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ABSTRACT 

In this paper, a new approach for solving the system of coupled nonlinear partial differential equations that model 

fluid flow problems. The method, called the large parameter spectral perturbation method (LSPM) uses series expansion 

about a large parameter to decompose the system of partial differential equations (PDEs) into a sequence of ordinary 

differential equations (ODEs). The sequence of ODEs is then solved using the Chebyshev spectral collocation method. The 

LSPM is tested on a coupled three-equation system that models the problem of natural convection heat transfer flow 

through a magnetized vertical permeable plate for liquid metals. The accuracy of the LSPM is tested against the multi-

domain bivariate spectral quasilinearisation method (MD-BSQLM) which is an approach that uses the quasilinearisation 

technique to linearise the nonlinear PDEs first and thereafter using the Chebyshev spectral collocation method to solve the 

governing equations on a sequence of smaller non-overlapping sub-intervals. The approximate numerical results indicate 

that the LSPM is an accurate and computationally efficient method for solving coupled nonlinear systems of PDEs defined 

over a large parameter interval. The numerical results obtained are presented graphically to show the effect of different 

parameters on the temperature, velocity profiles and transverse component field for different values of some of the 

parameters. Approximate numerical results for local skin friction, current density, and rate of heat transfer are presented in 

tabular forms. Residual error graphs are presented in order to further show the accuracy of the LSPM. We remark also that 

this paper aims at correcting the errors introduced by wrong transformations evident in the system of equations which have 

been chosen from literature for the numerical experiment.  

 
Keywords: series solution approach; multi-domain bivariate spectral quasilinearisation method; magnetic field; error analysis; vertical 

permeable plate. 

 

1. INTRODUCTION 

Boundary layer flows are most important 

problems of fluid mechanics with both so many 

applications theoretically and practically. These classes of 

problems are modelled by nonlinear partial differential 

equations (PDEs). Boundary layer flow equations occur 

frequently in engineering, physics and have substantial 

applications in the extrusion of plastic sheet, food 

processing, cooling process of metallic plates, and many 

other fields. Most physical problems which model systems 

in nature leads to nonlinear partial differential equations 

(PDEs). Examples of such physical problems include heat 

transfer, biological systems, engineering and fluid flow. 

To have a better understanding of the behaviour of these 

problems, it is crucial to find solutions of these PDEs. The 

prominent challenge is the non-existence of analytic 

solutions to most nonlinear PDEs modelling real life 

problems because the PDEs are highly nonlinear and 

complex to solve exactly even with the use of computing 

software. 

To overcome this challenge, a number of 

numerical and analytical methods have been developed by 

researchers to approximate the solutions to these nonlinear 

boundary layer PDEs. Examples of analytical methods that 

have used by researchers to solve systems of nonlinear 

boundary layer partial differential equations include 

perturbation series approach used by Ashraf et al. [1], 

differential transform method used by Abd-Elaziz and 

Sameh [2], and homotopy analysis method used by Liao 

[3] amongst others. The finite difference method 

employed by Kumari and Nath [4] is an example of such 

numerical methods commonly used by researchers to solve 

such nonlinear partial differential equations. These 

methods have their own advantages and disadvantages. 

For instance, a limiting factor of the approximate 

analytical method is that it may be difficult to obtain 

closed form solution in some cases for a nonlinear system 

involving many coupled equations. There are limits to how 

the approximate analytical approaches can be applied in 

nonlinear systems involving many coupled equations. 

Furthermore, numerical methods may fail to work when 

the domain is large 𝜉 > 1. The finite difference method for 

example also may require many grid points to achieve an 

accurate result and, hence, requires a lot of computational 

time and computer memory. 

In an attempt to eliminate some of the numerical 

methods limitations, recent advances in the developments 

of numerical methods have focused on Chebyshev spectral 

collocation based approaches for solving some nonlinear 

PDEs which require few grid points to give accurate 

results. Some of the Chebyshev spectral collocation based 

methods that have been used to solve systems of nonlinear 

boundary layer partial differential equations include 

bivariate spectral relaxation method [5], bivariate spectral 

quasilinearisation method [6], bivariate spectral local 

linearisation method [7] and bivariate spectral homotopy 

analysis method [8]. However, there are limits to how 

these Chebyshev spectral collocation based methods can 
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be utilized in nonlinear systems of PDEs especially those 

problems defined over large intervals. There is no 

guarantee that the resulting approximate numerical 

solution from these methods mentioned above will be 

accurate when the nonlinear PDEs are defined over large 

intervals. This is because the numerical solution may not 

converge to the required solution even when a large 

number of grid points is used. To accurately solve a 

problem over large domains, a fine grid with many 

collocation points may be required. Using far too many 

grid points leads to a deterioration of the accuracy of the 

spectral methods. 

The aim of this study is to introduce an 

alternative approach called the large parameter spectral 

perturbation method (LSPM) that will be able to handle a 

wide variety of systems of nonlinear boundary layer PDEs 

that model fluid mechanics problems that are defined over 

large intervals. The LSPM blends the asymptotic analysis 

idea with numerical solution techniques. The method uses 

the Chebyshev spectral collocation method to gain 

numerical approximate solution of higher order asymptotic 

series equations which may be difficult to obtain 

analytically. The analytical version of the large parameter 

method has been used by Hossain et al. [9] to solve a non-

similar system of nonlinear boundary layer partial 

equations exactly. In the large parameter method used by 

the above mentioned authors, the nature of the problems 

they considered was in such a way that the series solution 

can be obtained exactly. 

In this present study, we examine that the 

sequence of ordinary differential equations (ODEs) which 

are given by the series expansion has variable coefficients 

and may be complex to solve exactly as the order of the 

approximation increases, hence, the introduction of the 

Chebyshev spectral collocation method to solve the higher 

order perturbation equations numerically. We demonstrate 

that the range of validity of the spectral perturbation 

method (SPM) [10] can be extended by doing the series 

expansion about a large parameter. The SPM is a series 

expansion based method that depends on the existence of a 

small perturbation parameter in an equation. The SPM 

combines the idea of the standard perturbation series 

techniques and the Chebyshev spectral collocation 

method. In the SPM, we regard 𝜉 as a small perturbation 

parameter and then search for a perturbation series 

approximation of the governing equations. The resulting 

sequence of ODEs generated by the perturbation series 

approximation is then solved numerically using the 

Chebyshev spectral collocation method and this method 

was used in this study because spectral methods are well 

documented to be a good numerical tool for ordinary 

differential equations with variable coefficients. 

Furthermore, in this study, simple decoupled linear 

systems formulas for generating the solutions in the form 

of decoupled linear systems were derived. 

In order to demonstrate the applicability of the 

LSPM, we revisit the natural convection heat transfer flow 

past a magnetized vertical permeable plate for liquid 

metals that was previously investigated by [1] using the 

finite difference method, and the perturbation series 

approach. It is worth mentioning here that the asymptotic 

series method transformation of equation (2) reported by 

[1] was erroneous and as a result of that, the transformed 𝐹 

and Φ equations [1] presented were incorrect. In this work, 

we present the valid transformations and correct equations. 

The accuracy of the LSPM is validated against results 

generated using the multi-domain bivariate spectral 

quasilinearisation method (MD-BSQLM). The MD-

BSQLM uses the idea of the quasilinearisation, Chebyshev 

spectral collocation, and bivariate Lagrange interpolation. 

In the MD-BSQLM, the governing nonlinear systems of 

PDEs are linearized using the newton Raphson based 

quasilinearisation method of Bellman and Kalaba [11] and 

then integrating the resulting equations in multiple sub-

intervals using the Chebyshev spectral collocation method. 

