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ABSTRACT 

The paper presents a numerical solution to the problem of bending a square plate clamped along periphery by the 
classical finite difference method. The obtained solution is improved using the Richardson extrapolation method, which 
allowed to reduce the absolute error of the solution by 4 orders of magnitude. A step-by-step construction of an implicit 
finite difference scheme of the second order of accuracy for an inhomogeneous biharmonic equation under zero boundary 
conditions on the desired function and its gradient is presented. The classical and modified Richardson extrapolation 
methods are considered on the sequence of grid functions. The extrapolated solutions are presented as a linear combination 
of grid functions in common nodes with weight coefficients. Computational experiments for the test function were carried 
out using the Maple computer environment. Solutions of the problem for different grid steps are obtained. The dependence 
of the calculation time error on the number of significant digits is revealed. The optimal number of significant digits is 
found. The rate of convergence of the classical finite difference method is investigated. The analysis of convergence 
acceleration using the classical and modified Richardson extrapolation method is carried out. 
 
Keywords: square plate, approximation, convergence, bending, numerical solution, error. 
 
INTRODUCTION 

Thin rectangular plates made of various materials 
are applied upon erection of buildings and industrial 
facilities, for instance, as reinforced concrete slabs and 
panels, metal decking, tank bottoms. They are applied in 
engineering industry as structural elements of various 
instruments and mechanisms. Rectangular plate bending 
problems under various supporting conditions along edges 
appear in the theory of plates and shells (Zav'yalov, 
Martynov and Romanovskij 2012; Suhoterin, Baryshnikov 
and Lomteva, 2016). Mathematical simulation of this type 
of problems leads to biharmonic equation with various 
boundary conditions. It should be mentioned that in some 
works, analytical solutions have been obtained for certain 
formulations in the form of series. The first solution for 
free supported plate was presented by Navier in 1820 in 
the form of double trigonometric series. However, the rate 
of convergence of the obtained series and its derivatives 
leaves something to be desired. Solution for rectangular 
plate with two opposite supported edges and two other 
edges fixed anyhow was obtained by Maurice Lévy. It is 
comprised of simple series with trigonometric and 
hyperbolic functions. The rate of convergence is higher 
than that in the Navier solution but insufficient for 
accurate computations. Subsequently solutions in the form 
of series were obtained for other formulations. Poor 
convergence of trigonometric series requires for 
accounting for high number of series terms for acceptable 
accuracy. Since the series coefficients contain 
trigonometric and hyperbolic functions, the computations 
should have thousands of decimal positions. These two 

circumstances significantly increase computation time. 
Therefore, both searching for new and improvement of 
existing numerical methods are urgent issues. The most 
powerful and universal tool to improve solution accuracy 
is the Richardson extrapolation. It allows to achieve high 
accuracy by application of simplest difference 
approximations of differential operators. Nowadays 
Richardson extrapolation and its modifications are widely 
applied in various problems for improvement of solution 
accuracy (Prihodovskij 2016; Tihovskaya 2015; 
Korpusov, Luk'yanenko, Ovsyannikov and Panin 2017). 
The theory of this method is developed for common 
differential equations and their sets. General theoretical 
substantiation for equations in partial derivatives is 
unavailable at present. This work discusses application of 
this method for solution to square plate bending problem 
in the case of clamping along overall periphery. 
 
MATERIALS AND METHODS 

Thin square plate with a side equalling to 1 is 
considered (Figure-1). The plate is clamped along overall 
periphery, the force 𝑓(𝑥, 𝑦) is applied to each internal 
point. 
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Figure-1. Design model. 
 

