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ABSTRACT 

In this article, the classical theory leading to the Black-Scholes equation, widely used in the market model for 
valuing financial options developed. In this sense, the mathematical development from a stochastic differential equation 
leads to the equation, Black Scholes; therefore, the model’s solution is presented. Initially, the model is transformed into 
the heat equation, and then it is combined with the inverse Fourier transformation, supported in the performance of the 
separation of variables method and the description of the solution according to the nature of the root of the characteristic 
polynomial. A solution of the call option is achieved. From this, through the parity relation, the value of a put option is also 
found. Finally, the volatility parameter associated with the model is estimated through the classic and Bayesian approach, 
where it was shown that when evaluating the premium or price of the option from the volatility estimate from the Bayesian 
approach, it presents a lower proportion of risk to what happens in the financial market. 
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1. INTRODUCTION 

A financial derivative may be defined as a 
financial instrument whose value depends on (or derived) 
from another asset or market to serve as a reference. The 
assets of which it depends is called the underlying asset. 
Very often, the variables underlying the derivatives are 
traded asset prices. Overall, it is a signed contract between 
two parties, buyer and seller, which define a future 
payment according to the behavior of the price of the 
asset. In some cases, the fair price of the derivative is 
independent of the model used to describe the behavior of 
assets over time and, in other cases, depending on the 
model, whose case will be discussed at this work. 

Moreover, bearing in mind that speculation and 
coverage of the risk of a position of the active are 
underlying the main uses of derivatives, the area of risk 
management seeks to introduce models to control a fair 
price in the market. Moreover, risk management, inherent 
in the market has shown an exponential growth driven by 
the rapid development of information technology, which, 
in turn, has facilitated their operation and diversification. 
Thus, the bags which are negotiated and traded products 
provide alternative investment and greater coverage with 
more and better information (Hull, 2006) (Venegas, 2008). 
In 1900, L. Bachelier introduced a model involving 
Brownian motion (observed in nature by Brown in 1826) 
to model fluctuations of the Parisina bag. 

However, thanks to the contributions of F. Black, 
M. Scholes (Black & Scholes, 1973) and RC Merton 
(Merton, 1973), winner of the Nobel Prize for Economics 
in 1997 for his outstanding contributions to financial 
mathematics in continuous time, it is possible to 
understand the estimate of the value of an option (or value 
of the premium). The model is known as the Black-
Scholes equation; whose solution is the price of a 
European option (call or put) when the end condition is the 
intrinsic value of the option. Intrinsic value is the actual 
value of the option on the maturity date (expiry) of the 

contract. Furthermore, one of the advantages of the Black-
Scholes model is that this partial differential equation is 
transformed into the heat diffusion equation, which has 
explicit solutions. Since then, the equation has become 
very popular because it represents the basis for valuing 
many diverse derivatives because, for different solutions, 
border represent the prices of many derivative products on 
the market (Venegas, 2008). Because of the developments 
in financial engineering and the significant role played by 
the study of the bag for better decision-making, it has 
become essential to use mathematical models that achieve 
response to the investor so that their results are 
representative of the reality. 

In the first part of the work, theoretical aspects to 
consider along the article are described. After that 
deduction of the equation of the Black-Scholes, it is made 
from a stochastic differential equation for the evolution of 
the price of an active. To finally reach the solution using 
the separation of variables method and Fourier series. 
 
2. MATERIALS AND METHODS 
 
2.1 Derivation of the Black-Scholes Equation 

 
2.1.1 Evolution of the price of a derivative 

The Black-Scholes model consists of two assets: 
Bond (Bond) and the share price (Stock). The first evolves 
deterministically, and the second is random evolution, as 
described below. 

