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ABSTRACT 

This work presents the Galerkin-Vlasov method for solving the elastic buckling problem of Kirchhoff plate 

(length a and width b) under uniaxial uniform compressive load applied at the two opposite simply supported edges (x = 0 

and x = a) with the edge y = 0 simply supported and the edge y = b free. Mathematically, the problem is a boundary value 

problem (BVP) represented by a partial differential equation (PDE) over the domain subject to boundary conditions at the 

plate edges. Upon suitable selection of basis functions the Galerkin-Vlasov method converts the domain equation to an 

integral equation, and ultimately to ordinary differential equations (ODE). The ODE is solved, and boundary conditions 

along y = 0, and y = b for the considered problem used to generate system of homogeneous equations in terms of the 

integration constants. The characteristic buckling equation is found as a transcendental equation from the condition for 

nontrivial solutions of the system of homogeneous equations. The roots of the transcendental equation obtained by 

computational software and iterative techniques are used to obtain the elastic buckling loads for the first two buckling 

modes, for various aspect ratios (a/b) and for Poisson ratio of  = 0.25. It is found that the critical elastic buckling load 

occurs at the first buckling mode, and the values of the critical elastic buckling loads computed are in close agreement with 

values obtained previously by Timoshenko. 

 
Keywords: galerkin-Vlasov method, elastic buckling problem, Kirchhoff plate, characteristic buckling equation, critical elastic buckling 

load, elastic buckling load coefficient. 

 

INTRODUCTION 
Elastic buckling problems of plates arise when 

plates are subjected to loads applied in a direction parallel 

to their plane and are commonly encountered in 

engineering [1-5]. Usually buckling failures occur 

suddenly, and may result in catastrophic structural failure. 

Hence, it is necessary to determine the buckling load 

capacities of the plates in order to avert premature failure. 

Early studies of plate buckling could be traced to 

Navier who derived using Kirchhoff’s assumptions the 

partial differential equation of stability of rectangular 

plates. Since then, research studies on the buckling of 

plates with varieties of shapes, boundary and loading 

conditions have been reported by Timoshenko and Gere 

[1], Bulson [2], Gambhir [3], Chajes [4], Wang et al [5], 

Shi [6], Shi and Bezine [7], Abodi [8], Batford and 

Houbolt [9], Wang et al [10], Xiang et al [11], Ullah et al 

[12], Ullah et al [13], Abolghasemi et al [14]. 

The buckling of plates may be categorized as 

elastic buckling and plastic buckling. In elastic buckling 

problems, it is assumed that the critical buckling load is 

less than the elastic limit of the plate material. However 

the plate may be stressed beyond the elastic limit before 

buckling occurs, and buckling theories of plasticity are 

needed to describe such plastic (inelastic) buckling 

problems. Generally two plastic theories - the deformation 

theory and the incremental theory of plasticity - are used 

for plastic buckling problems (Yu Chen, [15]). 

Navier derived using Kirchhoff’s assumptions the 

governing partial differential equation for the elastic 

stability of thin rectangular plates under lateral load by 

including the twisting action. The inclusion of the twisting 

term was an important contribution to the theory of plates 

because the resistance of the plate to twisting can greatly 

reduce the deflections under lateral load. 

Saint Venant modified the Navier’s governing 

equation for elastic stability of thin rectangular plates by 

the inclusion of axial edge forces and shearing forces. 

Ibearugbulem [16] used the direct variational principle for 

the analysis of the elastic stability problems of thin 

rectangular flat plates under various boundary conditions. 

Oguaghamba [17] analysed the buckling and post-

buckling loads of isotropic thin rectangular plates. 

Oguaghamba et al [18] studied the buckling and post-

buckling loads characteristics of thin rectangular plate 

with clamped edges. 

Nwadike [19] used the Ritz method for the 

buckling analysis of isotropic rectangular plates. 

Ibearugbulem et al [20] and Osadebe et al [21] used the 

Taylor-Maclaurin series as shape functions in the 

Galerkin’s variational method for the stability analysis of 

simply supported thin rectangular plates. Abodi [8] used 

the finite difference method for the elastic buckling 

analysis of plates under in-plane patch loading. 

Shi [6] and Shi and Bézíne [7] used the boundary 

element method for the buckling analysis of orthotropic 

plates. Nwoji et al [22] used the double finite Fourier sine 

integral method for the elastic buckling analysis of simply 

supported thin rectangular plates under uniaxial uniform 

compressive loads and obtained exact solutions for the 
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elastic buckling loads for all the buckling modes, as well 

as exact buckling modal shape functions. 

 Onah et al [23] used the single finite Fourier sine 

integral transform method for the elastic buckling analysis 

of uniaxially compressed Kirchhoff plate with two 

opposite edges simply supported and the other edges 

clamped (CCSS Kirchhoff plate). They found that the 

single finite Fourier sine transform method converts the 

BVP to an integral equation which further simplified to 

ODE. They obtained characteristic buckling equations 

corresponding to the exact solutions to the problem. 

