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ABSTRACT 

In this work, a new numerical approximation to solve the inverse point kinetics equation is presented. The integral 

of the historic of the neutron population density is discretized, based on the approximation of Euler-Maclaurin formula, 

considering an extra term in this procedure to obtain a better approximation using two Bernoulli numbers. Reactivity is 

calculated for different numerical experiments, with different neutron population density forms and different time steps. In 

order to validate the accuracy of the proposed method, we compare the results obtained with different numerical 

experiments reported in the literature. The results suggest that the method shown can be used in a real time reactivity 

digital meter. 
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INTRODUCTION 

The nuclear reactions that occur inside nuclear 

reactors are product of the fission of uranium (𝑈235) 

located in the reactor core. When bombarded with a beam 

of thermal neutrons, a chain reaction is produced. This 

chain reaction frees a great amount of energy and several 

neutrons that can be either instantaneous or delayed. It is 

necessary to control this chain reaction that depends of the 

interaction of the fission neutrons with different materials. 

To control the chain reaction, it is important to know the 

parameter that allows to operate safely the nuclear reactor 

which is known as reactivity. Furthermore, it is possible to 

determine the time dependent behavior of the neutron 

distribution and the change in time of the fissionable 

material composition due to the neutron interactions 

(Stacey, 2018). 

A great variety of scientific work has been done 

over the years around the calculation of reactivity to find a 

method that shows a better accuracy while reduces the 

computational cost. For reactivity calculation, several of 

these methods have been reported in the literature based 

on the discretization of the neutron population density 

history (Shimazu et al., 1987, Ansari, 1991, Binney et al., 

1989, Hoogenboom et al., 1988, Malmir et al., 2013, 

Suescún et al., 2007, Kitano et al., 2000). Another method 

was published using the discrete version of the Laplace 

transform (Suescún et al., 2008), where the linear part is 

characterized by a filter called Finite Impulse Response 

(FIR) (Haykin S, 2002). This was done to discretize the 

integral of the neutron population density as a convolution 

sum. Although this method showed good results, it has 

high computational cost. 

In this work, it is proposed the discretization of 

the integral of the historic of the neutron population 

density, using the Euler-Maclaurin formula (Suescún et 

al., 2013), considering up to second Bernoulli number. 

 

 

 

 

THEORETICAL ASPECTS 

The point kinetic equations can be obtained from 

the neutron diffusion equations. Their representation is 

given by (Duderstadt, 1976),  
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Constrained by the following initial conditions:  
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Where iC is the concentration of the i-th group of 

delayed neutron precursors, ( )P t  is the neutron population 

density, ( )t is the reactivity,  is the neutron generation 

time,   is the total effective fraction of delayed neutrons, 

i is the decay constant of the i-th group of delayed 

neutron precursors and i is the i-th fraction of delayed 

neutrons.   

Isolating ( )t  on equation (1) we obtain an 

expression for the reactivity: 
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When solving equation (2), and applying the 

initial conditions shown on equations (3) and (4), an 

expression for the precursor concentration can be 

obtained: 
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Replacing equation (6) on equation (5) we get:  
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Equation (7) represents the inverse point kinetics 

equation; this equation cannot be used directly to calculate 

the reactivity, due to the dependence it has on the neutron 

density history, which implies a very high computational 

cost. 

 

 

 

PROPOSED METHOD 

The method proposed in this section, to obtain a 

better approximation and reduce the computational cost 

for the reactivity calculation, is based on the discretization 

of the integral of the neutron population density history 

given on equation (7), using the Euler-Maclaurin formula 

(Arfken, 2013), using two Bernoulli numbers in the 

following equation:  
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These first two Bernoulli numbers represented on 

equation (8) by the term mB  are 1
1

6
B   and 2

1

30
B   

We define the response of the system to a unitary 

impulse (Suescún et al., 2008) as:  
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Replacing expression (9) in the neutron 

population density history on equation (5) we get:  
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It is also possible to get a discrete version of 

equation (10) of the form:  
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The reactivity for the first Bernoulli number 

(Suescún et al., 2013), using equation (8) is defined as:  
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Where T  is the step size in the calculation of reactivity, n 

indicates the discrete time, and its relation with the 

continuous time is given by t nT . 

