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ABSTRACT 

In this article, we present the second order-third stage Runge-Kutta method (RK2-3st) as an alternative way to 
give solution to the stochastic point kinetics equations with Newtonian temperature feedback effects considering step 
change reactivity. We consider the Doppler effect to obtain an approximation to an adiabatic nuclear reactor. We realize 
diverse numerical experiments, which are obtained using study cases reported in the literature. We consider several initial 
values for the step reactivity to study the efficiency and precision of the method. We obtain several values for reactivity, 
mean values and standard deviation for the neutron population density and the concentration of delayed neutron precursors. 
The numerical results obtained with the RK2-3st method indicate that it is efficient, of low computational cost and easy to 
implement. 
 
Keywords: Doppler effects, neutron density, Newtonian temperature feedback, Runge-Kutta stochastic method. 

 
INTRODUCTION 

One of the most important models in nuclear 
physics, that allow to know the dynamics of a nuclear 
reactor, are the point kinetic equations [1], which are a set 
of nonlinear ordinary differential equations, which are 
highly coupled. This set considers m groups of delayed 
neutron precursors which describe the behavior of the 
neutron density and the concentration density of the 
delayed neutron precursors [2]. The point kinetic 
equations contain time dependent parameters as reactivity; 
the neutron density and the concentration of delayed 
neutron precursors, with a random behavior along time [3-
4].  

Several investigators have focused their studies in 
modeling the nuclear reactor without considering 
stochastic effects, in which temperature feedback effects 
are considered. These models provide an estimation of the 
transitory behavior of the neutron density and the 
concentration of the delayed neutron precursors, which 
allows to have timely control of the nuclear reactor and at 
the same time guarantee the production of energy. Some 
work on this research are: Power series solutions (PWS) 
method [5], converged accelerated Taylor series (CATS) 
method [6], enhanced piecewise constant approximation 
(EPCA) method [7], ITS2 [8], the generalized Adams-
Bashforth-Moulton Method [9] y the 8th-order Adams-
Bashforth-Moulton (ABM8) method [10]. However, since 
the dynamics of a nuclear reactor are stochastic, the 
following methods give solutions to the point kinetics 
equation with temperature feedback equations: Backward 
Euler and Crank Nicholson approximations [11], Euler 
Maruyama method, Milstein free derivative method [12] 
and the strong Taylor 1.5 method [13]. 

Due to the point kinetic equations having no 
exact analytic solution, we propose the stochastic method 
of numerical derivation of the Runge-Kutta second order-
third stage (RK2-3st) [14-15] as a method to solve 

numerically the point kinetic stochastic equations with 
temperature feedback effects when considering the step 
change reactivity. 

In this article, we initially show the kinetic model 
of a point nuclear reactor with effects of temperature 
feedback, described by the stochastic point kinetic 
equations. Later, we propose the stochastic numerical 
derivation method RK2-3st to give solution to the dynamic 
system of a nuclear reactor with adiabatic approximation. 
In the result section, we consider several study cases 
which are available in the literature for several initial 
conditions of the step change reactivity. These numerical 
results are compared with other methods of the numerical 
solution so that we can study efficiency and precision of 
the proposed RK2-3st method. 
 
THEORETICAL CONSIDERATIONS THE 

NONLINEAR STOCHASTIC POINT 

KINETIC EQUATIONS 

The temporal behavior of the neutron flux in a 
nuclear reactor, as the neutron density and the delayed 
neutron precursor concentration, is described by the 
stochastic point kinetics equation [2-3]: 
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Given the initial conditions 
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where ( )n t  is the neutron density, ( )
i

c t  delayed neutron 

precursor density of the i-th group of precursors, m  is the 

number of delayed neutron precursor groups and t  is the 

time. A  the matrix of the coefficient described by, 
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where ( )t  is the reactivity, i
  is the fraction of delayed 

neutrons of the i-th precursor group,   is the total fraction 

of delayed neutrons, i
  is the decay constant of the i-th 

precursor group, ( )F t  is the vector of neutron source 

defined by, 
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where ( )t
q  is the external neutron source.  