 

THEORETICAL FRAMEWORK 
 The study considers a rectangular Kirchhoff plate 

of length a, width b and thickness, t subjected to uniaxial 

compressive load Nx as shown in Figure-1. The elastic 

buckling plate theory used is expressed in the rectangular 

Cartesian coordinates x, y, z where x and y are coincident 

with the middle plane, and z points downward from the 

middle plane. 

 The Kirchhoff assumptions used are: 

a) the deflections are small and maximum deflections 

are smaller than the plate thickness 

b) the middle plane is inextensible and remains a neutral 

surface 

c) the plate thickness is small compared to the in-plane 

dimensions 

d) plane cross-sections of the plate rotate during flexure, 

but remains orthogonal to the middle surface and do 

not distort, and hence stresses and strains are 

proportional to their distance from the neutral surface 

 
 

Figure-1. Kirchhoff plate subject to uniaxial compressive 

force Nx 

 

The displacement field components are given by: 
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where , ,u v w  are displacement components along the x, y, 

z Cartesian coordinate axis respectively. w(x, y) is the 

transverse deflection of arbitrary point (x, y) on the middle 

plane (z = 0). 

 The strain fields are obtained from the strain-

displacements relations of the small displacement 

elasticity theory as follows: 
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where xx, yy, zz, are normal strains, xy, xz, yz are shear 

strains. 

The virtual strain energy is given by the volume 

integral: 
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where R
2
 is the two dimensional domain of the middle 

surface; Mxx, Myy, Mxy are the bending and twisting 

moments per unit length; and are given by: 
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The work done by the applied in-plane load Nx 

due to the displacement w is 
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The virtual work W due to the in-plane load Nx 

is thus: 
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By the principle of virtual displacements, 
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From the divergence theorem, 
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where nx, ny are the direction cosines of the unit normal n 

on the boundary , and ds is the incremental length along 

the boundary. w is arbitrary in R
2
, and the domain 

integration is independent of the contour integration, on 

the boundary, the PDE obtained is for the domain R
2
 is: 
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For homogeneous isotropic plates, the Hooke’s 

generalized stress – strain relations are: 
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where E is the Young’s modulus of elasticity, G is the 

shear modulus and  is the Poisson’s ratio. 

Then, substitution of Equations (21-23) into 

Equations (12-14) gives: 
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The elastic buckling equation for the considered 

problem is obtained in terms of deflection, w by 

introducing the expressions for Mxx, Myy and Mxy in terms 

of w(x, y) in Equation (20): 
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4
 is the biharmonic partial differential operator. 

 

Clamped Edge Boundary Conditions 

At a clamped edge C, the deflection and slope are 

required to vanish. Along a clamped edge, x = a, (say) 
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Simply supported edges, S 

Along a simply supported edge S, x = a (say) the 

deflection and bending moment are both zero. 
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Free edge F 

The bending moment and vertical shear force 

along a free edge will both vanish. 

 

METHODOLOGY 

 The considered Kirchhoff plate buckling problem 

is simply supported at x = 0, x = a, y = 0 and free at y = b 

with the origin of coordinates taken at one corner of the 

plate. The uniform compression force is applied at x = 0, 

and x = a. The deflection function is chosen by the Vlasov 

procedure to be the linear combinations of the product of 

the eigenfunctions of a freely vibrating Euler - Bernoulli 

beam in the x - direction, and an unknown function of y 

denoted by A(y) in the y coordinate direction. Thus, 
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where n is a positive integer and represents the buckling 

mode number. 

The Galerkin-Vlasov variational equation for the 

considered problem becomes the following integral 

equation: 
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By the orthogonality properties of the sine 

functions, which is the basis function in the x coordinate 

direction, 

 

0mnI   ,  if mn    (42) 

  

2
mn

a
I   if m = n    (43) 

 

 

 

RESULTS 
The unknown function An(y) is found by solving 

the system of ordinary differential equations which results 

from Equation(40). Hence at the nth buckling mode, 
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The fourth order ordinary differential equation 

(ODE) can be expressed in compact form as: 
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The solution, using the method of differential 

operators or the method of undetermined parameters is 

found as: 
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 due to the geometric 

restraints or constraints along y = 0, and y = b. Constants 

c1, c2, c3 and c4 are the four constants of integration which 

are determined by enforcement of the boundary conditions 

along y = 0, and y = b edges. The problem considered a 

thin SSSF plate restrained and loaded as shown in Figure-

2. 

 

 
 

Figure-2. SSSF Kirchhoff plate under uniaxial 

compressive load Nx. 