Deriving three time the equation (11), we express: 
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Now, we evaluate equation (11) at s n  and 

0s  , we have: 
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By replacing equations (14) and (15) on equation 

(13), we get:  
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It is possible to find an equation to calculate the 

reactivity with the second Bernoulli number, making 
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m=2on equation (8) and then replacing on equation (10) 

and equation (11), is possible to verify the following 

expression:  
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Replacing equations (14) through (17) on 

equation (18) it is possible to obtain:  
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Replacing equation (19) on equation (7), we can 

write the following expression: 
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Equation (20) represents the proposed method to 

calculate the reactivity making use of two Bernoulli 

numbers. 

In the following section we present the results for 

different numerical experiments, for different forms of the 

neutron population density, with different time step to 

calculate reactivity. 

 

 

 

 

RESULTS AND DISCUSSIONS 

In this section, the results of the reactivity 

calculation using two Bernoulli numbers are presented; the 

reactivity was calculated for different forms of the neutron 

population density and different time steps. The values for 

the physical constants are presented on Table-1 and the 

reference method is given by the analytical solution of 

equation (7), which is the point of comparison to 

understand the accuracy of the method. As an abbreviation 

for the name of the proposed method, we will use 2mB  . 

 

Table-1.Typical constants for 
235 

U. 
 

Group 1 2 3 4 5 6 

1[ ]i s 
 0.0127 0.0317 0.115 0.311 1.4 3.87 

i  0.000266 0.001491 0.001316 0.002849 0.000896 0.000182 

52 10 [ ]s
    

37 10    

 

First, we consider a neutron nuclear density of the 

form ( ) t
P t e

  with 0.00243  for different time step 

in the reactivity calculation up to a final time of 

1000t s . On Table-2 it is possible to observe that the 

reactivity method with two Bernoulli numbers has a better 

approximation compared with the Euler-Maclaurin method 

(Suescún et al., 2013). For time step 0.5T s , it is 

evident that the proposed method, using two Bernoulli 

numbers, has a better approximation than the Euler-

Maclaurin method (Suescún et al., 2013) and Adams-

Bashforth-Moulton (Suescún et al., 2016). Figure-1 show 

the curve of the reactivity for a neutron population density 

of the form ( ) t
P t e

  with 0.00243  . 
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Table-2.Difference in the reactivity for ( ) t
P t e

 with 0.00243  , 1000t s
. 

 

T [s] Euler-Maclaurin Hamming ABM V 2mB   

0.01 6.20×10
-08

 2.08×10
-11

 2.48×10
-11

 4.50×10
-11

 

0.05 3.84×10
-05

 2.88×10
-08

 5.66×10
-08

 3.20×10
-08

 

0.1 6.14×10
-04

 9.01×10
-07

 1.25×10
-06

 2.04×10
-06

 

0.2 9.73×10
-03

 3.25×10
-05

 5.40×10
-05

 1.29×10
-04

 

0.5 3.6×10
-01

 8.47×10
290

 2.48×10
307

 2.93×10
-02

 

1 4.66×10
0
 Infinite Not Reported 1.49×10

0
 

 

200 400 600 800 1000

18.50

18.75

19.00

19.25

19.50

19.75

20.00

20.25

20.50

R
ea

ct
iv

it
y
 [

p
cm

]

Time [s]

 Reference Method

 Euler-Maclaurin Method

 Second Bernoulli number

         P(t) = exp(t) ,  = 0.00243 , T= 0.5 s

 
 

Figure-1. Reactivity curve in pcm for a neutron 

population density described by ( ) t
P t e


 

with a value of 0.00243  . 