B  is the covariance matrix with pulsed neutron 
approximation [16], given by, 
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Given  is the average number of neutrons 

emitted per fission and ,i j is the Kronecker delta. Finally 

on equation (1), ˆ ( )W t  is the vector of the Wiener processes 

or Brownian motion defined the following way, 
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For the case of thermal reactors, the Doppler 

feedback is due primarily to epithermal capture resonances 
in the non-fissionable fuel isotopes as well as Th232, U238, 
and Pu240. Reactivity due to the Doppler effect for the 

equilibrium point ( 0  and 0T )  is described by [17]: 

 

 0 0( ) ( )
f

D
fT
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f

D
T

fT

 



, is the Doppler temperature coefficient 

and fT  is the fuel temperature. 

For the Doppler feedback, the adiabatic 
approximation represents the most limiting case in the 
nuclear reactor in relation with a positive reactivity 
insertion, since it is considered as a hypothetical scenario 
with an emission of power with no heat elimination, and 
the Doppler effects generate a self-control of the reactor 
that is satisfactory at maintaining safety margins. The 
equation represents the step change with temperature 
feedback feeding along the time, which is given by: 
 

( ) ( )
f

D
T

d t H n t dt                                                (12) 

 

where 0 / ( )f fH P Cp  given 0P  the nominal 

potential, f  the density and fCp  the specific heat of the 

fuel. 
The initial condition on equation (12) is subject 

to: 
 

 0 0t        (13) 
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SECOND-ORDER TWO-STAGE STOCHASTIC 

RUNGE-KUTTA SCHEME  

The stochastic scheme of Runge-Kutta of the s

stage [14], is given by 
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2,...,j s ; ( )
ˆ

t
W are Brownian motions and R  is an 

appropriate term, which is obtained when comparing the 
approximation of equation (14) with the schema  -

equivalent of the simplified Taylor method of the   

order.   
The Runge-Kutta stochastic schema of order two-

stage three on Eq. (14) for 2s  , is obtained for the scalar 

case 
 

1d m  ,

 
 

 
1 2

1 1 2

3

,
ˆ,

,

n

n n n n

n

b b t
X X a a t W R

b t

   
   

  

   
                   

(15) 

 

where, ˆ
n n

X a b W      ; ˆ
n n

X a b W      ; 

ˆ
n n

X a b W      ;  ,
n n

a a t X ;   ,
n n

b b t X .  

The functions  ,
n j j

a t     and 

 ,
n j j

b t     are truncated expansions of the second 

order, given by: 
 

 
2(2)

, 1 1

2 3 3 4 2

2
, 1 , , 1 , , , 1

2 3

,
2

1 1

2 4 2

1

2

i jd d

t i j i
i j i

ijd d d d
ij kl ij kl

i j l i j k i j k l
i j i j k l i j k l

jk

i i j

f f X X f
f t X X f X

t x x x

f f c f f
c c c c

t t x x x x x x x x x x

f f
c

t x x x x

 

  

    
          

   

       
                 

 
 

    

 

   

 
1 , 1

d d
i

k
i j k

X
 

 
  

 
 

   (16)
(2)

 indicates a second order approximation on the 
functions. For the scalar case and considering equation 

(16) where 2
c b , we obtain 
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In order to simplify the mathematical notation, 

we write 
i j

i j i j

f
f

t x



 

.   

The combination of the products of the Brownian 
motions with the 2   approximation corresponds to:  
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where, 1,2,...,i j n  .  