 

The boundary conditions are: 
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At the free edge, y = b, 
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Enforcement of Boundary Conditions  

Application of the boundary conditions gives: 

 

1 3
0 0( )nA y c c        (58) 

 
2 2 2 2

1 1 3 2 1 3
0 0 0( ) ( ) ( )n n n nA y A y c c c c           (59) 

 

 2 2 2 2

1 1 3 2
0( ) ( )n nc c         (60) 

 
2 2 2 2 2

1 1 1 2 1 1
( ) ( ) ( )cosh ( )sinhn n n n nA y b A y b c b c b              

 
2 2 2 2

3 2 2 4 2 2
0( )cos ( )sinn nc b c b        …    (61) 

 
2 3 2

1 1 1 1 1
2 2( ) ( ) ( ) ( sinh ( ) sinh )n n n nA y b A y b c b b                

3 2 3 2

2 1 1 1 1 3 2 2 2 2
2 2( cosh ( ) cosh ) ( sin ( ) sin )n nc b b c b b                 

3 2

4 2 2 2 2
2 0( cos ( ) cos )nc b b          (62) 

 

Simplifying, 

 
2 2 2 2

1 1 1 1 2 1 1 1
2 2( ( ) )sinh ( ( ) )coshn nc b c b               

2 2 2 2

3 2 2 2 4 2 2 2
2 2 0( ( ) )sin ( ( ) )cosn nc b c b              (63) 

 

The homogeneous algebraic equations obtained 

by the enforcement of the four sets of boundary conditions 

are given by Equations (58), (60), (61) and (63). From 

Equation (58) 

 

1 3
c c       (64) 

 

Substitution of Equation (64) into Equation (60) 

gives: 

 

2 2 2 2

1 1 1 2
0( ) ( )n nc c         (65) 

 
2 2

1 1 2
0( )c         (66) 

 
2 2

1 2
0( )    


1

0c       (67) 

 

3
0c        (68) 

 

Then the system of homogeneous algebraic 

equations reduces to: 

 
2 2 2 2

2 1 1 4 2 2
0( )sinh ( )sinn nc b c b        …(69) 

 
2 2 2 2

2 1 1 1 4 2 2 2
2 2 0( ( ) )cosh ( ( ) )cosn nc b c b              (70) 

 

Let 2 2

1 1 n        (71) 

 
2 2

2 2 n         (72) 

 

It can be shown that: 

 
2 2 2 2

1 2 1
2( )n n            (73) 

 
2 2 2 2

2 1 2
2( )n n            (74) 

 

Then we obtain: 

 

2 1 1 4 2 2
0sinh sinc b c b         (75) 

 

and 
2 1 2 1 4 2 1 2

0cosh cosc b c b          (76) 

 

In matrix form, 

 

1 1 2 2 2

1 2 1 2 1 2 4

0

0

sinh sin

cosh cos

b b c

b b c

                    
  (77) 

 

For nontrivial solutions, 2

4

0
c

c

   
 

 

The condition for nontrivial solutions gives the 

characteristic buckling equation as: 

 

1 1 2 2

1 2 1 2 1 2

0
sinh sin

cosh cos

b b

b b

   


     
  (78) 

 

Expansion of the determinant gives the 

characteristic buckling equation as: 

 
2 2

2 1 1 2 1 2 1 2
0sinh cos cosh sinb b b b         (79) 

 

The characteristic buckling equation is expressed 

explicitly as: 
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2 2 2 2 2 2

2 1 1 2 1 2 1 2
0( ) sinh cos ( ) cosh sinn nb b b b           (80) 

 

The characteristic buckling equation is solved 

using computer based iterative methods to generate 

solutions for 1 and 2 from which, using Equations (48) 

and(49), the elastic buckling loads Nx are evaluated for 

0 25. ,   and for buckling modes n = 1, 2 and various 

values of the plate aspect ratio (a/b). 

The general expression for the buckling mode 

shape is found as: 

1 1 2 2 1 2
( , ) ( sinh sin sinh sin )sin nw x y b y y b x         (81) 

 

where, 0 ,x a  0 y b  . 

The critical elastic buckling load coefficients 

obtained by Timoshenko [24] for the considered elastic 

thin plate buckling problem, and the buckling load 

coefficients obtained for the SSSF Kirchhoff plate under 

uniaxial compressive load Nx at the two opposite simply 

supported edges x = 0, x = a are presented in Table-1 for 

buckling modes, n = 1, and n = 2. 