Mathematical description of bending 𝑢(𝑥, 𝑦) is a 
heterogeneous biharmonic equation with boundary 
conditions of the first and the second orders in square plate 
region 𝐷̅ = [0; 1] × [0; 1] (Ryazhskih, Slyusarev, Popov, 
2013) 
 𝜕4𝑢𝜕𝑥4 + 2 𝜕4𝑢𝜕𝑥2𝜕𝑦2 + 𝜕4𝑢𝜕𝑦4 = 𝑓(𝑥, 𝑦),    (1) 

 𝑢(0, 𝑦) = 𝑢(1, 𝑦) = 𝑢(𝑥, 0) = 𝑢(𝑥, 1) = 0,  (2) 
 𝜕𝑢(0,𝑦)𝜕𝑥 = 𝜕𝑢(1,𝑦)𝜕𝑥 = 𝜕𝑢(𝑥,0)𝜕𝑦 = 𝜕𝑢(𝑥,1)𝜕𝑦 = 0  (3) 

 
In order to obtain finite-difference scheme, let us 

replace the solution region 𝐷̅ with grid with the steps 𝛥𝑥,𝛥𝑦, Ω𝛥𝑥,𝛥𝑦 = {(𝑥𝑖 , 𝑦𝑗) = (𝑖𝛥𝑥, 𝑗𝛥𝑦)}, 𝑖 = 0, . . , 𝑛, 𝑗 =0, . . , 𝑚. Instead of the function of analog argument in 𝐷̅ , 
let us consider the function of discrete argument 𝑤(𝑥𝑖 , 𝑦𝑗)𝛥𝑥,𝛥𝑦 denoted as 𝑤𝛥𝑥,𝛥𝑦, and its values in each 

node as 𝑤𝑖,𝑗. Partition of the region by grid is performed 

so that the boundary points and the center are in the 
partition nodes.  

In order to construct finite-difference analog of 
partial derivatives ∂4u ∂x4⁄  and ∂4u ∂y4⁄ , let us use the 
central-difference operator of the 2nd order applied twice 
in terms of respective variable: 
 𝜕4𝑢𝜕𝑥4|𝑖,𝑗 = 𝑤𝑖+2,𝑗−4𝑤𝑖+1,𝑗+6𝑤𝑖,𝑗−4𝑤𝑖−1,𝑗+𝑤𝑖−2,𝑗𝛥𝑥4   (4) 

 𝜕4𝑢𝜕𝑦4|𝑖,𝑗 = 𝑤𝑖,𝑗+2−4𝑤𝑖,𝑗+1+6𝑤𝑖,𝑗−4𝑤𝑖,𝑗−1+𝑤𝑖,𝑗−2𝛥𝑦4   (5) 

 
The finite-difference analog of mixed derivative 

is:  
 

𝜕4𝑢𝜕𝑥2𝜕𝑦2|𝑖,𝑗 = 1144Δ𝑥2Δ𝑦2 [(𝑤𝑖+2,𝑗+2 − 16𝑤𝑖+2,𝑗+1 + +30wi+2,j − 16wi+2,j−1 + wi+2,j−2)− 16(wi+1,j+2 −16wi+1,j+1+ 30wi+1,j − 16wi+1,j−1 + wi+1,j−2)+ 30(wi,j+2 − 16wi,j+1+30wi,j− 16wi,j−1 + wi,j−2)− 16(wi−1,j+2 −16wi−1,j−2 +30wi−1,j − 16wi−1,j−1 + wi−1,j−2) + (wi−2,j+2− 16wi−2,j+1 + +30wi−2,j−16wi−2,j−1 + wi−2,j−2)]  (6) 

 
Substituting equations (4)–(6) into equation. (1), 

we obtain the difference equation:  
 wi+2,j−4wi+1,j+6wi,j−4wi−1,j+wi−2,jΔx4 +wi,j+2−4wi,j+1+6wi,j−4wi,j−1+wi,j−2Δy4 + 172Δx2Δy2 [(wi+2,j+2 −−16wi+2,j+1 +30wi+2,j − −16wi+2,j−1 + wi+2,j−2) −16(wi+1,j+2 −16wi+1,j+1 + +30wi+1,j − 16wi+1,j−1 +wi+1,j−2) + 30(wi,j+2 − 16wi,j+1+30wi,j − 16wi,j−1 +wi,j−2) − 16(wi−1,j+2 −16wi−1,j−2+30wi−1,j −16wi−1,j−1 + wi−1,j−2) + (wi−2,j+2 −16wi−2,j+1+30wi−2,j−16wi−2,j−1 + wi−2,j−2)] = fi,j (7) 