Considering on equation (17), the approximations 
to equations (18a-18c) we obtain,  
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Replacing equations (19-21) on equation (15), we 

obtain 
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The schema obtained on equation (22) has to be 

 -equivalent to the Taylor schema of order 2, which is 

given by [18]: 
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Such that equation (22) and equation (23) be  -

equivalent, we need to fulfil the equalities: 
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We observe on equations (24a-24b) has a unique 

solution when 1      and 
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   . Replacing 

these equalities on equation (24a-24b), we obtain: 
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Replacing the equivalences from equation (25) on 

equation (23), we obtain Runge-Kutta stochastic schema 
of order two-third stage (RK2-3st): 
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However, RK2-3st given by equation (26) is 2-

equivalent to the Taylor schema of order two, given by 
equation (23). We observe that the Taylor schema requires 
calculating more derivatives than the RK2-3st schema. 
The RK2-3st method is implemented to solve stochastic 
point kinetic equations with temperature feedback effects. 
We propose different numerical experiments to study, the 
step change reactivity temperature feedback in the nuclear 
reactors given on equation (12). 
 
RESULTS 

In this section we present several numerical 
experiments, on which we give numerical solutions to the 
stochastic point kinetics equations given by equation (1) 
with temperature feedback effects considering step change 
reactivity using equation (12), with the objective of 
analyzing efficiency and precision of the proposed RK2-
3st method.  

For the numerical experiments, the system starts 

with the following initial conditions 0 0t  , for the 

neutron density 
3

0 1 /n n cm  and the delayed neutron 

precursor density 
(0)

(0)
i

i
i

n
C







. For the U235 graphite 

nuclear reactor, the parameters of the delayed neutron 

precursor groups corresponding to: 1 0.0124  s
-1, 

2 0.0305  s
-1, 3 0.111  s

-1, 4 0.301  s
-1,  

5 1.13  s
-1,  6 3.0  s

-1, 1 0.00021  , 

2 0.00141  , 3 0.00127  , 4 0.00255  , 

5 0.00074  , 6 0.00027  ,  0.00645  , 

55.0 10 s  , for a fixed step size 
310h
  and using 

500 trials. We study the point kinetics equations for the 

following steps of the initial reactivity: 0 0.5$  , 

0 0.75$  , 0 1.0$   y 0 1.5$  . We consider that the 

coefficient for the reactivity of Doppler temperature has a 

value of 5 15*10
f

D
T

K    and H = 0.05 K cm
3
s

-1.   

On Table-1 we present the peak values of the 
mean population of the neutron density and the time in 
which this occurs, as calculated by the RK2-3st method 

for the initial steps of the reactivity : 0 0.5$  , 

0 0.75$  , 0 1.0$  and 0 1.5$  . The values 

obtained with the proposed RK2-3st method for 0 0.5$   

, 0 0.75$  , 0 1.0$   and 0 1.5$   are compared 

with the split-step forward EMM and the Derivate-free 
Milstein method [13], Taylor 1.5 strong order [20] and the 
Converged Accelerated Taylor Series (CATS) [**]. For

0 0.5$  , we find that the values obtained with RK2-3st 

are very close to the split-step forward EMM and 
Derivate-free Milstein methods. The values obtained for 

0 0.75$   are similar to the one reported with the Split-

step forward EMM method. For 0 1.0$   and 0 1.5$  ,  

the values with the RK2-3st method are close to the ones 
reported on the CATS method. Finding that the proposed 
RK2-3st method is an efficient method that allows to study 
the stochastic point kinetic equations with temperature 
feedback effects considering the step change reactivity. 

On Table-2 we tabulated the values of the 
reactivity given on ($), the mean values and the standard 
deviation of the neutron density and the sum of the 
delayed neutron precursor concentration. 
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Table-1. Peak of the neutron density and respective time to peak in compensated step change reactivity. 
 

Method 
0 0.5$   0 0.75$   0 1.0$   0 1.5$   

Peak Time(s) Peak Time(s) Peak Time(s) Peak Time(s) 

Split-step 
forward 
EMM 

46.4939 28.3400 163.707 8.795 760.589 1.065 - - 

Derivative-
free Milstein 

method 
46.2606 27.8400 164.22 8.75 769.238 1.0575 - - 

Taylor 1.5 
strong order 

55.6596 22.41 185.44 7.1725 1192.48 0.725 - - 

CATS - - - - 807.8681 0.953 43024.61 0.168 

RK2-3st 45.8202 27.8 163.4927 8.9 805.4465 1.0 39472.3478 0.169 

 
Table-2. Mean values and standard deviation of neutron density, the sum of the precursor 

groups and reactivity for different 0 . 
 

