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ABSTRACT 

This paper presents the analysis of pressure tests in unconventional reservoirs from the trilinear model of 

anomalous diffusion based on fractal geometry and anomalous diffusion in order to simulate the heterogeneity of flow in 

the reservoir in order to be able to obtain a flow prediction approximate to the real. Based on this model, we generate 

curves in which by applying the TDS methodology, new equations to determine reservoir parameters such as internal 

reservoir permeability, hydraulic fracture permeability, fracture conductivity, and reservoir dimensions are created. 

Likewise, through the input of the parameter alpha () four cases are defined, which show the variation of the flow 

depending on the connection between its elements. Finally based on data obtained from the literature, pressure tests were 

simulated in order to verify the right operation of the equations and that are within the error tolerance range. 
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1. INTRODUCTION 

The trilinear flow was developed by Brown et al. 

(2009) as an analytical model that describes the behavior 

of a complex system formed by a hydraulically fractured 

horizontal well connected to an internal reservoir with 

natural fractures and an external reservoir in a non- 

conventional shale reservoir. This model takes as 

reference point works previously developed by other 

researchers whose base was the introduction of the 

Laplace transform by Van Everdigen and Hurst (1949) for 

the solution of models that are based on the Diffusivity 

Equation in porous media. Brown et al. (2009) uses the 

dual porosity transient (Kazemi, et al., 1969) and pseudo 

steady-state dual porosity (Warren and Root, 1963) 

models to provide a solution to the Laplace transform in 

naturally fractured deposits which allows the modeling of 

the internal reservoir, in the same way, based on the model 

developed by Raghavan et al. (1997), the solution is given 

for a pressure transient for multiple fractured horizontal 

wells, managing to model the behavior of hydraulic 

fractures. 

Recently, Raghavan and Chen (2016) provided an 

anomalous diffusion model which is related to the fractal 

nature of the fracture network where certain coefficients 

for the heterogeneous porous medium are presented. Two 

common approaches to modeling naturally fractured 

reservroirs are used, that of discrete fracture connection 

(DFN) (Araujo et al. 2004) and dual porosity. In the DFN 

it is possible to consider the details of each fracture, the 

distribution and the connectivity of the network, the model 

requires extensive characterization studies and because of 

the roughness of calculations they lead to computational 

models being inefficient, therefore, the details that can be 

used by these models are limited by the capabilities of the 

flow models, which leads to these methods being eligible 

for routine engineering applications. 

Dual porosity models are based upon continuous 

and average assumptions of fracture properties, where the 

material contained in the primary porosity is homogeneous 

and isotropic and is contained in an identical arrangement 

of rectangular parallelepipeds, and the flow can occur 

between the elements of primary and secondary porosity, 

but not among the elements of primary porosity (Warren 

& Root, 1963). The model is appropriate for homogeneous 

systems where there are repeated patterns of continuous 

fractures that allow determining a predominant flow, 

however, if the variations in fractures, connectivity and 

conductivity of fractures are considered, it is only a first 

degree approximation, to the behavior of the networks in 

the horizontal wells.  

TDS has shown to be of powerful application on 

fractal reservoirs. Escobar, Lopez-Morales and Gomez 

(2015) presented the first TDS formulation for naturally-

fractured fractal reservoirs. The formulation offered by the 

TDS Technique cannot be performed with the straight-line 

conventional analysis. Escobar, Salcedo and Pinzon 

(2015) extended TDS methodology for power-law fluids in 

homogeneous fractal reservoirs. 

This investigation, uses the TDS technique in 

order to generate characteristic “finger prints” that allow 

us to obtain equations to characterize the different flow 

regimes, the concepts of anomalous diffusion and fractal 

geometry are introduced, to make the calculations less 

extensive and to simulate the heterogeneity of flow 

velocity in the system and in this way to obtain a behavior 

closer to the real one. 

 

2. MATHEMATICAL BACKGROUND 

The anomalous diffusion model (TDA) developed 

by Ozcan et al. (2014) replaces the double porosity model 

(TDP) with a model in which a porous medium with fractal 

geometry and anomalous diffusion is considered, this in 

order to obtain a behavior that has a greater adjustment to 

the real behavior of the deposits. 

 

2.1 Trilinear Flow Model 

The basis of the trilinear flow model is the 

premise that the productive life of a horizontal well with 
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multiple fractures is dominated by linear flow regimes. 

The trilinear flow model groups linear flows into three 

continuous regions of flow: the outer reservoir (denoted 

with the subscript O), the inner reservoir located between 

artificial fractures (denoted with subscript I), and the 

hydraulic fracture (denoted with the subscript F). In this 

model it is assumed that the internal reservoir is naturally 

fractured and that the hydraulic fractures are of finite 

conductivity with a uniform distribution throughout the 

horizontal well, Brown et al. (2009). 