The Chebyshev spectral collocation method with the 

Lagrange interpolation polynomials are applied to the 

linearised nonlinear systems of PDEs independently in 

both space and time direction. The LSPM also 

approximates the solution of the problem in fractions of a 

second and converges faster than the MD-BSQLM. The 

computational speed of the LSPM can be explained by the 

fact that, unlike the MD-BSQLM and other numerical 

methods, the LSPM solves a partial differential equation 

by applying discretization only in the space direction. 

Results are presented in tabular and graphical forms. The 

two methods are compared in terms of easy 

implementation, accuracy and computational speed. In 

order to further demonstrate the accuracy of the LSPM, 

residual error graphs are presented to show the accuracy of 

the method. The effects of transverse component magnetic 

field, pertinent parameters on velocity profile and 

temperature profile are also examined and presented 

graphically. 

 

2. GOVERNING EQUATIONS 

In this section, we reconsider a steady and two-

dimensional natural convection flow of an electrically 

conducting viscous and incompressible fluid past a 

uniformly heated vertical plate for liquid metals previously 

investigated by Ashraf et al. [1]. The surface mass flux 𝑉0 

is assumed to be uniform. The surface mass flux is 

negative when the fluid is withdrawn through the surface 

while when the fluid is blown through the surface, the 

surface mass flux is positive. In this present study, the case 

of withdrawal of fluid from the surface shall be 

considered. The governing equations can be expressed in 

dimensionless form as [1]: 

 𝑓′′′ + 34 𝑓𝑓′′ − 12 𝑓′2 + 𝜃 − 𝑆 (34 𝜙𝜙′′ − 12 𝜙′2) + 𝜉𝑓′′ =
14 𝜉 [ 𝑓′𝜕𝑓′𝜕𝜉 − 𝑓′′𝜕𝑓𝜕𝜉−𝑆 (𝜙′ 𝜕𝜙′𝜕𝜉 − 𝜙′′ 𝜕𝜙𝜕𝜉 )],    (1) 

 1𝑃𝑚 𝜙′′′ + 34 𝑓𝜙′′ − 34 𝑓′′𝜙 + 𝜉𝜙′′ = 14 𝜉 [𝑓′ 𝜕𝜙′𝜕𝜉 − 𝜙′ 𝜕𝑓′𝜕𝜉 +𝑓′′ 𝜕𝜙𝜕𝜉 − 𝜙′′ 𝜕𝑓𝜕𝜉],     (2) 
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1𝑃𝑟 𝜃′′ + 34 𝑓𝜃′ + 𝜉𝜃′ = 14 𝜉 [𝑓′ 𝜕𝜃′𝜕𝜉 − 𝜃′ 𝜕𝑓𝜕𝜉]  (3) 

subject to 

 𝑓(𝜉, 0) = 𝑓′(𝜉, 0) = 0,    𝜙(𝜉, 0) = 0, 𝜙′(𝜉, 0)= 1,    𝜃(𝜉, 0) = 1, 𝑓′(𝜉, ∞) = 𝜙′(𝜉, ∞) = 𝜃(𝜉, ∞) = 0.                    (4) 

 

In the above equations prime denotes 

differentiation with respect to 𝜂, and 𝜉 is the transpiration 

parameter, 𝑆 is the magnetic force parameter, 𝑃𝑚 the 

magnetic Prandtl number, and 𝑃𝑟 the Prandtl number. The 

non-dimensional skin friction coefficients, rate of heat 

transfer and current density are given in [1] as;  

 𝐺𝑟𝐿−3/4𝑥−1/4𝐶𝑓 = 𝑓′′(0, 𝜉),    𝐺𝑟𝐿−3/4𝑥−1/4𝐽𝑤 =−𝜙′′(0, 𝜉),    𝐺𝑟𝐿1/4𝑥1/4𝑁𝑢 = −𝜃′(0, 𝜉).  (5) 

 

3. LARGE PARAMTER SPECTRAL 

PERTURBATION METHOD (LSPM) 
In this section, we derive the simplified form to 

finding the solution to equations (1 - 3) along side with the 

boundary conditions (4) when the transpiration parameter 𝜉 is large. The order of magnitude of different terms in (1 - 

3) shows that the terms with the largest magnitude in (1) 

are 𝑓′′′ and 𝜉𝑓′′, in (2) 𝜙′′′ and 𝜉𝜙′′, and 𝜃′′ and 𝜉𝜃′ in (3). 

Both the terms have to be balanced in the respective 

equations and the only way to do this is to assume that 𝜂 to 

be small and its derivatives are large. Given that 𝜃 = 𝑂(1) 

as 𝜉 → ∞, it is necessary to find appropriate scaling for 𝑓 

and 𝜂. On balancing the 𝑓′′′ , 𝜃 and 𝜉𝑓′′ terms in (1) using 

the method of dominant balance, it is found that 𝜂 =𝑂(𝜉−1), 𝑓 = 𝑂(𝜉−3) and 𝜙 = 𝑂(𝜉−1) as 𝜉 → ∞. 

Therefore, the following transformations are introduced 

 𝑓 = 𝜉−3𝐹(𝜂̅), 𝜂̅ = 𝜉𝜂,    𝜙 = 𝜉−1Φ(𝜂̅),    𝜃 = Θ(𝜂̅). (6) 

 

Substituting these transformations given in (6) 

into equations (1 - 3), we obtain the following equations:  

 F′′′ + F′′ + Θ − 12 SΦΦ′′ + 12 SΦ′2 = 14 ξ−3 [F′ ∂F′∂ξ −F′′ ∂F∂ξ] − 14 ξS [Φ′ ∂Φ′∂ξ − Φ′′ ∂Φ∂ξ ],   (7) 

 Φ′′′ + PmΦ′′ − 12 Pmξ−4F′′Φ − 12 Pmξ−4F′Φ′ =14 Pmξ−3 [F′ ∂Φ′∂ξ − Φ′ ∂F′∂ξ + F′′ ∂Φ∂ξ − Φ′′ ∂F∂ξ],  (8) 

 Θ′′ + PrΘ′ = 14 Prξ−3 [F′ ∂Θ∂ξ − Θ′ ∂F∂ξ].  (9) 

 

The corresponding boundary conditions are given 

by  

 F(ξ, 0) = F′(ξ, 0) = 0,    Φ(ξ, 0) = 0,    Φ′(ξ, 0) =1,    Θ(ξ, 0) = 1,    F′(ξ, ∞) = Φ′(ξ, ∞) = Θ(ξ, ∞) = 0.(10) 

 

Since 𝜉 is large, solutions of equations (7 - 9) are 

obtained using the perturbation method. Hence, we expand 

the functions 𝐹(𝜉, 𝜂̅), Φ(𝜉, 𝜂̅) and Θ(𝜉, 𝜂̅) in powers of 𝜉−4 as given below: 

 𝐹(𝜉, 𝜂̅) = ∑  ∞𝑘=0 𝜉−4𝑘𝐹𝑘(𝜂̅),   (11) 

 Φ(𝜉, 𝜂̅) = ∑  ∞𝑘=0 𝜉−4𝑘Φ𝑘(𝜂̅),   (12) 

 Θ(𝜉, 𝜂̅) = ∑  ∞𝑘=0 𝜉−4𝑘Θ𝑘(𝜂̅).   (13) 

 

It is worth mentioning here that the 

transformation given in equation (6) for 𝜙 is the valid 

transformation for equation (2). This led to equations (7 - 

8) and the expansion used in (11 - 13) being different from 

the ones reported in literature by Ashraf et al. [1]. 