 
The boundary conditions, equation (2), applied to 

the required function will be as follows: 
 𝑤0,𝑗 = 𝑤𝑛,𝑗 = 𝑤𝑖,0 = 𝑤𝑖,𝑛 = 0, 𝑖 = 0, 𝑛, 𝑗 = 0, 𝑛. (8) 

 
The boundary conditions applied to the function 

gradient will be obtained using difference operators for the 
left and the right boundaries: 
 𝜕𝑢𝜕𝑥|𝑖,0 = −3𝑤𝑖,0+4𝑤𝑖,1−𝑤𝑖,22𝛥𝑥 , 𝑖 = 1, . . . , 𝑛 − 1  (9) 

 𝜕𝑢𝜕𝑥|𝑖,𝑛 = 3𝑤𝑖,𝑛−4𝑤𝑖,𝑛−1+𝑤𝑖,𝑛−22𝛥𝑥 , 𝑖 = 1, . . . , 𝑛 − 1 (10) 

 
For the upper and the lower boundaries, the 

following is valid, respectively: 
 𝜕𝑢𝜕𝑦|0,𝑗 = −3𝑤0,𝑗+4𝑤1,j−𝑤2,j2𝛥𝑦 , 𝑗 = 1, . . . , 𝑛 − 1  (11) 

 𝜕𝑢𝜕𝑦|𝑛,𝑗 = 3𝑤𝑛,𝑗−4𝑤𝑛−1,𝑗+𝑤𝑛−2,𝑗2𝛥𝑦 , 𝑗 = 1, . . . , 𝑛 − 1 (12) 

 
Let us substitute the derivatives in equation (3) 

with their finite-difference analogs, equations (9)–(12). 
Then, taking into account equation (8), the boundary 
conditions for the derivatives will be as follows: 
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wi,1 = 14wi,2, wi,n−1 = 14wi,n−2, i = 1, . . . , n − 1 (13) 

 w1,j = 14w2,j, wn−1,j = 14wn−2,j, j = 1, . . . , n − 1 (14) 

 
Therefore, the boundary problem, equations (1)–

(3), is replaced with the finite-difference scheme, 
equations (7), (8), (13), (14). This scheme is implicit. 
 

RESULTS 

Let us denote in uniform grid X Y h     :  
 

4 4 4

4 2 2 4
, , ,

2h

i j i j i j

B
X X Y Y

     
  
   

 

 
Then, equation (7) is as follows:  
 

1hB     

 
In order to determine the approximation error, let 

us form the difference =z u v , where u  is the problem 
solution, equation (7), (8), (13), (14), and v  is the problem 
solution, equation (1)–(3). Substituting =u z v  into the 
equation, we obtain the problem for z :  
 

= ( ) = 1, = BBu B z v Bz Bv Bz       

 
in internal grid nodes and for z  , the boundary conditions 

are valid: equations (8), (13), (14), where = 1B hB v   is 

the approximation error of equations (1)–(3) by equations 

(7), (8), (13), (14). Since 
2 1 = 0v  , then:  

 
2 2= 1 1= .B Bv v Bv v      

 
Let us calculate the approximation error term by 

term using the Taylor expansion with remainder term in 

Lagrange form in the vicinity of the ,i j -th node: 

 
4 4 2 6

4 4 6
,

( , )
[ ( ), ], 0 < < 1

6i j

v v X Y h v
h i jh

X X X
   

  
  

 

