting function. 2
nd

 row: restored image using the exponential 

                             function, restored image using the proposed function. 

 

 

CONCLUSIONS 

In this paper, a new kernel weighting function is 

proposed for nonlocal means filtering method. Namely, a 

power-of-two function is implemented in the conventional 

NLM method and tested experimentally using many 

images of different characteristics, six of which are shown 

in this paper.  These images have been corrupted with 

zero-mean Gaussian noise with a wide range of standard 

deviation values that varies from 10 to 80. The results 

show superior performance of the proposed function 

compared to that of the exponential function. Moreover, 

the proposed function shows comparable results and some 

times better than the Gaussian weighting function.  
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