 

Table-1. Non dimensional buckling loads or buckling load coefficients for SSSF Kirchhoff plate 

subjected to uniaxial compressive force Nx along the edges x = 0, x = a. 
 

a/b 
K(a/b) for n =1 

Present results 

K(a/b) for n =2 

Present results 

Timoshenko [24] 

K(a/b) for n =1 

% Difference of 

present results (n = 1) 

and Timoshenko [24] 

0.4 6.6367 25.2899   

0.6 3.1921 11.4675   

0.8 1.9894 6.3667   

1.0 1.4342 4.4036 1.44 0.403 

1.5 0.8880 2.2022   

2 0.6979 1.4342 0.698 0.0205 

2.5 0.6104 1.0798 0.610 0.0656 

3 0.5630 0.8879 0.564 0.1773 

3.5 0.5345 0.7726   

4 0.5161 0.6979 0.517 0.1741 

4.5 0.5034 0.6469   

5 0.4944 0.6104   

5.5 0.4877 0.5835   

6 0.4826 0.5630   

 

In Table-1, 
2

2

xxN ba
K

b D

   
  

     (82) 

 

and, 
2

2xx

a D
N K

b b

       
    (83) 

 

 The critical elastic buckling load is found for the 

first buckling mode n =1, since K(a/b) for n = 1 is less 

than K(a/b) for n = 2 for all considered values of a/b. The 

buckling mode function at the critical buckling mode, for 

which n = 1 is obtained is: 

 

1 1 2 2 1 2
( , ) ( sinh sin sinh sin )sin

x
w x y b y y b

a


        (84) 

 

DISCUSSIONS 
The elastic buckling problem of a rectangular 

SSSF Kirchhoff plate subjected to uniaxial compressive 

load Nx on the two opposite simply supported edges x = 0 

and x = a has been successfully solved in this work using 

the Galerkin-Vlasov variational method. The problem is a 

boundary value problem (BVP) of elastic stability that 

could be derived using equilibrium or variational 

approaches. As a BVP, it is represented by the partial 

differential equation - Equation (30) - and boundary 

conditions, determined by the edge support conditions. For 

the SSSF plate considered, the Vlasov procedure allowed 

the use of the eigenfunctions of a vibrating simply 

supported Euler - Bernoulli beam as the basis functions in 

the x coordinate direction. The deflection function w(x, y) 

used has been expressed in Equation (36) as a linear 

combination of the products of unknown function An(y) 

and the eigenfunctions in the x direction. Thus, the 

boundary conditions along the x = 0 and x = a axes are 

fully satisfied by w(x, y). 

The Galerkin-Vlasov variational equation is 

expressed as Equation (37) and upon simplification the 

integral equation reduced to a system of n fourth order 

ordinary differential equations. Equation (44). The 

solution of Equation (44) has given the unknown function 

An(y) as Equation (47) which is in terms of four unknown 
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integration constants. The boundary conditions of the 

SSSF plate has been used to obtain a system of four 

homogeneous equations - Equations (58), (60), (61) and 

(63). Solution of the resulting equations has reduced to a 

system of two equations given in matrix form as Equation 

(77). The characteristic buckling equation obtained using 

the condition for nontrivial solution is found as Equation 

(80). 

The characteristic buckling equation is solved 

using computer based iterative methods to obtain the 

elastic buckling loads for the first two modes n = 1 and n = 

2 and for  = 0.25, for various values of the plate aspect 

ratio (a/b). The buckling load coefficients obtained for the 

first two buckling modes for various values of a/b are 

presented in Table-1. 

Table-1 reveals that critical elastic buckling 

occurs at the first buckling mode for which n = 1 since the 

buckling load coefficients for n= 1 are smaller than those 

for the corresponding plate aspect ratio (a/b) for n = 2. The 

buckling mode shape function has been obtained as 

Equation (81) and as Equation (84) for the critical 

buckling mode. The solutions obtained are comparable 

with solutions obtained by Timoshenko [24] who used 

various other methods. The difference between the critical 

elastic buckling load obtained in this study and the 

Timoshenko’s results vary from - 0.403% for a/b = 1 to -

0.1741% for a/b = 4; and are generally less than 0.5%. 

 

CONCLUSIONS 

In conclusion, 

a) The Galerkin-Vlasov method converts the BVP of 

elastic buckling of Kirchhoff plate to an integral 

equation. 

b) The use of the eigenfunctions of a vibrating simply 

supported Euler-Bernoulli beam in the x coordinate 

direction simplifies the integral equation problem due 

to the orthogonality of the eigenfunctions. 

c) The integral equation is reduced upon simplification 

to a homogeneous fourth order ODE in the unknown 

function An(y). 

d) Enforcement of the boundary conditions along the y = 

0 and y = b edges is found to result in a system of four 

homogeneous equations in terms of the unknown 

integration constants. 

e) The conditions for nontrivial solution is found to give 

the characteristic elastic buckling equation as a 

transcendental equation which is solved for 1, 2 and 

hence for Nx using iterative methods, and 

computational software tools. 

f) Critical elastic buckling load corresponds to the first 

buckling mode. 

g) The critical elastic buckling load coefficients obtained 

agrees with previous results obtained by Timoshenko, 

and the differences are less than 0.5%. 
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