0  Time (s) 
RK2-3st 

( )t
E n    ( )t

n     ( )i t
E c    ( )i t

c     ( )t
  

0.5$ 100 7.3339 0.6788 22479.9319 213.4026 0.0137 

0.75$ 50 17.1675 0.9525 55804.2987 277.1445 -0.0375 

1.0$ 25 37.2910 1.4513 109934.2385 329.8327 -0.1536 

1.5$ 0.2 20752.7575 9952.4185 293391.5561 47817.4698 1.3552 

2.0$ 0.13 23347.5730 56385.7988 653413.4171 118181.8667 1.5949 

 
Figures 1-4 a) shows the dynamical behaviour of 

the neutron density as a function of the time for the initial 

step reactivity 0 0.5$   , 0 0.75$  , 0 1.0$   and 

0 1.5$  , respectively, Figures 1-4 b) shows the 

concentration of the delayed neutron precursor density as a 
function of time and Figures 1-4 c) shows the reactivity 
along time. On Figures 1-4 a) and b) we show to different 
sample densities (blue and gray lines) and the median 
density (red line).  

We observe on Figures 1-4 that there is low 
variation on the neutron density and the delayed neutron 
precursor density along time with respect to the median 
values, indicating that the RK2-3st method has good 
precision.  

For the initial step reactivity 0 0.5$  , 

0 0.75$  , 0 1.0$   and  0 1.5$  , the reactivity 

values, the median neutron density values, and the sum of 
the delayed neutron precursor concentration are presented 
on Tables 3-6, respectively. 
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a) Neutron density fluctuation 
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b) Fluctuation of the sum of the concentration of 

delayed neutron precursors 
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Figure-1. Variation of neutron density with time for several initial step reactivities 0 .
 

 
Table-3. Mean values and standard deviation of neutron density, the sum of the precursor 

groups and reactivity for initial step reactivity 0 0.5$  . 

 

t(s) ( )t
E n    ( )t

n     ( )i t
E c    ( )i t

c     ( )t  

0 1 - 1.6765E+03 - 0.5000E+00 

10 1.3113E+01 1.1030E+00 5.7358E+03 1.5877E+02 4.7530E-01 

20 3.6751E+01 1.7809E+00 1.9304E+04 4.7826E+02 3.8116E-01 

30 4.5392E+01 1.7402E+00 3.5789E+04 5.0194E+02 2.1505E-01 

40 3.6856E+01 1.5532E+00 4.2832E+04 3.5662E+02 5.3259E-02 

50 2.7072E+01 1.2265E+00 4.2339E+04 3.0269E+02 -7.005E-02 
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a) Neutron density fluctuation 
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b) Fluctuation of the sum of the concentration of 

delayed neutron precursors 
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Figure-2. Neutron density variation, sum of the delayed neutron precursor density and reactivity 

as a function of time for the initial step reactivity 0 0.75$  . 

 
Table-4. Mean values and standard deviation of neutron density, the sum of the precursor 

groups and reactivity for initial step reactivity 0 0.75$  . 

 

t(s) ( )t
E n    ( )t

n     ( )i t
E c    ( )i t

c     ( )t  

0 1 - 1.6765E+03 - 0.7500E+00 

10 1.5955E+02 3.6675E+00 6.8706E+04 5.2872E+02 4.0007E-01 

20 7.9328E+01 2.3645E+00 9.4657E+04 3.3662E+02 -5.6172E-02 

30 4.1469E+01 1.5587E+00 8.2138E+04 3.3418E+02 -2.7902E-01 

40 2.5244E+01 1.2020E+00 6.7808E+04 3.0052E+02 -4.0457E-01 

50 1.7168E+01 9.5252E-01 5.5804E+04 2.7714E+02 -4.8505E-01 
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a) Neutron density fluctuation 
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b) Fluctuation of the sum of the concentration of 

delayed neutron precursors 
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Figure-3. Neutron density variation, sum of the delayed neutron precursor density and reactivity 

as a function of time for the initial step reactivity 0 0$1.  . 