4 4 2 6

4 4 6
,

( , )
[ , ( )], 0 < < 1

6i j

v v X Y h v
ih h j

Y Y y
   

  
  

 

   
4 4 4 8 8

2 2 2 2 8 8
,

( , ) 17
( ) , , ( )

756i j

v v X Y h v v
i h hj ih h j

X Y X Y Y Y
 

    
      

      
 

   
4 8 8

7 7

34
( ) , ( ) ( ) , ( )

189

h v v
i h h j i h h j

X Y Y X
   

  
       

    
 

   
4 8 8

6 2 6 2

167
( ) , ( ) ( ) , ( )

270

h v v
i h h j i h h j

X Y Y X
   

  
       

      

   
4 8 8

5 3 5 3

34
( ) , ( ), ( ) , ( ),

27

h v v
i h h j k i h h j k

X Y Y X
     

  
       

    
 

 
4 8

4 4

85
( ) , ( ) ,0 1,0 1.

54

h v
i h h j

X Y
   

      
 

 

 

Let us denote:  
6 6

1 26 6( , ) ( , )

( , ) ( , )
= max , = max

X Y D X Y D

v X Y v X Y
M M

X Y 

 
 

, 

 

3
( , )

( , )
= min , , 1,3,5,7, 8;

m n

m n
X Y D

v X Y
M m n m n

X Y






  

 
 

 

4
( , )

( , )
= max , , 2,4,6,8, 8.

m n

m n
X Y D

v X Y
M m n m n

X Y






  

 
 

 
Since the biharmonic operator is symmetric, 

1 2M M . Let us denote 1 1= 3M M ,

2 4 3= (5398 / 945) (1088 /189)M M M , then:  

 
2 4

1 2| | .B M h M h    

 
Therefore, the difference operator approximates 

the biharmonic term with the 2nd order. 
The boundary condition (2) for the required 

function with consideration for equation (8) is 
approximated exactly. Let us estimate the approximation 
error of equation (3) by equations (13) and (14) using the 
Taylor expansion with remainder term in Lagrange form 

in the vicinity of the ,i j -th node: 

 
3

2

3
,

2
= [ ( ), ], 0 < < 1

3i j

v v v
h h i jh

X X X
   

 
  

. 

 
Let us denote: 
 

3

3( , )

( , )
= max ,

X Y D

v X Y
M

X




 

 

then: 
2| | Mh  . 

Therefore, the boundary condition (2) is 
approximated also with the second order, hence, the finite-
difference scheme, equations (7), (8), (13), (14), 
approximates the boundary problem, equations (1)–(3), 
with the accuracy of the second order | (Popov, 2018). 
 

CLASSICAL SOLUTION ANALYSIS 

Let us introduce the test function 𝑓(𝑥, 𝑦) with the 
accurate solution to equations (1)-(3). With this aim, let us 
take the function 𝑢(𝑥, 𝑦) satisfying the boundary 

conditions (2)-(3). Let 𝑢(𝑥, 𝑦) = 18𝜋4 sin2(𝜋𝑥)sin2(𝜋𝑦). 
Let us verify fulfillment of the boundary conditions: 𝑢(0, 𝑦) = 18𝜋4 sin2(𝜋 ⋅ 0)sin2(𝜋𝑦) = 0, 𝑢(1, 𝑦) =18𝜋4 sin2(𝜋 ⋅ 1)sin2(𝜋𝑦) = 0, similarly 𝑢(𝑥, 0) =𝑢(𝑥, 1) = 0, that is, the boundary conditions (2) are met. 𝜕𝑢𝜕𝑥 = 18𝜋4 sin(2𝜋𝑥)sin2(𝜋𝑦), then, 

𝜕𝑢(0,𝑦)𝜕𝑥 = 18𝜋4 sin(2𝜋 ⋅
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0)sin2(𝜋𝑦) = 0 and 
𝜕𝑢(1,𝑦)𝜕𝑥 = 18𝜋4 sin(2𝜋 ⋅ 1)sin2(𝜋𝑦) =0, similarly 