 

Hydraulic fracture
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No-flow boundary
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External reservoir
, ,O tO Ok c 
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M tM M
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Figure-1. Trilinear Flow system schematic, after Ozkan 

et al. 2009). 

 

2.2. Fractal Geometry 

Fractal geometry developed by the mathematician 

Mandelbrot (1982), is based on the hypothesis that an 

irregular object is formed of small fragments that resemble 

the whole and have similar characteristics, many 

petrophysical properties that affect the flow in the porous 

medium, show fractal characteristics. Naturally fractured 

deposits were generally simulated by the Warren and Root 

(1963) two-scale model, in which, the fracture network is 

represented by Euclidean geometry, therefore, to represent 

these networks of different scales and with non-behavioral 

behavior. Euclidean fractal geometry was proposed as a 

solution. Chang and Yortsos (1990), propose a fractal 

system in a naturally fractured porous medium where 

fractals (Fractures) are located within a Euclidean 

geometry (Matrix), in which it is assumed that flow 

storage occurs in a local volume, which each fracture has 

the same density and the number of fractures to be 

simulated is taken into account. 

 

2.3 Abnormal Diffusion in Porous Media 

Unlike conventional reservoirs in which the 

Darcy flow dominates, in unconventional shale 

formations, where there are low permeabilities and are 

heterogeneous reservoirs, it has been shown that a 

diffusive flow is more accurate when representing the flow 

behavior in place, Kuchuk and Biryukov (2015), Poon  

1998). Diffusion is the result of the Brownian movement, 

which is the random movement resulting from the 

collision between molecules in a liquid, solid or gaseous 

medium. The relationship between the squared 

displacement of the particle and time is represented by the 

diffusivity coefficient (α), where a normal diffusion occurs 
when α = 1 and at values less than one there is a sub-

diffusion. Normal diffusion is usually associated with 

homogeneous deposits with a constant flow, where the 

squared displacement of the particle is a linear function 

with time. In unconventional reservoirs there is a sub-

diffusion, where the coefficient (α) is directly related to 
the heterogeneity of the deposit. The smaller α becomes, 

the velocity of the reservoir becomes more heterogeneous 

and the movement of the fluid is constantly interrupted. 

 

2.4 Mathematical Model 

For simplicity of calculations in the trilinear 

model, the terms are presented in a dimensionless manner. 

The definition of the pressure drop is given by the 

following formulae: 
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I I
D

h
P P

qB


                                                               (1) 

 

For gas reservoirs: 

 

( )   ( )
1422.54 

I I
D

Fsc

h
m P m P

q T


                                (2.a) 

 

     * * '
141.2

'D D

kh
t m t m P

q B
P


                                (2.b) 

 

Where qFsc is the flow rate of each individual 

fracture that is equal to the total horizontal well flow 

divided by the number of hydraulic fractures: 

 

sc
Fsc

f

q
q

n
                                                               (3) 

 

The dimensionless pressure derivative is given 

by: 
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The dimensionless time is given by: 
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Where t is the time in hr, xF is the average length 

of hydraulic fracture in ft and ηI is the diffusivity of the 

internal reservoir defined by: 
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Equations (1) and (5) correspond to the 

dimensionless pressure and dimensionless time of the 

trilinear dual-porosity model. For the trilinear diffusion-

anomalous model, ηI and λI refers to ηα  and λα, where kI = 
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kα, and kα is different from the conventional Darcy 

permeability. The distance (D) and the dimensionless 

thickness of the Hydraulic fracture (wFD) are also defined, 

respectively: 

 

D

Fx

                                                                (8) 

 

Where ξ is the distance in X or Y. The 

dimensionless thickness is defined by: 
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wF is the width of the hydraulic fracture. The 

dimensionless conductivities of the reservoir and the 

fracture are defined by: 

 

F F
FD

I F

k w

k
C

x
                                                             (10) 

 

I F
RD

O E

k x

k
C

Y
                                                             (11) 

 

Being k is the permeability in md, kFwF is the 

hydraulic fracture conductivity in md-ft and YE is the 

reservoir size in the y-direction y given in ft. 

The diffusivity radii of the hydraulic fracture and 

the external reservoir are given by: 

F
FD
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Where  refers to the diffusivity in part of the 

reservoir, Equation (6). The term of density of natural 

fractures is introduced: 

 

f

f

n

h
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3. TDS TECHNIQUE FORMULATION 

Different pressure and pressure derivative 

behaviors where generated with the TDA model proposed 

by Ozcan et al. (2014. Once the input data was entered, 

variables were modified in order to identify those that 

would change the behavior of the pressure derivative. 

