CLASSICAL AND ADVANCED CONTROL APPLIED TO A NON-LINEAR SYSTEM OF COUPLED TANKS

Diego F. Escobar-Núñez, Henry Ortiz-Otálora and Diego F. Sendoya-Losada
Department of Electronic Engineering, Faculty of Engineering, Surcolombiana University, Neiva, Huila, Colombia
E-Mail: diego.sendoya@usco.edu.co

ABSTRACT
In this work two model-based controllers have been designed in order to regulate a non-linear system of coupled tanks. First, a Proportional-Integral-Derivative (PID) controller was designed. This algorithm requires a linear model, so the model was linearized around a certain equilibrium point. Secondly, Internal Model Controller (IMC) was designed. Finally, the performance of the controllers is evaluated, in order to carry out a tracking to a reference level and an effective rejection of the disturbances.

Keywords: IMC, Level control, PID, RMSE.

1. INTRODUCTION
In almost all the applications of industrial processes, the control of the variables is critical for the safe and efficient operation of the same. The most common controlled variables are pressure, level, temperature, and flow. Level control loops are very common in the industry; in fact, they occupy the second place after the flow control loops. Due to the importance and the large number of processes that require a precise level control, the Surcolombiana University recently acquired a tank system called CE105 MV. As can be seen in Figure-1, this system presents a configuration similar to that which can be found in many industrial applications or as part of a much larger and more sophisticated plant.

2. MATERIALS AND METHODS
2.1 Process Model
The presented mathematical model is given by the equations that describe the complete system. Figure-2 shows their respective schematic. The dynamic model is determined by the relationship between the inlet flow Q_i and the outlet flow Q_c through the discharge valve. Equation (1) describes this relationship.

Figure-1. CE105MV System.

Figure-2. Schematic of coupled tanks.
Discharge coefficients of the valves and cross-sectional area of the valve orifice; C_a, C_b, and C_c are the discharge coefficients of the valves and g is the gravity constant. Combining Equations (1), (4), and (5):

\[
Q_a = aC_a\sqrt{2g(H_1 - H_2)}
\]

\[
Q_b = aC_b\sqrt{2gH_1}
\]

\[
Q_c = aC_c\sqrt{2gH_2}
\]

\[
Q_1 - Q_a - Q_b = A \frac{dh_1}{dt} \quad (1)
\]

\[
Q_a - Q_c = A \frac{dh_2}{dt} \quad (2)
\]

Equations (6) and (7) are first order nonlinear differential equations, to be useful in control systems, the equations must be linearized considering small variations on the desired operating fluid level in the tanks [8]. Applying the Taylor series and performing the Laplace transform, the transfer function of the system for coupled tanks is obtained:

\[
G(s) = \frac{D_1}{s^2 + D_2s + D_3}
\]

Where:

\[
D_1 = \frac{K_pC_a\sqrt{2g}}{4A^2\sqrt{H_1 - H_2}}
\]

\[
D_2 = a\frac{\sqrt{2g}}{A} \left(\frac{C_b}{2\sqrt{H_1}} + \frac{C_c}{2\sqrt{H_2}} \right)
\]

\[
D_3 = a^2\frac{2g}{4A^2} \left(\frac{C_bC_a}{\sqrt{H_1} + \sqrt{H_2}} + \frac{C_bC_c}{\sqrt{H_1} + \sqrt{H_2}} + \frac{C_bC_c}{\sqrt{H_1} + \sqrt{H_2}} \right)
\]

\[
H' = \sqrt{H_1 - H_2}
\]

Although the water enters the tank from the bottom, the dimensions of the system are small enough so that no delay in the change of level is observed. The values of the system parameters are shown in Table-1.

Table-1. System parameters [15].

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cross-sectional area of the tanks</td>
<td>9.35×10^{-6} m2</td>
</tr>
<tr>
<td>a</td>
<td>Cross-sectional area of the valve orifice</td>
<td>7.85×10^{-6} m2</td>
</tr>
<tr>
<td>C_a</td>
<td>Discharge coefficient of valve A</td>
<td>0.5</td>
</tr>
<tr>
<td>C_b</td>
<td>Discharge coefficient of valve B</td>
<td>0.2</td>
</tr>
<tr>
<td>C_c</td>
<td>Discharge coefficient of valve C</td>
<td>0.2</td>
</tr>
<tr>
<td>h_{max}</td>
<td>Maximum liquid level</td>
<td>0.25 m</td>
</tr>
<tr>
<td>v_{max}</td>
<td>Maximum input voltage</td>
<td>10 V</td>
</tr>
<tr>
<td>K_p</td>
<td>Pump gain</td>
<td>6.66×10^{-6} m3/sV</td>
</tr>
<tr>
<td>K_h</td>
<td>Sensor level gain</td>
<td>40 V/m</td>
</tr>
<tr>
<td>g</td>
<td>Gravity constant</td>
<td>9.8 m/s2</td>
</tr>
</tbody>
</table>