Substituting equations (11 - 13) into equations (7) - (9) 

and then equating the coefficients of like powers of 𝜉, we 

obtain the equations for 𝑘 = 0 as 

 𝐹0′′′ + 𝐹0′′ + Θ0 − 12 𝑆Φ0Φ0′′ + 12 𝑆Φ0′2 = 0, (14) 

 Φ0′′′ + 𝑃𝑚Φ0′′ = 0,    (15) 

 Θ0′′ + 𝑃𝑟Θ0′ = 0,    (16) 

 

subject to the following boundary conditions 

 F0(0) = F0′(0) = 0,    Φ0(0) = 0,    Φ0′(0) =1,    Θ0(0) = 1,    F0′(∞) = Φ0′(ξ, ∞) = Θ0(∞) = 0. (17) 

 

The equations for k ≥ 1 are given as  𝐹𝑘′′′ + 𝐹𝑘′′ + 𝛩𝑘 − 12 𝑆𝛷0𝛷𝑘′′ + 12 𝑆𝛷0′𝛷𝑘′ − 𝑆𝛷0′𝑘𝛷𝑘′+ 𝑆𝛷0′′𝑘𝛷𝑘= [∑  𝑘−1
𝑛=0 𝐹𝑘−1−𝑛′′ 𝑛𝐹𝑛 − ∑  𝑘−1

𝑛=0 𝐹𝑘−1−𝑛′𝑛𝐹𝑛′] +S [12 ∑  k−1n=0 Φk−nΦn′′ − 12 ∑  k−1n=0 Φk−n′Φn′ +∑  k−1n=0 Φk−n′nΦn′ − ∑  k−1n=0 Φk−n′′nΦn],  (18) 

 Φk′′′ + PmΦk′′ = 12 Pm ∑  k−1
n=0 Fk−1−n′Φn′ + 12 Pm ∑  k−1

n=0 Fk−1−n′′Φn
− Pm ∑  k−1

n=0 Fk−1−n′ nΦn′
+  Pm ∑  k−1

n=0 Φk−1−n′nFn′ −Pm ∑  k−1n=0 Fk−1−n′′nΦn + Pm ∑  k−1n=0 Φk−1−n′′nFn, (19) 

 Θk′′ + PrΘk′ =Pr[∑  k−1n=0 Θk−1−n′nFn − ∑  k−1n=0 Fk−1−n′nΘn],  (20) 

 Fk(0) = 0,    Fk′(0) = 0,    Fk′(∞) = 0, Φk(0) = 0,    Φk′(0) = 0,    Φk′(∞) = 0, Θ𝑘(0) = 0, Θ𝑘(∞) = 0.    (21) 
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The initial solution at 𝑘 = 0 used to start the 

LSPM algorithm, is given by equations (14 - 16) subject to 

the boundary conditions (17). Solving these equations 

exactly gives 

 𝐹0(𝜂̅) = 𝑒𝑃𝑟𝜂̅−𝑃𝑟𝑒−𝜂̅(𝑃𝑟−1)𝑃𝑟2 + 𝑆(𝑒𝑃𝑚𝜂̅−𝑃𝑚𝑒−𝜂̅)2(𝑃𝑚−1)𝑃𝑚2 + 2𝑃𝑚2+𝑃𝑟2𝑆2𝑃𝑚𝑃𝑟2  (22) 

 Φ0(𝜂̅) = 1−𝑒−𝑃𝑚𝜂̅𝑃𝑚 ,    (23) 

 Θ0(𝜂̅) = 𝑒−𝑃𝑟𝜂̅ .     (24) 

 

The solution to equations (18 - 20) can be 

obtained using the Chebyshev spectral collocation method 

since the left hand side of the higher order perturbation 

equations (18 - 20) is linear. We remark that in view of 

equation (18) having variable coefficients, 𝐹𝑘, Φ𝑘, Θ𝑘 may 

be complex to solve exactly as the order of the series 

approximation increases. It is for that reason we employ 

the Chebyshev spectral collocation method to gain 

numerical approximate solution of equations (18 -20) and 

that is why the method is called large parameter spectral 

perturbation method. For brevity, we remark that the 

details of the Chebyshev spectral collocation method have 

been omitted in this work. Further details of how the 

Chebyshev spectral collocation method can be used to 

solve related PDEs with fluid mechanics applications can 

be found in (see for example ([5, 6, 10])). Applying the 

Chebyshev spectral collocation method on equations (18 - 

20) gives 

 A1,k−1Fk = B1,k−1,    A2,k−1𝚽k = B2,k−1,    A3,k−1𝚯k =B3,k−1,      (25) 

 

where  

 𝐴1,𝑘−1, 𝐴2,𝑘−1, 𝐴3,𝑘−1, 𝐵1,𝑘−1, 𝐵2,𝑘−1, and𝐵3,𝑘−1are defined 

as  A1,k−1 = D3 + D2 − diag (12 S𝚽0) D2𝚽+ diag (12 S(D𝚽0)) D𝚽 

 −k diag(S(D𝚽0))D𝚽 + k diag(S(D2𝚽0)),  (26) 

 A2,k−1 = D2 + PmD,    A3,k−1 = D2 + PrD,  (27) 

 B1,k−1 = SumF − 𝚯k,    B2,k−1 = Sum𝚽,    B3,k−1 = Sum𝚯,(28) 

 

where SumF, Sum𝚽 and Sum𝚯 are defined as;  SumF = 12 S ∑  k−1
n=0 𝚽k−n(D2𝚽n) − 12 S ∑  k−1

n=0 (D𝚽k−n)(D𝚽n)
− ∑  k−1

n=0 (DFk−1−n)(nDFn) 

+ ∑  k−1
n=0 (D2Fk−1−n)(nFn) + S ∑  k−1

n=0 (D𝚽k−n)(nD𝚽n)
− S ∑  k−1

n=0 (D2𝚽k−n)(n𝚽n), 
Sum𝚽 = 12 Pm ∑  k−1

n=0 (DFk−1−n)(D𝚽n)
+ 12 Pm ∑  k−1

n=0 (D2Fk−1−n)𝚽n
− Pm ∑  k−1

n=0 (DFk−1−n)(nD𝚽n) 

+Pm ∑  k−1
n=0 (D𝚽k−1−n)(nDFn) − Pm ∑  k−1

n=0 (D2Fk−1−n)(n𝚽n)
+ Pm ∑  k−1

n=0 (D2𝚽k−1−n)(nFn), 
Sum𝚯 = Pr ∑  k−1

n=0 (D𝚯k−1−n)(nFn)
− Pr ∑  k−1

i=0 (DFk−1−n)(n𝚯n), 
 

Thus, starting from a known 𝐹0, Θ0, Φ0, the 

solutions 𝐹𝑘, Φ𝑘 , Θ𝑘, for 𝑘 ≥ 1 can be obtained from 

equation (25) as 

 𝐹𝑘 = 𝐴1,𝑘−1−1 𝐵1,𝑘−1, 𝚽𝑘 = 𝐴2,𝑘−1−1 𝐵2,𝑘−1, 𝚯𝑘 =𝐴3,𝑘−1−1 𝐵3,𝑘−1.     (29) 

 

4. MULTI-DOMAIN BIVARIATE SPECTRAL 

QUASILINEARISATION METHOD (MD-BSQLM)  