𝜕𝑢(𝑥,0)𝜕𝑦 = 𝜕𝑢(𝑥,1)𝜕𝑦 = 0, hence, equation (3) is 

also met. Let us substitute 𝑢(𝑥, 𝑦) into equation (1), then, 𝑓(𝑥, 𝑦) = (8cos2(𝜋𝑦) − 5)cos2(𝜋𝑥) − 5cos2(𝜋𝑦) + 3.  
Numeric experiments will be performed in Maple 

environment. Let us determine optimum number of 
nonzero digits in the computation experiments. Let us 
preset eight nonzero digits as initial number. While adding 
by two nonzero digits, let us monitor the dynamics of 
absolute error and computation time. Table-1 summarizes 
step-by-step variation of absolute error and computation 
time for various partitions. It can be seen in the table that 
upon transfer from 8 to 10 digits, the error decreases 
insignificantly, and upon further increase from 10 to 14, it 
is so low that the computations are not affected. 
Computation time to 14 digits also increases 
insignificantly. However, at 16 nonzero digits the 
computation time sharply increases with increase in error, 
though, insignificant. Thus, the optimum number is 10 
nonzero digits, it is used in Maple by default.  

Let us analyze the rate of convergence of finite-
difference scheme. We will increase the number of grid 
nodes by about two times and monitor the variations of 
computation error, computation time, and consumed 
memory. Table-3 summarizes the experimental results. It 
follows from the data that upon increase in grid nodes by 
two times, the error decreases by about two times. On this 
basis, let us derive empirical expression of grid number as 
a function of absolute error 𝜀. 
 h = 125√ε8√1.37      (15) 

 
Let us calculate the solution to equations (7)–(8), 

(13)–(14) in uniform grid with the step ℎ = 1 180⁄ . The 
obtained solution is illustrated in Figure-2. The solution is 
symmetric with regard to the central point (0.5; 0.5) 
where the maximum is reached equating to 1.28 ⋅ 10−3. 
Due to the symmetry, the solution behavior is illustrated 
informatively by its profile in the cross sections by planes X = 0.5 and Y = 0.5 in Figure-3. Figure-4 illustrates 
absolute error of the solution in cross section by plane X = 0.5. It can be seen that the maximum absolute error is 
reached in the central point equating to 1.87 ⋅ 10−7. 
Computation of solution with higher accuracy is 
accompanied by two issues. The first issue is increase in 
computation time. It follows from Table-2 that the step 
decrease from 1/128 to 1/180 leads to tenfold increase in 
time. The second issue is increase in required RAM. It 
follows from Table 2 that the step decrease from 1/128 to 
1/180 leads to twofold increase in RAM. And, while it is 
possible to accept the first issue, then the second issue 
results in impossibility to solve the problem using the 
available equipment. Thus, it is necessary to search for 
other approaches to achieve the required accuracy. 

An approach to develop classical finite-difference 
method improving the rate of convergence is the 
Richardson extrapolation and its modifications. Let us 
describe briefly this approach. 

In the region 𝐷̅ let us consider uniform grid Ωℎ = {(𝑥𝑖 , 𝑦𝑗) = (𝑖ℎ, 𝑗ℎ)}, 𝑖 = 0, . . , 𝑛, 𝑗 = 0, . . , 𝑛 with 

equal steps of variables 𝛥𝑥 = 𝛥𝑦 = ℎ. Let us plot the 
sequence of grids Ωℎ𝑘 = {(𝑥𝑖 , 𝑦𝑗) = (𝑖ℎ𝑘, 𝑗ℎ𝑘)}, 𝑖 =0, . . , 𝑛𝑘, 𝑗 = 0, . . , 𝑛𝑘, 𝑘 = 1, . . , 𝑝. It is obvious that each 
grid of the sequence contains the nodes of the first grid. 