 
Table-5. Mean values and standard deviation of neutron density, the sum of the precursor groups 

and reactivity for initial step reactivity 0 1.0$  . 

 

t(s) ( )t
E n    ( )t

n     ( )i t
E c    ( )i t

c     ( )t
  

0 1 - 1.6765E+03 - 1.0000E+00 

10 1.3219E+02 2.9413E+00 1.6225E+05 3.8901E+02 2.657E-01 

20 5.1700E+01 1.6937E+00 1.2539E+05 3.5270E+02 -5.428E-02 

30 2.8164E+01 1.2382E+00 9.6960E+04 3.4131E+02 -2.278E-01 

40 1.8058E+01 1.0273E+00 7.6669E+04 2.7849E+02 -3.497E-01 

50 1.2759E+01 8.6643E-01 6.1539E+04 2.7173E+02 -4.312E-01 

60 9.5020E+00 7.6797E-01 4.9893E+04 2.4833E+02 -4.946E-01 

70 7.2266E+00 6.7143E-01 4.0700E+04 2.1911E+02 -5.473E-01 

80 5.6110E+00 6.7237E-01 3.3374E+04 2.0079E+02 -5.891E-01 

90 4.4246E+00 5.9833E-01 2.7479E+04 1.8647E+02 -6.248E-01 

100 3.5626E+00 5.2597E-01 2.2716E+04 1.6714E+02 -6.553E-01 
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a) Neutron density fluctuation 
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b) Fluctuation of the sum of the concentration of 

delayed neutron precursors 
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Figure-4. Neutron density variation, sum of the delayed neutron precursor density and reactivity 

as a function of time for the initial step reactivity 0 5$1.  . 

 
Table-6. Mean values and standard deviation of neutron density, the sum of the precursor groups 

and reactivity for initial step reactivity 0 1.5$  . 

 

t(s) ( )t
E n    ( )t

n     ( )i t
E c    ( )i t

c     ( )t
  

0 1 - 1.6765E+03 - 1.5000E+00 

10 1,0723E+02 2,6360E+00 2,6172E+05 4,7670E+02 -8,4186E-01 

20 4,1373E+01 1,5697E+00 1,7907E+05 3,8904E+02 -1,0977E+00 

30 2,3211E+01 1,1630E+00 1,3304E+05 3,6283E+02 -1,2155E+00 

40 1,5179E+01 1,0552E+00 1,0267E+05 3,2266E+02 -1,2884E+00 

50 1,0788E+01 8,9175E-01 8,0871E+04 2,9691E+02 -1,3380E+00 

60 6,1845E+00 7,0942E-01 6,4476E+04 2,6137E+02 -1,3736E+00 

70 6,1845E+00 7,0942E-01 5,1825E+04 2,4486E+02 -1,4016E+00 

80 4,8080E+00 5,9848E-01 4,1909E+04 2,2002E+02 -1,4233E+00 

90 3,6948E+00 5,6430E-01 3,4090E+04 1,9782E+02 -1,4388E+00 

 
CONCLUSIONS 

On this article, we have solved the point kinetic 
stochastic equations of a nuclear reactor with temperature 

feedback effects for the step change reactivity with the 
stochastic Runge-Kutta numerical method of order two-
stage three. We have presented the results of several 
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different numerical experiments, on which we consider 
varied values of the initials step reactivity. We observed 
that the fluctuations are very close to the median neutron 
density values and the concentration of delayed neutron 
precursors, which indicates that the RK2-3st method is an 
efficient one. When comparing the values that are 
available on the literature for each numerical experiment, 
for both, the deterministic and stochastic method, we 
found that the RK2-3st method generates values with a 
good precision. 
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