In this section, we briefly describe how the multi-

domain spectral quasilinearisation (MD-BSQLM) method 

of solution is been used to solve equations (1 - 3). The 

MD-BSQLM is based on using the quasiliearisation 

method proposed by Bellman and Kalaba [11] to linearise 

the governing equation and use the Chebyshev spectral 

collocation method to solve the linearised equations in a 

sequence of sub-intervals. The multi-domain or multistage 

or piece-wise approach has been previously used to solve 

IVPs modelled by chaotic, hyperchaotic and noncahotic 

systems (see Nik and Rebelo [12], Effati et al. [13] and 

Goh et al. [14]). The multi-domain is applied only in the 𝜉 

direction. To implement the multi-domain, we first 

linearise equations (1 - 3) using the quasilinearisation 

(QLM). The quasiliearisation method uses the Newton 

Raphson based qualinearisation method of Bellman and 

Kalaba [11] to linearise the governing equations and 

solves the resulting system of linearised equations using 

the Chebyshev spectral collocation method. Applying the 

QLM on (1 - 3) gives 
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a0,r(η, ξ)fr+1′′′ + a1,r(η, ξ)fr+1′′ + a2,r(η, ξ)fr+1′+ a3,r(η, ξ)fr+1 + a4,r(η, ξ) ∂f′r+1∂ξ  +a5,r(η, ξ) ∂fr+1∂ξ + a6,r(η, ξ)ϕr+1′′ + a7,r(η, ξ)ϕr+1′+ a8,r(η, ξ)ϕr+1 + a9,r(η, ξ) ∂ϕ′r+1∂ξ  +a10,r(η, ξ) ∂ϕr+1∂ξ + a11,r(η, ξ)θr+1 = R1,r(η, ξ), (30) 

 b0,r(η, ξ)ϕr+1′′′ + b1,r(η, ξ)ϕr+1′′ + b2,r(η, ξ)ϕr+1′+ b3,r(η, ξ)ϕr+1 + b4,r(η, ξ) ∂ϕ′r+1∂ξ  +b5,r(η, ξ) ∂ϕr+1∂ξ + b6,r(η, ξ)fr+1′′ + b7,r(η, ξ)fr+1′+ b8,r(η, ξ)fr+1 + +b9,r(η, ξ) ∂fr+1′∂ξ  +b10,r(η, ξ) ∂fr+1∂ξ = R2,r(η, ξ),   (31) 

 c0,r(η, ξ)θr+1′′ + c1,r(η, ξ)θr+1′ + c2,r(η, ξ)θr+1+ c3,r(η, ξ) ∂θr+1∂ξ + c4,r(η, ξ)f′r+1 +c5,r(η, ξ)fr+1 + c6,r(η, ξ) ∂fr+1∂ξ = R3,r(η, ξ),  (32) 

 

subject to the boundary conditions  fr+1(0, ξ) = 0,    fr+1′(0, ξ) = 0,    f′r+1(∞, ξ) = 0, ϕr+1(0, ξ) = 0,    ϕr+1′(0, ξ) = 1,    ϕr+1′(∞, ξ) = 0, θr+1(0, ξ) = 1,    θr+1(∞, ξ) = 0,   (33) 

 

where a0,r = 1,    a1,r = 34 fr + ξ + 14 ξ ∂fr∂ξ ,    a2,r= −fr′ − 14 ξ ∂fr′∂ξ a3,r = 34 fr′′,    a4,r= − 14 ξfr′, a5,r = 14 ξfr′′,    a6,r = − 34 Sϕ′r − 14 ξS ∂ϕr∂ξ ,    a7,r= Sϕ′r + 14 ξS ∂ϕ′r∂ξ ,    a8,r = − 34 Sϕ′′r, a9,r = 14 ξSϕ′r,    a10,r = − 14 ξSϕ′r,    a11,r = 1, b0,r = 1,    b1,r = 34 Pmfr + Pmξ + 14 Pmξ ∂fr∂ξ ,    b2,r= 14 Pmξ ∂fr′∂ξ ,    b3,r = − 34 Pmfr′′, b4,r = − 14 Pmξfr′,    b5,r = − 14 Pmξfr′′,    b6,r= − 14 Pmξ ∂ϕr∂ξ − 34 Pmϕr,    b7,r= − 14 Pmξ ∂ϕr′∂ξ , b8,r = 34 Pmϕr′′,    b9,r = 14 Pmξϕr′,    b10,r = 14 ξPmϕr′′, 

c0,r = 1,    c1,r = 34 Prfr + 14 Prξ ∂fr∂ξ + Prξ,    c2,r = 0,    c3,r= − 14 Prξfr′,    c4,r = − 14 Prξ ∂θ∂ξ, c5,r = 34 Prθr′,    c6,r = 14 Prξθr′, R1,r = 34 frfr′′ − 12 (fr′)2 − 34 Sϕrϕr′′ + 12 S(ϕr′)2− 14 ξfr′ ∂fr′∂ξ + 14 ξfr′′ ∂fr∂ξ + 14 ξSϕr′ ∂ϕr′∂ξ− 14 ξSϕr′′ ∂fr∂ξ  R2,r = 34 Pmfrϕr′′ − 34 Pmfr′′ϕr − 14 Pmξfr′ ∂ϕr′∂ξ+ 14 Pmξϕr′ ∂fr′∂ξ − 14 Pmξfr′′ ∂ϕr∂ξ+ 14 Pmξϕr′′ ∂fr∂ξ  R3,r = 34 Prfrθr′ − 14 Prξfr′ ∂θr∂ξ + 14 Prξθr′ ∂fr∂ξ .  (34) 

 

To apply the multi-domain on 𝜉 direction to the 

system of equations, we let 𝜉 ∈ Ω, where Ω ∈ [0, 𝑇] and 

the domain Ω is decomposed into 𝑝 non-overlapping 

intervals as 

 Ω𝑚 = [𝜉𝑚−1, 𝜉𝑚], 𝜉𝑚−1 < 𝜉𝑚, 𝜉0 = 0, 𝜉𝑝 = 𝑇,    𝑚 =1,2, ⋯ , 𝑝.     (35) 

 

The multi-domain approach is based on the 

assumption that the PDEs are solved independently at each 

of the 𝑝 sub-interval using the initial condition for the 

solution in the first sub-interval. Once the solution at the 

first sub-interval has been computed, the new solutions at 

the subsequent 𝑚 − 𝑡ℎ interval is computed using the 

solution at the right hand boundary of the 𝑚 − 1𝑠𝑡 interval 

as an initial solution. In the 𝑚 − 𝑡ℎ sub-interval, we solve 

 a0,r(m)f′′′r+1(m) + a1,r(m)fr+1′′(m) + a2,r(m)fr+1′(m) + a3,r(m)fr+1(m)
+ a4,r(m) ∂f′r+1(m)∂ξ + a5,r(m) ∂fr+1(m)∂ξ+ a6,r(m)ϕr+1′′(m) +a7,r(m)ϕr+1′(m) + a8,r(m)ϕr+1(m) + a9,r(m) ∂ϕ′r+1(m)∂ξ + a10,r(m) ∂ϕr+1(m)∂ξ +a11,r(m) θr+1(m) = R1,r(m),     (36) 

 b0,r(m)ϕr+1′′′(m) + b1,r(m)ϕr+1′′(m) + b2,r(m)ϕr+1′(m)+ b3,r(m)ϕr+1(m) + b4,r(m) ∂ϕ′r+1(m)∂ξ+ b5,r(m) ∂ϕr+1(m)∂ξ  +b6,r(m)fr+1′′(m) + b7,r(m)fr+1′(m) + b8,r(m)fr+1(m) ++b9,r(m) ∂f′r+1(m)∂ξ + b10,r(m) ∂fr+1(m)∂ξ = R2,r(m),   (37) 
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𝑐0,𝑟(𝑚)𝜃𝑟+1′′(𝑚) + 𝑐1,𝑟(𝑚)𝜃𝑟+1′(𝑚) + 𝑐2,𝑟(𝑚)𝜃𝑟+1(𝑚) + 𝑐3,𝑟(𝑚) 𝜕𝜃𝑟+1(𝑚)𝜕𝜉 +𝑐4,𝑟(𝑚)𝑓𝑟+1′(𝑚) + 𝑐5,𝑟(𝑚)𝑓𝑟+1(𝑚) + 𝑐6,𝑟(𝑚) 𝜕𝑓𝑟+1(𝑚)𝜕𝜉 = 𝑅3,𝑟(𝑚), (38) 