The non-linear dynamics (6) and (7) must be linearized before PID and IMC control can be applied. The linearization was made using the first order Taylor expansion around the equilibrium point $h^* = 0.1$m. For the equilibrium point: $f(v_i^*, h^*) = 0$. Linearizing the coupled tanks dynamics yields the following transfer function:

\[
G(s) = \frac{2.616\times10^{-5}}{s^2 + 0.1695s + 0.001793}
\]

2.2 PID Controller

The “textbook” algorithm that describes the behavior of the PID controller is presented in (10):

\[
u(t) = K_p \left[e(t) + \frac{1}{T_i} \int e(\tau) d\tau + T_d \frac{de(t)}{dt} \right]
\]

\[
u(t)
\]

$u(t)$ is the output signal of the PID controller, which in this case corresponds to the voltage applied to the pump. $e(t)$ is the input signal of the PID controller, which is defined as $e(t) = r(t) - y(t)$, where $r(t)$ is the setpoint and $y(t)$ is the output of the process, that is, the level of liquid in the tank. K_p is the proportional gain, T_i is the integration time, and T_d is the differentiation time.

Applying the Laplace transform to (10), the transfer function of the PID controller is found:

\[
\frac{U(s)}{E(s)} = K_p \left[1 + \frac{1}{T_i s} + T_d s \right]
\]

However, the practical implementation form is given by:

\[
\frac{U(s)}{E(s)} = K_p \left[1 + \frac{1}{T_i s} + \frac{T_d s}{1 + a T_d s} \right]
\]
Therefore, the transfer function for the practical PID controller, which gives minimum overshoot and minimum settling time, is:
\[
\frac{U(s)}{E(s)} = 80.9781 + \frac{0.8756}{s} + 14.7392s^{-2} + 0.0274
\]
(13)

2.3 IMC

An IMC controller presents the structure of Figure-3.

The IMC structure has a mathematical model \(\hat{G}_p(s) \) in parallel to the plant \(G_p(s) \) with the same input \(u(s) \) producing an output \(\hat{y}(s) \), which will be subtracted from the output \(y(s) \) of the plant obtaining a signal \(\hat{d}(s) \). This is fed back and compared to the required parameter \(r(s) \) to supply the controller \(C(s) \) using the signal \(\hat{r}(s) \).

Commonly, the IMC defines its basis in the inverse use of the mathematical model of the process, with the aim of obtaining robust control [16]-[17]. In this way the differences between the real plant \(G_p(s) \) and its approximate mathematical model \(\hat{G}_p(s) \) (9) are reduced. In addition, non-measurable disturbances are monitored.

If \(G_p(s) = \hat{G}_p(s) \) and \(d(s) = 0 \), both the input voltage and the non-measurable disturbances considered in the design will return to the controller by means of feedback generating permanent control of the system.

The following equations describe the IMC controller in Figure-3.

\[
y(s) = G_p(s)u(s) + d(s)
\]
(14)
\[
\hat{y}(s) = \hat{G}_p(s)u(s)
\]
(15)
\[
\hat{d}(s) = y(s) - \hat{y}(s) + d(s)
\]
(16)
\[
\hat{r}(s) = r(s) - \hat{d}(s)
\]
(17)

With \(y(s) = G_p(s)u(s) \), \(u(s) = \hat{r}(s)C(s) \), and taking into account the disturbances, the output can be expressed as follows:
\[
y(s) = G_p(s)C(s)r(s)
\]
(18)

To achieve zero steady-state error, the condition \(y(s) = r(s) \) must be met. When approached by means of (14) the multiplication between \(G_p(s) \) and \(C(s) \) must be equal to one. To obtain the function that satisfies this product, \(C(s) \) must be equal to the inverse of the plant, as shown below:
\[
C(s) = \frac{1}{G_p(s)} = G_p(s)^{-1}
\]
(19)

By inverting the plant model (9), the controller required by the IMC model is obtained:

\[
C(s) = \frac{s^2 + 0.1695s + 0.001793}{2.616 \times 10^{-5}}
\]
(20)

The transfer function of the controller must be its proper or semi-proper, that is, the degree of the denominator must be greater than or equal to the degree of the numerator, respectively. From the new configuration obtained (18), it is possible to deduce that it is an improper function, for this reason, the implementation of the filter \(f(s) \) is carried out:
\[
f(s) = \frac{1}{(\lambda s + 1)^n}
\]
(21)

\(n \) is selected, so that when multiplied with \(C(s) \) a semi-proper or proper function is obtained. \(\lambda \) is a closed-loop response speed tuning parameter, with a small value for a fast system response and a large value for a slowdown.