With this exercise it was concluded that the most 

influential variable in the behavior of the reservoir is α, 

followed by the average length of the fracture (xF),  

reservoir size in the y-direction (YE), permeability of the 

internal reservoir (kI) and fracture permeability (kF). In the 

analysis of the behavior of the pressure derivative and 

identification of sensitivities, it was observed that the 

dominant variable in the flow variation in the reservoir 

was α, which causes a reaction of the pressure derivative 

modifying its behavior, and showing four cases. 

 

3.1 Case 1 (α = 0.1 - 0.2) 

A linear flow of slope 0.5 is observed, which 

represents the flow in the fracture, followed by a pseudo 

steady-state flow that identifies the time in which the 

matrix no longer provides flow to the natural fractures, 

refer to Figure-2. 
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Figure-2. Pressure derivative behavior for case 1. 

 

3.2 Case 2 (α= 0.3-0.4) and Case 3 (α= 0.5-0.9) 

In the second case case a multilinear flow of 

slope 0.3 is observed, followed by a second multilinear 

flow of slope 0.8 and finally a pseudo steady-state period 

of unit slope. (α = 0.3-0.4) as depicted in Figure-3. In the 

third case, a multilinear flow of slope 0.3 is presented at 

early times, followed by a second multilinear flow of slope 

0.6 and later a pseudo steady-state period of unit slope. (α 
= 0.5 - 0.9) (Figure-4). 
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Figure-3. Pressure derivative behavior for case 2. 

 

3.3. Case 4 (α = 1)  

The fourth case is presented at values of α = 1, at 

early times a bilinear flow is identified (m = 0.25), 

followed by a linear flow (m = 0.5) and ends with a pseudo 

steady-state period of unit slope. In this case the flow in 

the fracture networks is not hindered by the matrix, since 

the system is densely fractured and efficiently connected, 

therefore, the system will be depleted more quickly with 

better efficiently, which causes the fractures natural 

dominate the flow in the reservoir and that the flow 

between the reservoir and the fracture of finite hydraulic 

conductivity begins at early times forming a bilinear flow. 

(Figure-5). 
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Figure-4. Pressure derivative behavior for case 3. 
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Figure-5. Pressure derivative behavior for case 4. 

 

Once the cases and sensitive variables were 

identified, the curves were adjusted and the governing 

equation of each of the flows was developed, after which 

the desired variable was solved in each of the equations 

taking into account the equations raised in the 

mathematical model of Ozkan et al. (2014). The resulting 

equations are given in Table-1. 

Additionally, the intersection between the 

different flow regimes were used to solve for some 

reservoir parameters as pointed out by Tiab (1995). These 

equations are provided in Table-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                VOL. 15, NO. 11, JUNE 2020                                                                                                                  ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2020 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1259 

Table-1. TDS Equations for gas and oil cases. 
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Table-2. Intersection time equations. 
 

Intercept between Equation Equation Number 

Linear-bilinear 

2

4 2

 
0.91 I BLLi

F
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Ek t
k

c w x

Y

  
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8.52 10
 

  
  

 

m pssi

tF

E
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Y
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
 
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4
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1
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1 1.65 psi
m

P 

2 38 hr
m

t 
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Figure-6. Pressure and pressure derivative versus time for 

worked example. 

 

4. EXAMPLE 
To verify and apply the equations presented in 

Tables-1 and -2, the Barnett field data presented by Brown 

et al. (2009), Table-3, were used to generate synthetic 

pressure and pressure derivative behavior and then apply 

the developed equations once the characteristic points are 

read. The generated data are plotted in Figure-6. 

 

Table-3. Input data for worked example. 
 

Parameter Value Parameter Value 

α 0.6 kα,md 0.13 

xe 275 kO, md 1x10
-6

 

YE, ft 90.3 (ϕct)α, psi
-1

 2 x10
-4

 

xF, ft 150 ϕF 0.38 

wF, ft 0.01 ctF, psi
-1

 1 x10
-4

 

h, ft 300 ϕO 0.04 

rw, ft 0.25 µ, CP 0.3 

kF, md 10000 qF,stb/d 150 

 

Solution. The current flow regimes are identified 

in Figure-6 and it is evidenced that the case presented is 3, 

where at an early time there is a multilinear flow m = 0.3, 

followed by a second multilinear flow of m = 0.6 and 

finally a pseudo steady-state period. The following 

characteristic points were read from this plot: 

 

Multili-

near 

(m=0.3) 

tm1 

0.35

1 

ΔP

m1 

1.65 
(t*ΔP’)

m1 
0.58 

Multili-

near 2 

(m=0.6) 

tm2 0.68 
ΔPm

2 

13.1

4 

(t*ΔP’)
m2 

7.08 

Pseudo-

steady 
tpss 8000 

ΔPp

ss 
 

(t*ΔP’)
pss 

1500 

 

Intersection points: 

 

tm1m2i 15 
tm2pssi 16000 

The fracture conductivity is determined with 

Equation (26) for the multilinear flow, m = 0.3 is: 

 
23 4 2 20.13 0.58 2 10 150 0.6 300

 
214 150 1.43 0.351 0.02

             
     

F Fk w


kFwF = 99.32 md-ft 

 

The skin factor of this flow regime is obtained 

with Equation (27): 

 
0.3

1 1 4 2

1.65 0.351 100
  3.33

124 5.8 10 2 10 0.02 300 0.6 150 

            
mS



Sm1 = 0.043 

 

The remaining calculation results are given in 

Table-4.  