 

subject to the boundary conditions  𝑓𝑟+1(𝑚)(0, 𝜉) = 0, 𝑓𝑟+1′(𝑚)(0, 𝜉) = 0, 𝑓𝑟+1′(𝑚)(∞, 𝜉) = 0, 𝜙𝑟+1(𝑚)(0, 𝜉) = 0, 𝜙𝑟+1′(𝑚)(0, 𝜉) = 1, 𝜙𝑟+1′(𝑚)(∞, 𝜉) = 0, 𝜃𝑟+1(𝑚)(0, 𝜉) = 1, 𝜃𝑟+1(𝑚)(∞, 𝜉) = 0,   (39) 

 

A suitable initial condition to start the multi-

domain iteration scheme in the first sub-interval is on 

which satisfies the boundary conditions. Initial condition 

at the subsequent sub-intervals are given by the continuity 

conditions 

 𝑓(𝑚)(𝜂, 𝜉𝑚−1) = 𝑓(𝑚−1)(𝜂, 𝜉𝑚−1), 𝜙(𝑚)(𝜂, 𝜉𝑚−1) = 𝜙(𝑚−1)(𝜂, 𝜉𝑚−1), 𝜃(𝑚)(𝜂, 𝜉𝑚−1) = 𝜃(𝑚−1)(𝜂, 𝜉𝑚−1).   (40) 

 

Applying the spectral collocation method on 

above equations  gives 

 [a0,r(m)D3 + a1,r(m)D2 + a2,r(m)D + a3,r(m)]Fj,r+1(m)
+ a4,r(m) ∑  Nt

q=0 dj,qDFq,r+1(m)
+ a5,r(m) ∑  Nt

q=0 dj,qFq,r+1(m)
 

[a6,r(m)D2 + a7,r(m)D + a8,r(m)]𝚽j,r+1(m) + a9,r(m) ∑  Nt
q=0 dj,qD𝚽q,r+1(m)

+ a10,r(m) ∑  Nt
q=0 dj,q𝚽q,r+1(m)

 +𝑎11,𝑟(𝑚) 𝜽𝑗,𝑟+1(𝑚) = 𝑅1,𝑗,𝑟(𝑚) ,    (41) 

 [b0,r(m)D3 + b1,r(m)D2 + b2,r(m)D + b3,r(m)]𝚽j,r+1(m)
+ b4,r(m) ∑  Nt

q=0 dj,qD𝚽q,r+1(m)
+ b5,r(m) ∑  Nt

q=0 dj,q𝚽q,r+1(m)
 [b6,r(m)D2 + b7,r(m)D + b8,r(m)]Fj,r+1(m) + b9,r(m) ∑  Ntq=0 dj,qDFq,r+1(m) +b10,r(m) ∑  Ntq=0 dj,qFq,r+1(m) = R2,j,r(m) ,   (42) 

 [c0,r(m)D2 + c1,r(m)D + c2,r(m)]𝚯j,r+1(m) + c3,r(m) ∑  Nt
q=0 dj,q𝚯q,r+1(m)

+ [c4,r(m)D + c5,r(m)]Fj,r+1(m)
 +c6,r(m) ∑  Ntq=0 dj,qFq,r+1(m) = R3,j,r(m) .   (43) 

Noting that the solution at the last time level 𝑗 = 𝑁𝑡 of each sub-interval is given by the initial condition 

and taking 𝑖 and 𝑗 now as dummy indices, it can be written 

as 

 [a0,r(m)D3 + a1,r(m)D2 + a2,r(m)D + a3,r(m)]Fi,r+1(m)
+ a4,r(m) ∑  Nt−1

j=0 di,jDFj,r+1(m)
+ a5,r(m) ∑  Nt−1

j=0 di,jFj,r+1(m)
 

+[a6,r(m)D2 + a7,r(m)D + a8,r(m)]𝚽i,r+1(m) + a9,r(m) ∑  Nt−1
j=0 di,jD𝚽j,r+1(m)

+ a10,r(m) ∑  Nt−1
j=0 di,j𝚽j,r+1(m) + a11,r(m) 𝛉j,r+1(m)

 = R1,i,r(m) − a4,r(m)di,NtDFNt,r+1(m) + a5,r(m)di,NtFNt,r+1(m) −a9,r(m)di,NtD𝚽Nt,r+1(m) − a10,r(m) di,Nt𝚽Nt,r+1(m) ,  (44) 

 [b0,r(m)D3 + b1,r(m)D2 + b2,r(m)D + b3,r(m)]𝚽i,r+1(m)
+ b4,r(m) ∑  Nt−1

j=0 di,jD𝚽j,r+1(m)
+ b5,r(m) ∑  Nt−1

j=0 di,j𝚽j,r+1(m)
 

+[b6,r(m)D2 + b7,r(m)D + b8,r(m)]Fi,r+1(m) + b9,r(m) ∑  Nt−1
j=0 di,jDFj,r+1(m)

+ b10,r(m) ∑  Nt−1
j=0 di,jFj,r+1(m)

 = R2,i,r(m) − b4,r(m)di,NtD𝚽Nt,r+1(m) − b5,r(m)di,Nt𝚽Nt,r+1(m) −b9,r(m)di,NtDFNt,r+1(m) − b10,r(m)di,NtFNt,r+1(m) ,  (45) 

 [c0,r(m)D2 + c1,r(m)D + c2,r(m)]𝚯i,r+1(m) + c3,r(m) ∑  Nt−1
j=0 di,j𝚯j,r+1(m)

+ [c4,r(m)D + c5,r(m)]Fi,r+1(m)
+ c6,r(m) ∑  Nt−1

j=0 di,jFq,r+1(m)
 = R3,i,r(m) − c3,r(m)di,Nt𝚯Nt,r+1(m) − c6,r(m)di,NtFNt,r+1(m) . (46) 

 

In a more compact form, thse equations can be 

written as 
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𝐴1,1(𝑖) 𝐹𝑖,𝑟+1(𝑚) + 𝑎4,𝑟(𝑚) ∑  𝑁𝑡−1
𝑗=0 𝑑𝑖,𝑗𝐷𝐹𝑗,𝑟+1(𝑚) + 𝑎5,𝑟(𝑚) ∑  𝑁𝑡−1

𝑗=0 𝑑𝑖,𝑗𝐹𝑗,𝑟+1(𝑚)
+ 𝐴1,2(𝑖) 𝚽𝑖,𝑟+1(𝑚) + 𝑎9,𝑟(𝑚) ∑  𝑁𝑡−1

𝑗=0 𝑑𝑖,𝑗𝐷𝚽𝑗,𝑟+1(𝑚)
 +𝑎10,𝑟(𝑚) ∑  𝑁𝑡−1𝑗=0 𝑑𝑖,𝑗𝚽𝑗,𝑟+1(𝑚) + 𝐴1,3(𝑖) 𝚯𝑖,𝑟+1(𝑚) = 𝜷1,𝑖,𝑟(𝑚) , (47) 