For the choice of parameters, the intrinsic physical characteristics of the function plant are considered (9). In which the values \(n = 2 \) and \(\lambda = 25.5 \) are obtained.
\[
f(s) = \frac{1}{(25.5s + 1)^2}
\]
(22)

The filter converts equation (19) into a semi-proper function as follows:
\[
C(s) = f(s)\hat{G}_p(s)^{-1}
\]
(23)
\[
C(s) = \frac{s^2 + 0.1695s + 0.001793}{2.616 \times 10^{-5}} \cdot \frac{1}{(25.5s + 1)^2}
\]
(24)

Therefore, from (18), the closed-loop response of the system is:
\[
y(s) = \frac{1}{(\lambda s + 1)^n} r(s) = \left(\frac{1}{(25.5s + 1)^2}\right) r(s)
\]
(24)

3. RESULTS AND DISCUSSIONS

The simulation was conducted towards two scenarios to compare the behavior of the PID and IMC algorithms. The performance of the controllers is evaluated, in order to carry out a tracking to a reference level and an effective rejection of the disturbances.
3.1 Scenario 1: Disturbance Rejection

In order to evaluate the performance of the controlled system when a disturbance is applied, the setpoint is fixed at 0.1 m. After the response reaches the steady state a disturbance is applied to the system, which consists of a change in the discharge coefficient of valve C, that is, C_C goes from 0.2 to 0.4. Finally, when the response reaches the setpoint again, the discharge coefficient is changed from 0.4 to 0.2. Figure-4 shows the output level when PID and IMC algorithms are used.

Initially the response does not present overshoot in both cases. When the system stabilizes the discharge coefficient of valve C is changed from 0.2 to 0.4, this disturbs the system because the outflow increases. At 500 seconds the output level of the system is reduced due to this situation. However, the controllers increase the control effort (as can be observed in Figure-5) to compensate for the reduction in the output level and increase it again to 0.1 m. When IMC algorithm is used, the change in the output level of the system is less.

Finally, at 1000 seconds, the discharge coefficient of valve C is changed from 0.4 to 0.2. Because of this generates a reduction in the output flow, it is observed how the output level increases when PID acts. Again, this change is less when IMC in used. Both controllers adjust the voltage applied to the system to compensate for the increase in level. The output stabilizes again at 0.1 m, showing the robustness of the controllers against changes in the process parameters.

3.2 Scenario 2: Setpoint Tracking

In order to evaluate how the system behaves in closed loop at different points of operation, a reference signal composed of 4 steps with amplitudes of 0.04, 0.08, 0.12, and 0.16 m is applied. Figure-6 shows how the process output $y(t)$ tracks a setpoint.

For both controllers, the model is linearized in a point corresponding with an output level $h^* = 0.1$ m. As can be observed, the response is better for the last steps. But as soon as the setpoint lies a bit further, results worse fast, for instance, the first setpoint step shows a longer settling time. As soon as the setpoint comes in a value close to 10 cm, the controller starts giving good results. It can be seen that IMC gives very good results. The output follows the set point changes with very little overshoot and less settling time.

Finally, Figure-7 shows the control effort for both controllers.
In order to obtain a detailed results analysis of the comparative study between the PID and IMC algorithms, the Root Mean Square Error (RMSE) variations were used.

\[
RMSE = \sqrt{\frac{\sum_{t=1}^{N} [r(t) - y(t)]^2}{N}}
\] (25)

where \(r(t)\) is the setpoint signal, \(y(t)\) is the output signal, and \(N\) is the number of samples. Table-2 shows the RMSE variations for both the PID algorithm and the IMC algorithm when the two simulation scenarios are applied.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>PID (%)</th>
<th>IMC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19.21</td>
<td>16.96</td>
</tr>
<tr>
<td>2</td>
<td>14.22</td>
<td>12.97</td>
</tr>
</tbody>
</table>

The implemented IMC algorithm presents a better behavior in the two scenarios compared to the PID algorithm.

Although the computational cost of the implementation of the IMC algorithm is higher, the system response is noticeably faster than when the PID algorithm is used. This can be an advantage in systems where it is necessary to minimize the values of overshoot and settling time. However, for processes where these requirements are not necessary, the PID algorithm would be more viable because of its simplicity of implementation.

4. CONCLUSIONS

In this work, the performance of PID and IMC algorithms was evaluated. It can be observed that the IMC is more effective in rejecting disturbances. This is because it uses a greater control effort when there are changes in the system parameters. In the same way, because the IMC the tracking to the variations in the reference level is much better. In addition, as the model used is more precise, the control effort required is greater when changing from one setpoint to another.

REFERENCES