Next, we take the same exponential form, but this 

time we change the value of   from 

0.01046 0.12353to   . On Tables 3 through 5 we 

see the accuracy of the method, using two Bernoulli 

numbers, for all different time step and time intervals 

when compared with the Hamming () [15] and Adams-

Bashforth-Moulton (Suescún et al., 2016) methods; when 

comparing the reactivity with two Bernoulli numbers and 

the five-points Lagrange method (Malmir et al., 2013), we 

observe that when 0.1T s , which is a value commonly 

used when calculating reactivity in real time, the 

numerical results show that the proposed method has a 

better approximation. Figure-2 shows the curve of the 

reactivity for a neutron population density of the form P(t) = eωt with ω = 0.12353, we can see the accuracy of 

the proposed method, it is compared with the Euler-

Maclaurin method. 

 

Table-3. Difference in the reactivity for ( ) t
P t e

  with 0.01046, 800t s  
. 

 

T [s] Euler-Maclaurin Hamming ABM V 2mB   

0.01 6.20×10
-08

 1.062×10
-10

 2.37×10
-05

 3.87×10
-12

 

0.05 3.87×10
-05

 2.43×10
-07

 3.98×10
-04

 3.23×10
-08

 

0.1 6.18×10
-04

 5.29×10
-06

 1.14×10
-03

 2.06×10
-06

 

0.2 9.8×10
-03

 1.37×10
-04

 Not Reported 1.30×10
-04

 

0.5 3.58×10
-01

 7.86×10
228

 1.04×10
-02

 2.76×10
-03

 

1 4.69×10
0
 Infinite 1.83×10

-02
 5.60×10

-01
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Table-4. Difference in the reactivity for ( ) t
P t e

  with 0.02817, 600t s  
. 

 

T [s] Euler-Maclaurin Hamming ABM V 2mB   

0.01 6.30×10
-08

 2.88×10
-10

 6.38×10
-05

 3.39×10
-12

 

0.05 3.93×10
-05

 6.56×10
-07

 1.06×10
-03

 3.31×10
-08

 

0.1 6.28×10
-04

 1.42×10
-05

 3.05×10
-03

 2.11×10
-06

 

0.2 9.96×10
-03

 3.85×10
-04

 Not Reported 1.33×10
-04

 

0.5 3.64×10
-03

 4.44×10
182

 2.65×10
-02

 3.03×10
-02

 

1 4.76×10
0
 Infinite 4.36×10

-02
 1.54×10

0
 

 

Table-5. Difference in the reactivity for ( ) t
P t e

  with 0.12353, 300t s  
. 

 

T [s] Euler-Maclaurin Hamming ABM V 2mB   

0.01 6.85×10
-08

 1.27×10
-09

 2.78×10
-04

 3.06×10
-12

 

0.05 4.28×10
-05

 2.88×10
-06

 4.50×10
-03

 3.75×10
-08

 

0.1 6.83×10
-04

 6.24×10
-05

 1.24×10
-02

 2.39×10
-06

 

0.2 1.08×10
-02

 1.46×10
-03

 Not Reported 1.51×10
-04

 

0.5 3.9×10
-01

 3.30×10
78

 8.29×10
-02

 3.41×10
-02

 

1 5.13×10
0
 1.25×10

254
 9.46×10

-02
 1.72×10

0
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Figure-2. Reactivity curve in pcm for a neutron population density described by 

( ) t
P t e

  with a value of 0.12353  . 

 

Finally, we consider the neutron population 

density of the form 
3( )P t a bt  . The results are shown 

on Table-6 with different time step for the calculation of 

the reactivity. We observe that the proposed method using 

the second Bernoulli number for this neutron density form 

has a constant behavior and of less difference compared to 

the highest precision methods reported on the literature, 

such as the derivative method (Suescún et al., 2007) and 

the most recently reported method in the literature, which 

is matrix formulation method (Suescún et al., 2018). With 

this experiment we show the advantage of the proposed 
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method when the neutron density form has low values of the reactivity. 

 

Table-6. 
 