 𝐴2,1(𝑖) 𝐹𝑖,𝑟+1(𝑚) + 𝑏9,𝑟(𝑚) ∑  𝑁𝑡−1
𝑗=0 𝑑𝑖,𝑗𝐷𝐹𝑗,𝑟+1(𝑚) + 𝑏10,𝑟(𝑚) ∑  𝑁𝑡−1

𝑗=0 𝑑𝑖,𝑗𝐹𝑗,𝑟+1(𝑚)
+ 𝐴2,2(𝑖) 𝚽𝑖,𝑟+1(𝑚) + 𝑏4,𝑟(𝑚) ∑  𝑁𝑡−1

𝑗=0 𝑑𝑖,𝑗𝐷𝚽𝑗,𝑟+1(𝑚)
 

 +𝑏5,𝑟(𝑚) ∑  𝑁𝑡−1𝑗=0 𝑑𝑖,𝑗𝚽𝑗,𝑟+1(𝑚) + 𝐴2,3(𝑖) 𝚯𝑖,𝑟+1(𝑚) = 𝜷2,𝑖,𝑟(𝑚) , (48) 

 𝐴3,1(𝑖) 𝐹𝑖,𝑟+1(𝑚) + 𝑐6,𝑟(𝑚) ∑  𝑁𝑡−1𝑗=0 𝑑𝑖,𝑗𝐹𝑗,𝑟+1(𝑚) + 𝐴3,2(𝑖) 𝚽𝑖,𝑟+1(𝑚) +𝐴3,3(𝑖) 𝚯𝑖,𝑟+1(𝑚) + 𝑐3,𝑟(𝑚) ∑  𝑁𝑡−1𝑗=0 𝑑𝑖,𝑗𝚯𝑗,𝑟+1(𝑚) = 𝜷3,𝑖,𝑟(𝑚) ,  (49) 

 

where  𝐴1,1(𝑖) = 𝑎0,𝑟(𝑚)𝐷3 + 𝑎1,𝑟(𝑚)𝐷2 + 𝑎2,𝑟(𝑚)𝐷 + 𝑎3,𝑟(𝑚), 𝐴1,2(𝑖)= 𝑎6,𝑟(𝑚)𝐷2 + 𝑎7,𝑟(𝑚)𝐷 + 𝑎8,𝑟(𝑚), 𝐴1,3(𝑖) = 𝑎11,𝑟(𝑚)
 𝐴2,1(𝑖) = 𝑏6,𝑟(𝑚)𝐷2 + 𝑏7,𝑟(𝑚)𝐷 + 𝑏8,𝑟(𝑚), 𝐴2,2(𝑖)= 𝑏0,𝑟(𝑚)𝐷3 + 𝑏1,𝑟(𝑚)𝐷2+ 𝑏2,𝑟(𝑚)𝐷, +𝑏3,𝑟(𝑚)𝐴2,3(𝑖) = 𝟎 𝐴3,1(𝑖) = 𝑐4,𝑟(𝑚)𝐷 + 𝑐5,𝑟(𝑚), 𝐴3,2(𝑖) = 𝟎, 𝐴3,3(𝑖)= 𝑐0,𝑟(𝑚)𝐷2 + 𝑐1,𝑟(𝑚)𝐷, +𝑐2,𝑟(𝑚)

 𝜷1,𝑖,𝑟(𝑚) = 𝑅1,𝑖,𝑟(𝑚) − 𝑎4,𝑟(𝑚)𝑑𝑖,𝑁𝑡𝐷𝐹𝑁𝑡,𝑟+1(𝑚) − 𝑎5,𝑟(𝑚)𝑑𝑖,𝑁𝑡𝐹𝑁𝑡,𝑟+1(𝑚)− 𝑎9,𝑟(𝑚)𝑑𝑖,𝑁𝑡𝐷𝚽𝑁𝑡,𝑟+1(𝑚)− 𝑎10,𝑟(𝑚) 𝑑𝑖,𝑁𝑡𝚽𝑁𝑡,𝑟+1(𝑚) , 𝜷2,𝑖,𝑟(𝑚) = 𝑅2,𝑖,𝑟(𝑚) − 𝑏4,𝑟(𝑚)𝑑𝑖,𝑁𝑡𝐷𝚽𝑁𝑡,𝑟+1(𝑚) − 𝑏5,𝑟(𝑚)𝑑𝑖,𝑁𝑡𝚽𝑁𝑡,𝑟+1(𝑚)− 𝑏9,𝑟(𝑚)𝑑𝑖,𝑁𝑡𝐷𝐹𝑁𝑡,𝑟+1(𝑚) − 𝑏10,𝑟(𝑚)𝑑𝑖,𝑁𝑡𝐹𝑁𝑡,𝑟+1(𝑚) , 𝜷3,𝑖,𝑟(𝑚) = 𝑅3,𝑖,𝑟(𝑚) − 𝑐3,𝑟(𝑚)𝑑𝑖,𝑁𝑡𝚯𝑁𝑡,𝑟+1(𝑚) − 𝑐6,𝑟(𝑚)𝑑𝑖,𝑁𝑡𝐹𝑁𝑡,𝑟+1(𝑚) . 
 

The boundary conditions when evaluated at the 

Chebyshev-Gauss-Lobatto collocation points gives: 𝑓𝑟+1(𝑚)(𝜂𝑁𝑥 , 𝜉𝑖) = 0, ∑  𝑁𝑥
𝑝=0 𝐷𝑁𝑥,𝑝𝑓𝑟+1(𝑚)(𝑁𝑥, 𝜉𝑖)

= 0, ∑  𝑁𝑥
𝑝=0 𝐷0,𝑝𝑓𝑟+1(𝑚)(𝜂𝑝, 𝜉𝑖) = 0, 

𝜙𝑟+1(𝑚)(𝜂𝑁𝑥 , 𝜉𝑖) = 0, ∑  𝑁𝑥
𝑝=0 𝐷𝑁𝑥,𝑝𝜙𝑟+1(𝑚)(𝑁𝑥, 𝜉𝑖)

= 1, ∑  𝑁𝑥
𝑝=0 𝐷0,𝑝𝜙𝑟+1(𝑚)(𝜂𝑝, 𝜉𝑖) = 0, 𝜃𝑟+1(𝑚)(𝜂𝑁𝑥 , 𝜉𝑖) = 1, 𝜃𝑟+1(𝑚)(𝜂0, 𝜉𝑖) = 0. (50) 

 

Solving these equations  gives 𝑓(𝑥𝑝, 𝑡𝑞) , 𝜙(𝑥𝑝 , 𝑡𝑞) and 𝜃(𝑥𝑝, 𝑡𝑞) which is subsequently used to 

approximate 𝑓𝑚(𝑥, 𝑡), 𝜙𝑚(𝑥, 𝑡), and 𝜃𝑚(𝑥, 𝑡). 