 

Table-4. Comparative results for the worked example. 
 

Parameter/ 

Eq. number 

Actual 

value 

This 

study 
Error(%) 

kFwF, md-ft (26) 100 99.32 0.68 

kI, md (32) 0.13 0.139 6.9 

xF, ft (41) 150 158 5.3 

kF, md (48) 10000 9914.2 0.9 

YE, ft (44) 90.3 90.7 0.44 

 

5. CONCLUSIONS 

 

a) Through the anomalous diffusion trilinear flow model 

and the application of the TDS technique, it was 

possible to develop expressions to characterize a 

trilinear configuration reservoir considering the flow 

heterogeneity and interconnection between its 

elements. The expressions were successfully tested 

with several examples, although only one is 

presented. 

b) With the implementation of , a heterogeneous flow 

was simulated, and it was identified as the most 

influential variable in the behavior of the pressure 

derivative and in order of the flows. 

c) Four cases originated by the configuration of the 

system were identified, the contribution of each of its 

elements and the diffusivity of these in the porous 

medium, the presence of these cases with the variation 

of the flows demonstrates the versatility presented by 

the model to simulate different scenarios with 

complex reservoir forms and heterogeneous velocity 

flows, making a more realistic prediction possible, 

without the need for extensive studies of 

characterization and roughness of calculations. 
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d) In cases 1, 2 and 4 an  value located between the 

ranges specified for each case can be applied. The 

variation of the results will be minimal and will 

comply with the permissible error range. For case 3 -

being the widest range of values- it is suggested that 

for a more precise calculation  is solved for some of 

the equations based on values obtained by 

petrophysical interpretations and data obtained from 

the reservoir. 

Nomenclature 

 

A Reservoir area, ft
2 

Bo Oil volume factor, rb/STB 

Bg Gas volumen factor, ft
3
 /SCF 

CRD Dimensioneless hydraulic fracture 

conductivity 

Ct Total compressibility, 1/psi 

dF Distance between two adjacent hydraulic 

fractures, ft 

h Reservoir thickness, ft 

hf Natural fractures thickness, ft 

hft Total natural fractures thickness, ft 

hm Matrix thickness, ft 

k Permeability, md 

kI Internal reservoir permeability, md 

kf Permeability of natural fractures, md 

kF Permeability of hydraulic fracture 

ko External reservoir permeability, md 

kα Phenomenological coefficient of anomalous 

diffusion, md 

km Matrix permeability, md 

m(P) Pseudopressure, psi
2
/cp 

m Slope 

nF Number of hydraulic fractures 

nf Number of natural fractures 

P Pressure, psi 

PD Dimensionless pressure 

q Flow rate, STB/D 

qF,sc Flow rate per hydraulic fracture, oil STB/d, 

gas Mscf/d 

rw Wellbore radius, ft 

S Skin factor 

t Time, hr 

tD Dimensionless time 

tD*𝑃𝐷′  Dimensionless pressure derivative 

tD*𝑚(𝑃)𝐷′  

Dimensionless pseudopressure derivative 

t*∆𝑚(𝑃) pseudopressure derivative, psi
2
/cp 

wF Hydraulic fracture width, ft 

xe Reservoir lenght, in x-direction, ft 

xF Hydraulic fracture half length, ft 

YE Reservoir lenght, in y-direction, ft 

Griego 

α Difussivity coefficient 

αO,F Parameter defined in the trilinear flow 

model 

βO,F Parameter defined in the trilinear flow 

model 

Δ Drop, change 

ϕ Porosity, fraction 

η Difusivity, ft
2
 /hr 

λ Mobolity, md/cp 

µ Viscosity, cp 

ρ Density, lb/ft
3
 

ξ Mdium type: I, F, O 

ω Storativity coefficient 

Sufijos 

D Dimensionless 

e External boundary 

f Natural fracture 

F Hydraulic fracture 

i Intercept 

I Internal 

m Matrix 

O External reservoir 

R Reservoir 

sc Standard conditions 

BL Bilinear 

L Linear 

pss Pseudosteay-state 

m1 Multilinear 1 

m2 Multilinear 2 

m3 Multilinear 3 
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