Let us calculate the grid function 𝑤ℎ𝑘 for each grid of the 
sequence. The extrapolated solution will be presented in 

the form of linear combination of grid functions 𝑤ℎ𝑘 in 
common nodes 𝑊ℎ𝑝 = ∑ 𝑎𝑘𝑝𝑤ℎ𝑘𝑝𝑘=1 . In the classical 

method, the weighting factors 𝑎𝑘𝑝 are obtained from the set 
of linear equations:  
 ∑ akppk=1 = 1,∑ akphkjpk=1 = 0, j = 1, . . . , p − 1 (16) 
 

Let us select the parameter ℎ𝑘 = ℎ𝑘 for the grid 

sequence Ωℎ𝑘 , then equation (16) is rewritten as follows: 
 ∑akpp
k=1 = 1,∑akpkjp

k=1 = 0, j = 1, . . . , p − 1. 
 

While solving this set, we obtain the equation of 
weighted factors: 
 akp = (−1)p−kkpk! (p − k)! . 
 

The weighted factors for the grid sequences 2–5 
are summarized in Table-3. It can be seen that the weights 𝑎𝑘𝑝 increase significantly with the number of grid 
functions. This trend increases the influence of rounding 
errors, which leads to increase in the number of decimal 
positions and, as a consequence, the computation time. 

Contrary to the classical Richardson method, we 
will use expansion only in even degrees ℎ𝑘2 , then:  
 ∑ bkppk=1 = 1,∑ bkphk2jpk=1 = 0, j = 1, . . . , p − 1. (17) 
 

The rate of convergence for common differential 
equations in this approach is higher than in the classical 
variant. Let us reduce the parameter ℎ𝑘 by ℎ𝑘 = ℎ 𝑘⁄ , 
then, equation (17) is reduced as follows: 
 ∑𝑏𝑘𝑝𝑝
𝑘=1 = 1,∑ 𝑏𝑘𝑝𝑘2𝑗𝑝

𝑘=1 = 0, 𝑗 = 1, . . . , 𝑝 − 1. 
 

While solving this set, we will obtain the 
equations of weighting factors: 
 bkp = 2 (−1)p−kk2p(p + k)! (p − k)!. 
 

Table-4 summarizes the weighting factors 
calculated by this equation for various 𝑝. The table 
demonstrates more moderate increase in the weights 
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𝑏𝑘𝑝upon increase in the number of grid functions, which 
decreases the influence of rounding errors in comparison 
with the classical method. 

It follows from the table that the higher is the 
number of grid functions used for improved solution, the 

higher is the contribution of the last function 𝑤ℎ𝑝 and the 

lower is the contribution of the first function 𝑤ℎ1. We 
obtain the extrapolated solution only in the nodes of initial 
grid Ωℎ, hence, it should contain as many nodes as 
possible. However, increase in the number of nodes of 
initial grid leads to significant (by about a factor of 𝑝2) 
increase in the number of nodes of final grid. Two issues 
arise in this regard. Firstly, how many grid functions 
should be combined to obtain the maximum accuracy. 
Secondly, how to calculate the function in intermediate 
nodes. The answers will be obtained on the basis of 
numerical experiments. 
 
DISCUSSIONS 

In order to answer the question formulated above, 
let us perform the following experiment. Since the grid 
dimension is constrained by PC memory and computation 
time, let us take the maximum partition with the step ℎ = 1 180⁄ . Let us increase the grid step by a factor of 2, 
3, etc. Table-5 summarizes the absolute error as a function 
of number of grid functions in the extrapolated solution 
obtained by the classical method, Table-6 shows the same 
for the modified Richardson method. The column titled 
Relative error reduction shows the percent of error 
decrease in comparison with previous result. The first line 
shows the difference from the classical solution at ℎ = 1 180⁄ . It can be seen that combination of two grid 
functions in the classical method impairs the result and in 
the modified method the accuracy is improved by an order 
of magnitude.  