 

5. RESULTS AND DISCUSSIONS 
In this section, we present the numerical 

approximate solutions for equations (1 - 3), subject to the 

boundary conditions (4) obtained using the large 

parameter spectral perturbation method (LSPM). Results 

were presented for the skin friction coefficient (𝑓′′(0, 𝜉)), 

rate of heat transfer (−𝜃′(0, 𝜉)) and the current density (−𝜙′′(0, 𝜉)) for different physical parameters that are of 

interest to the flow model. To ascertain the accuracy of the 

computed (LSPM) approximate numerical results 

comparison was done against numerical approximate 

results obtained using the multi-domain bivariate spectral 

quasilinearisation method (MD-BSQLM) and the results 

were seen to be in a very good agreement. For the LSPM, 

the number of collocation points used in the space (𝜂) 

direction is 𝑁𝑥 = 100 in all cases. Similarly, for the MD-

BSQLM, the number of collocation points used in the 

space (𝜂) direction to generate the numerical results is 𝑁𝑥 = 100 and in the (𝜉) direction is 𝑁𝑡 = 5 in all cases. 

The choice of these collocation points gave the sufficient 

accuracy required in all the numerical simulations 

conducted. 

Table-1, illustrates a comparison of the 

approximate numerical results of equations (1 - 3) 

computed by the (LSPM) and the (MD-BSQLM) for the 

skin friction 𝑓′′(0, 𝜉), current density −𝜙′′(0, 𝜉) and rate 

of heat transfer −𝜃′(0, 𝜉), respectively, for different values 

of the transpiration parameter (𝜉) when the magnetic 

Prandtl number 𝑃𝑚 = 0.7, magnetic field parameter 𝑆 = 0.2, and Prandtl number 𝑃𝑟 = 0.7. The table also 

gives the order (𝐾) of LSPM approximation and the 

(LSPM) and the (MD-BSQLM) computational time 

required to obtain numerical results that are accurate to 

seven decimal places. It can be seen from the table that the 

(LSPM) results are found to be in excellent agreement 

with the result of the (MD-BSQLM). It is worth 

mentioning here that the asymptotic series solution of 

equations (1 - 3) are presented by Ashraf et al. [1], where 

tabulated results for 𝐹′′(0), Φ′′(0) and Θ(0) when 𝑃𝑚 = 0.01,0.05,0.1, 𝑆 = 0.2, and 𝑃𝑟 = 0.1 for different 

values of 𝜉. We have decided not to compare our present 

results with the reported results of Ashraf et al. [1] 

because an incorrect transformation for equation (2) was 

used in their study. Here, we have reported the correct 

transformation and equations. It can further be observed 

from the table that converged solutions are reached at very 

low LSPM order when 𝜉 is very large. More terms of the 

series are required to give converged results when 𝜉 is 

small. The comparison between the computational times 

shows that the (LSPM) is more efficient in terms of 

computation speed than the (MD-BSQLM). It is worth 

mentioning that the apparent computational speed of the 

LSPM can be explained by the fact that, unlike the MD-

BSQLM, discretization is done only in the space (𝜂) 

direction in the LSPM. From this Table, it is also observed 
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that an increase in the values of transpiration parameter 𝜉, 

decreases the skin friction but increases the current density 

and rate of heat transfer. 

Figures 1, 2 and 3 show the effects of the 

transpiration parameter 𝜉 on the velocity profile 𝑓′(𝜂, 𝜉), 

the transverse component of magnetic field 𝜙(𝜂, 𝜉) and 

the temperature profile 𝜃(𝜂, 𝜉), respectively. From the 

graphs, it can be seen that the velocity profile, the 

transverse component of the magnetic field and the 

temperature profile decreases as the transpiration 

parameter 𝜉 increases. It can be further noticed that the 

momentum, magnetic and thermal boundary layer 

thickness decreases with increasing values of 𝜉. This 

phenomenon occurs because suction slows down the 

motion of the fluid in the downstream region. Similar 

observations were made in a parallel study by [1] and [15]. 

Figures 4 and 5, presents the effect of the magnetic on the 

velocity profile and transverse component of magnetic 

field. We observe from the graphs that an increase in the 

values of the magnetic field parameter leads to an increase 

in the velocity profile, and in the transverse component of 

magnetic field. This is because the direction of the 

magnetic field is in favour of the temperature profile. 

Similar results have been reported in a parallel study 

carried out by [15]. 

Figures 6 and 7 illustrates the effect of magnetic 

Prandtl number 𝑃𝑚 on the velocity profile and transverse 

component of magnetic field, and temperature profile 

respectively. From these Figures, it can be seen that both 

velocity profile and transverse component of magnetic 

field decreases while there is no change noticed on the 

temperature profile. Similar observations on transverse 

component of magnetic field and temperature profile were 

made in a parallel study by [15]. 

The velocity and temperature profiles for various 

values of the Prandtl number 𝑃𝑟 are displayed in Figures 8 

and 9. It is noted that both the velocity and temperature 

decreases. We further observe that the momentum and 

thermal boundary layer thickness decreases with the 

increase in the values of 𝑃𝑟. This happens because an 

increase in the Prandtl number implies an increase in the 

fluid viscosity, which in turn, causes a reduction in the 

velocity and temperature profiles. These results agree with 

those of a parallel study carried out by [15]. 

In order to further access the accuracy of the 

LSPM numerical method, we have considered the residual 

error which is a representation of the extent at which the 

solution of the governing partial differential equations (7 - 

9) is approximated by the numerical solution. 

Accordingly, we define the residual error as we define the 

maximum error of the residual as 

 𝑅𝑒𝑠(𝐹) = max0≤𝑗≤𝑁𝑥|𝑁𝐹[𝐹𝑘(𝜉, 𝜂), 𝚽𝑘(𝜉, 𝜂), 𝚯𝑘(𝜉, 𝜂)]|, 𝑅𝑒𝑠(Φ) = max0≤𝑗≤𝑁𝑥|𝑁Φ[𝐹𝑘(𝜉, 𝜂), 𝚽𝑘(𝜉, 𝜂), 𝚯𝑘(𝜉, 𝜂)]|, 𝑅𝑒𝑠(Θ) = max0≤𝑗≤𝑁𝑥|𝑁Θ[𝐹𝑘(𝜉, 𝜂), 𝚽𝑘(𝜉, 𝜂), 𝚯𝑘(𝜉, 𝜂)]|, (51) 

 

where 𝑁𝐹 , 𝑁Φ and 𝑁Θ are the governing nonlinear PDEs 

defined as 

𝑁𝐹 = 𝐹′′′ + 𝐹′′ + Θ − 12 𝑆ΦΦ′′ + 12 𝑆Φ′2
− 14 𝜉−3 [𝐹′𝜕𝐹′𝜕𝜉 − 𝐹′′𝜕𝐹𝜕𝜉]+ 14 𝜉𝑆 [Φ′ 𝜕Φ′𝜕𝜉 − Φ′′ 𝜕Φ𝜕𝜉 ], 

 𝑁Φ = Φ′′′ + 𝑃𝑚Φ′′ − 12 𝑃𝑚𝜉−4𝐹′′Φ − 12 𝑃𝑚𝜉−4𝐹′Φ′− 14 𝑃𝑚𝜉−3 [𝐹′ 𝜕Φ′𝜕𝜉 − Φ′ 𝜕𝐹′𝜕𝜉 + 𝐹′′ 𝜕Φ𝜕𝜉− Φ′′ 𝜕𝐹𝜕𝜉 ], 
 𝑁Θ = Θ′′ + 𝑃𝑟Θ′ − 14 𝑃𝑟𝜉−3 [𝐹′ 𝜕Θ𝜕𝜉 − Θ′ 𝜕𝐹𝜕𝜉 ]. 
 

and 𝐹𝑘(𝜉, 𝜂), 𝚽𝑘(𝜉, 𝜂), and𝚯𝑘(𝜉, 𝜂) are the LSPM 

approximate solutions. 