T [s] a B 
Derivatives 

Method 

Matrix 

Formulation 

Method 
2mB   

0.1 1 
5(0.0127)

9
 3.89×10

-03
 1.42×10

-05
 2.04×10

-06
 

0.1 1 
4(0.0127)

40
 6.20×10

-02
 9.57×10

-05
 2.04×10

-06
 

0.1 1 
4(0.0127)

4
 6.21×10

-01
 4.38×10

-04
 2.04×10

-06
 

 

CONCLUSIONS 

In this work we presented a new approximation 

for the calculation of the reactivity, making use of a 

correction of two Bernoulli numbers and considering the 

Euler-Maclaurin series. The numerical experiments show 

very good approximation for the different forms of the 

neutron population density when compared with several 

values reported on the literature. The proposed method, 

due to the high precision it has, can be implemented on 

real time digital reactivity meter. 

 

ACKNOWLEDGEMENTS 

The authors thank the “Semillero de 

Investigaciones en Fisica Computacional”, the research 

group in Applied Physics FIASUR, and the academic and 

financial support of the Universidad Surcolombiana.  

 

REFERENCES 

 

Ansari S. A. 1991. Development of on-line reactivity 

meter for nuclear reactors. IEEE Trans. Nucl. Sci. 38: 946-

952. 

 

Binney S. E., Bakir A. I. M. 1989. Design and 

development of a personal computer based reactivity 

meter for a nuclear reactor. Nucl. Technol. 85: 12-21. 

 

Duderstadt J. J., Hamilton L. J. 1976. Nuclear Reactor 

Analysis, second ed. John Wiley & Sons Inc., New 

 

Arfken G. B., Weber H. J., Harris F. E. 2013. 

Mathematical Methods for Physicists, seventh ed. Elsevier 

Inc. 

 

Haykin S., Veen B. V. 2002. Signal and System. Wiley, 

New York. 

 

Hoogenboom J. E., Van Der Sluijs A. R. 1988. Neutron 

source strength determination for on-line reactivity 

measurements. Ann. Nucl. Energy. 15: 553-559. 

 

Kitano A., Itagaki M. and Narita M. 2000. Memorial-

index-based inverse kinetics method for continuous 

measurement of reactivity and source strength. J. Nucl. 

Sci. Technol. 37: 53-59. 

Malmir H., Vosoughi N. 2013. On-line reactivity 

calculation using Lagrange method. Ann. Nucl. Energy. 

62: 463-467. 

 

Shimazu Y., Nakano Y., Tahara Y., Okayama T. 1987. 

Development of a compact digital reactivity meter and 

reactor physics data processor. Nucl. Technol. 77: 247-

254. 

 

Suescún D. D., Cabrera C. E., Lozano J. H. P. 2018. 

Matrix formulation for the calculation of nuclear 

reactivity. Ann. Nucl. Energy. 116: 137-142.  

 

Suescún D. D., Ibarguen M. C. G., Figueroa J. H. J. 2014. 

Hamming generalized corrector for reactivity calculation. 

Kerntechnik. 79: 219-225. 

 

Suescún D. D., Rodríguez J. A., Figueroa J. H. 2013. 

Reactivity Calculation using the Euler-Maclaurin Formula. 

Ann. Nucl. Energy. 53: 104-108. 

 

Suescún D. D., Martinez S. A., Carvalho Da Silva. F. 

Calculation of reactivity using a finite impulse response 

filter, Ann. Nucl. Energy. 35: 472-477. 

 

Suescún D. D., Senra A. M., Carvalho Da Silva. F. 2007. 

Formulation for the Calculation of Reactivity without 

Nuclear Power History, J. Nucl. Sci. Technol 44: 1149-

1155. 

 

Suescún D. D., Narváez M. P., Lozano J. H. P. 2016. 

Calculation of nuclear reactivity using the generalised 

Adams-Bashfoth-Moulton predictor corrector method. 

Kerntechnik. 81: 86-93. 

 

Weston M. 2018. Stacey Nuclear Reactor Physics, Third 

ed. Wiley-VCH. York. 