While comparing the data in the tables, it can be 
seen that the modified method is more efficient for two 
and three grid functions, in the case of four and more 
functions, the classical method provides better result. 
However, with increase in the number of decimal 
positions, the error of the classical method increases. For 
instance, with increase in the number of nonzero digits 
from 10 to 15 for the grid function 𝑊1 30⁄6  , the absolute 

error increases by 50%. On the contrary, while using the 
modified method under the same conditions, the error 
decreases, though only by 1%. This can be attributed to 
higher increase in the modulus of weighted factors of the 
classical method. Figure-5 illustrates the error of solution 
extrapolated by modified solution 𝑊1 30⁄6 . 

The rate of error decrease of the modified method 
rapidly drops, in the case of classical method, this drop is 
somewhat slower, hence, further increase in the number of 
grid functions is unreasonable. It should be noted that the 
number of grid nodes is inversely proportional to the 
square of term number of the extrapolated solution. 
Therefore, application of up to five grid functions is 
optimum for computations.  

The function values in intermediate nodes will be 
calculated by interpolation methods. This will be 

exemplified by the extrapolated function 𝑊1 60⁄3 . Using the 

nodes in the central cross section 𝑋 = 0.5 , let us plot the 
polynomial spline of the 5th degree. Figure-6 illustrates 
the spline absolute error. It can be seen that the absolute 
error in any point does not exceed the value in central 
point, hence, the spline accuracy coincides with that of the 
extrapolated function. It is obvious that spline function can 
be similarly plotted in any cross section. Proceeding this 
process, it is possible to obtain function value in any point 
of the region. However, the spline error for 𝑊1 30⁄6  exceeds 

the error of the function itself. Another method to obtain 
the values in intermediate nodes is selection of ℎ𝑘 as a 
function of number of grid functions. 

As it turned out, the answers for the first and the 
second questions are interrelated and depend on 
formulated purposes. If it is required to obtain solution in 
total region, then three–four terms are sufficient. If we are 
interested in the solution in a specific point, for instance, 
in the region center, then it is required to take maximum 
number of terms. Herewith, time consumption and PC 
memory should also be taken into account. 

In order to estimate the accelerated convergence 
of the Richardson extrapolation, let us use empiric 
equation (15). Accuracy of 𝑊1 60⁄3  could be obtained by 

classical method with the grid step ℎ = 1 16000⁄ . This 
step is lower by a factor of 89 than the step of the 
extrapolated solution. Computations with such step in 
Maple environment are impossible using PC. 
 

 
 

Figure-2. Solution graph. 
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Figure-3. Solution profile in section 𝑋 = 0.5. 
 

 
 

Figure-4. Absolute error in section 𝑋 = 0.5. 
 

 
 

Figure-5. Absolute error of the modified method. 
 

 
 

Figure-6. Absolute error of the spline in the section plane 𝑋 = 0.5. 
 
CONCLUSIONS 

Using classical finite difference method, the 
implicit finite-difference scheme has been developed for 
numerical solution to square plate bending problem. Using 
expansion of the function into the Taylor series, the 
approximation error of biharmonic operator has been 
predicted by difference analog as well as the 
approximation error of boundary conditions. The rate of 
convergence of the scheme has been analyzed. Test 
solutions for various grid steps have been obtained in the 
form of grid functions. Using the Richardson 
extrapolation, the extrapolated solution has been obtained 
in the form of linear combination of grid functions. 
Classical and modified approaches are analyzed. It has 
been demonstrated that the numerical algorithm with 
solution extrapolation is characterized by higher rate of 
convergence in comparison with the classical approach. 
The absolute error of solution for this algorithm is by 3-4 
orders of magnitude lower than for conventional finite-
difference method. Similar accuracy, upon application of 
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classical method, can be achieved by decreasing grid step 
by a factor of hundreds, which would increase the 
computation time by a factor of thousands. Herewith, the 
requirements to PC RAM would also increase by a factor 
of hundreds. The function intermediate values are obtained 
by means of polynomial spline of the fifth degree. In thus 
approach, the absolute error of the solution is not 
increased and the computation time varies insignificantly. 
The obtained results agree with approximate analytical 
solution for similar problem (Popov, Soboleva, 2016). 