 

Figures 10, 11 and 12 depict the variation of the 

LSPM residual error for 𝐹, Φ and Θ against increasing 

order of the LSPM series term. From the graph, it can be 

observed that the residual error reduces with an increase in 

the order of LSPM series approximation for different 

values of 𝜉 considered. The decrease in the residual error 

slope with an incraese in the order of series approximation 

is an indication that the method converges and the 

convergence is observed to be linear. We also note that for 

very large values of 𝜉, convergence improves, and 

convergence is attained with just a few terms of the LSPM 

approximation. This is because the series expansion is 

inversely proportional to 𝜉, therefore, it is expected that 

the accuracy of the method will improve as 𝜉 becomes 

large. The saturation level is at least 10−9 for 𝐹(𝜂, 𝜉) 

equation, and about 10−11 in the equations for Φ(𝜂, 𝜉) and Θ(𝜂, 𝜉). 

 

6. CONCLUSIONS 

This paper has considered the application of the 

large parameter spectral perturbation method (LSPM) in 

the solution of nonlinear boundary layer partial differential 

equations. The (LSPM) algorithm was developed by 

coupling the analytical idea with numerical analysis and 

solving the resulting system of equations generated by the 

series approximation using the Chebyshev spectral 

collocation method. The proposed (LSPM) was used to 

solve a system of three previously reported nonlinear 

partial differential equations that model boundary layer 

flow problems. The accuracy and validity of the LSPM 

were tested against multi-domain bivariate interpolated 

spectral quasilinearisation method (MD-BSQLM) which is 

a numerical method that blends the Newton-Raphson 

based quasilinearisation idea of linearising systems of 

equations and Chebyshev spectral collocation with 

bivariate Lagrange interpolation to solve the resulting 

linearised system of equations on a sequence of multiple 

intervals. Graphical results were presented showing the 
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effects of different flow parameters on the velocity profile, 

the transverse component of magnetic field and the 

temperature profile. The observations made were found to 

be in good agreement with other results in similar studies 

reported in the literature. Numerical simulations were 

conducted in order to further access the accuracy, 

computational efficiency, and effectiveness of the method 

in solving nonlinear partial differential equations. It is 

obvious from the study that the (LSPM) gives approximate 

numerical solutions that are accurate and valid in large 

parameter domain in a computationally efficient manner. 

Further observation from this study is that the (LSPM) is 

significantly more computationally faster than the (MD-

BSQLM). The numerical result presented in this study 

clearly demonstrate that the (LSPM) can be used as a 

numerical tool for numerical solutions of the boundary 

layer flows equations similar to the model equations 

investigated in this study. The study adds to the growing 

body of literature on numerical methods for solving 

coupled nonlinear partial differential equations arising in 

fluid mechanics that are defined over large domains. 
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Table-1. Comparison of the MD-BQLM and LSPM approximate numerical solutions of 𝑓′′(0, 𝜉), −𝜙′′(0, 𝜉) and −𝜃′(0, 𝜉), for different values of 𝜉 when 𝑃𝑟 = 0.7, 𝑃𝑚 = 0.7 and 𝑆 = 0.2. 
 𝝃 𝒇′′(𝟎, 𝝃) −𝝓′′(𝟎, 𝝃) −𝜽′(𝟎, 𝝃) 

 K LSPM MD-BSQLM K LSPM MD-BSQLM K LSPM MD-BSQLM 

3 5 0.5238083 0.5237830 5 2.1000000 2.1000099 6 2.1000002 2.1000109 

4 4 0.3928570 0.3928570 4 2.8000000 2.8000002 5 2.8000000 2.8000000 

5 2 0.3142858 0.3142858 2 3.5000000 3.5000000 2 3.5000000 3.5000000 

10 1 0.1571429 0.1571429 1 7.0000000 7.0000000 1 7.0000000 7.0000000 

15 1 0.1047619 0.1047619 1 10.5000000 10.5000000 1 10.5000000 10.5000000 

20 1 0.0785714 0.0785714 1 14.0000000 14.0000000 1 14.0000000 14.0000000 

25 1 0.0628571 0.0628571 1 17.5000000 17.5000000 1 17.5000000 17.5000000 

30 1 0.0523810 0.0523810 1 21.0000000 21.0000000 1 21.0000000 21.0000000 

CPU 

Time 
 0.024995 9.771254  0.024995 9.771254  0.024995 9.771254 

 

 
 

Figure-1. Velocity profile 𝑓′(𝜂, 𝜉) for different values of transpiration parameter 𝜉 when 𝑃𝑟 = 0.7, 𝑆 = 0.2, 𝑃𝑚 = 0.7, 𝑁𝑥 = 150, and𝑁𝑥 = 60. 
 



                                VOL. 15, NO. 12, JUNE 2020                                                                                                                  ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2020 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                              1329 

 
 

Figure-2. Transverse component of magnetic field 𝜙′(𝜂, 𝜉) for different transpiration 

parameter 𝜉 when 𝑃𝑟 = 0.7, 𝑆 = 0.2, and 𝑃𝑚 = 0.7. 
 

 
 

Figure-3. Temperature profile 𝜃(𝜂, 𝜉) for different values of transpiration parameter 𝜉 when 𝑃𝑟 = 0.7, 𝑆 = 0.2, and 𝑃𝑚 = 0.7. 
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Figure-4. Velocity profile 𝑓′(𝜂, 𝜉) for different values of magnetic field parameter 𝑆 when 𝑃𝑟 = 0.7, 𝜉 = 2, and 𝑃𝑚 = 0.7. 
 

 
 

Figure-5. Transverse component of magnetic field 𝜙′(𝜂, 𝜉) for different values 

of magnetic field parameter 𝑆 when 𝑃𝑟 = 0.7, 𝜉 = 2, and 𝑃𝑚 = 0.7. 
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Figure-6. Velocity profile 𝑓′(𝜂, 𝜉) for different values of magnetic Prandtl number 𝑃𝑚 when 𝑃𝑟 = 0.7, 𝜉 = 2, and 𝑆 = 0.2. 
 

 
 

Figure-7. Transverse component of magnetic field 𝜙′(𝜂, 𝜉) for different values 

of magnetic Prandtl number 𝑃𝑚 when 𝑃𝑟 = 0.7, 𝜉 = 2, and 𝑆 = 0.2. 
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Figure-8. Velocity profile 𝑓′(𝜂, 𝜉) for different values of Prandtl number 𝑃𝑟  when 𝑃𝑚 = 0.7, 𝜉 = 2, and 𝑆 = 0.2. 
 

 
 

Figure-9. Temperature profile 𝜃(𝜂, 𝜉) for different values of Prandtl number 𝑃𝑟  when 𝑃𝑚 = 0.7, 𝜉 = 2, and 𝑆 = 0.2. 
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.  
 

Figure-10. LSPM residual error curves 𝑅𝑒𝑠(𝐹) for different values of 𝜉 when 𝑃𝑟 = 0.7, 𝑆 = 0.2, 𝑃𝑚 = 0.7, 𝐿 = 50, and𝑁𝑥 = 100. 
 

 
 

Figure-11. LSPM residual error curves 𝑅𝑒𝑠(Φ) for different values of 𝜉 when 𝑃𝑟 = 0.7, 𝑆 = 0.2, and 𝑃𝑚 = 0.7 𝐿 = 50, 𝑁𝑥 = 100. 
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Figure-12. LSPM residual error curves 𝑅𝑒𝑠(Θ) for different values of 𝜉 when 𝑃𝑟 = 0.7, 𝑆 = 0.2, 𝑃𝑚 = 0.7, 𝐿 = 50, and𝑁𝑥 = 100. 