Let us mention the advantages of the Richardson 
extrapolation. Universality: it is suitable both for common 
differential equations and for equations in partial 
derivatives. Simplicity of application: simple equations of  
weighting factors. Efficiency: combination of several 
solutions provides accuracy by several orders of 
magnitude higher than accuracy of each single solution. 

Its disadvantage, rather serious, is comprised of 
upscale of computational grid. However, this disadvantage 
can be compensated by a priori knowledge of solution and 
application of spline interpolation.  

 
Table-1. Rounding error. 

 

Number 

of 

nonzero 

digits 

Grid step 1/40 Grid step 1/100 Grid step 1/160 

Absolute error 
Computation 

time (s) 
Absolute error 

Computation 

time (s) 
Absolute error 

Computation 

time (s) 

8 3.22974⋅ 10−6 2.7 5.86⋅ 10−7 14 2.357⋅ 10−7 83 

10 -0.001% 0% -0.002% 0% -0.04 0% 

12 -0.00003% 0% -0.00008% 0% -0.0004% 1% 

14 -2.17⋅ 10−7% 1% -4.1⋅ 10−7% 1% -4.24⋅ 10−7% 2% 

16 5⋅ 10−7% 492% 0.0002% 7,120% 0.0003% 20,000% 

 
Table-2. Rate of convergence. 

 

Grid 

step 
Absolute error 

Relative error 

reduction (%) 

Computation 

time (s) 
PC memory (MB) 

1/32 4.76⋅ 10−6  2.5 57 

1/44 2.72⋅ 10−6 43% 3 66 

1/64 1.37⋅ 10−6 50% 4 161 

1/90 7.17⋅ 10−7 48% 10 261 

1/128 3.64⋅ 10−7 49% 34 974 

1/180 1.87⋅ 10−7 49% 418 7,564 

 

Table-3. Weighting factor 𝑎𝑘𝑝. 
 𝒑 𝒌 

1 2 3 4 5 6 

2 −1 2     

3 
12 −4 

92    

4 −16 4 −272  
323    

5 
124 −83 

814  −12835  
62524   

6 − 1120 
43 −814  

2563  −3,12524  
3245  
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Table-4. Weighting factor 𝑏𝑘𝑝. 
 𝒑 𝒌 

1 2 3 4 5 6 

2 −13 
43     

3 
124 −1625 

8140    

4 − 1360 
1645 −729280 

1,024315    

5 
18,640 − 64945 

6,5614,480 −16,3842,835  
390,62572,576   

6 − 1302,400 

8945 
−2,1874,480 

65,53614,175 
−9,765,625798,336  

17,4961,925  
 

Table-5. Acceleration of convergence of the classical method. 
 

Number of grid 

functions 𝒑 
Step of initial grid Absolute error Relative error reduction (%) 

2 1/90 3.43⋅ 10−7 - 93 

3 1/60 3.55⋅ 10−8 90 

4 1/46 1.85⋅ 10−10 99 

5 1/36 4.15⋅ 10−11 76 

6 1/30 2.22⋅ 10−11 47 

 
Table-6. Accelerating the convergence of the modified method. 

 

Number of grid 

functions 𝒑 
Step of initial grid Absolute error Relative error reduction (%) 

2 1/90 1.049⋅ 10−8 94 

3 1/60 3.526⋅ 10−9 66 

4 1/46 1.862⋅ 10−9 47 

5 1/36 1.325⋅ 10−9 29 

6 1/30 9.597⋅ 10−10 28 
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