The value of a European option’s underlying 
asset is modeled by a stochastic process {𝑆𝑡}𝑡≥0, solution 
of stochastic differential equation of the form  
  dSt = μStdt + σStdWt                                                    (1) 
 

Where {𝑊𝒕}𝒕≥𝟎is a geometric Brownian motion, 
which incorporates elements of risk and uncertainty in the 
dynamics of that variable. It is assumed that the asset price 
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that pays no dividends; follows a geometric Brownian 
motion, see (Neil, et to the, 2010). Considering that the 
variable 𝑆𝑡 takes the value of zero, then the equation [1] 
we can write as 
 𝑑𝑆𝑡𝑆𝑡 = 𝜇𝑑𝑡 + 𝜎𝑑𝑊𝑡                                                           (2)         

 
Therefore, 𝑆𝑡 the price of the asset at a time 𝑡, 𝜇  

the expected rate of return (or return medium) and𝜎 the 
volatility of the asset price. We assume that, in this 
market, you can trade at any time, without costs. 

In this context, we think that the average 
expected rate of return divided by the asset price is 
constant. Then, if 𝑆𝑡 the asset’s price at a time 𝑡, the drift 

parameter must be 𝜇𝑆𝑡, for some constant 𝜇. This means 
that in a short time interval Δ𝑡, the change would 𝑆𝑡 be 
expected 𝜇𝑆𝑡. 

Now, if we consider that the volatility of the price 
of the asset is always zero, for a short period, [1], it has to 
 ΔSt = μStΔt 
 
Then, for Δ𝑡 → 0 
 dSt = μStdt 
 

However, in practice, the volatility is not zero. If 

we think of the percent return  
ΔStSt     in a time interval 𝛥𝑡, it 

is reasonable to assume that the variability of the value is 
the same, independent of the asset value𝑆𝑡. This means 
that the standard deviation of the change of the price of the 
asset, for the time interval Δ𝑡 should be proportional to the 
price of the asset. I.e., that the model represents is given 
by 
 ΔStSt = μΔt + σϵ√Δt                                                          (3) 

 
Whichϵfollows a normal distribution 𝑁(0,1), 

note that if 𝛥𝑡 → 0, then 
 dStSt = μdt + σdWt                                                            (4) 

 
We are characterizing the geometric Brownian 

motion, which 𝜇 is the expected rate of return and 𝜎 the 
volatility of the asset price. 

Note that in equation [4] Shows that the increases 
are divided 𝑆𝑡by variables with normal distribution 
standard for a small time mean μΔt and standard deviation σ√Δt  for a small time  𝛥𝑡. 
 
2.1.2 Black-Scholes equation 

It is introducing the deduction and solution of the 
Black-Scholes equation for valuing European call and put 
options on stocks that do not pay dividends, which has 
been fundamental to the growth and success of financial 
engineering in the last 20 years (Hull, 2006) (Serrano, 
1993), (Venegas, 2008). 

As we saw in the previous section, assume that 
the asset price follows a geometric Brownian motion 
means: 
 dSt = μStdt + σStdWt                                                     (5) 
 
Where 𝑑𝑊𝑡 is a Wiener process. 
 

Is𝑉 the current price of the option, so at the time 𝑡, the current value of the derivative is denoted by 𝑆𝑡. It is 
not necessary to specify whether it is a call or put option 
(buy or sell). To value options, we must develop some 
tools, such as the formula Ito which is a generalization of 
the chain rule of the usual calculation functions. The 
critical point is that it 𝑉 is a function 𝑆𝑡 and 𝑡  this is it 𝑉 (𝑆𝑡 , 𝑡). Then, as 𝑉 (𝑆𝑡 , 𝑡) a class function then we 𝐶2 
have an example of a function for a random variable {𝑆𝑡}𝑡≥0. Using Ito's lemma, we have, 
 dV = (∂V∂t + μSt ∂V∂St + 12 σ2St2 ∂2V∂St2) dt + ∂V∂St σStdWt         (6) 

 
Shows that to have a stochastic equation for the 

price of the option 𝑉 (𝑆𝑡 , 𝑡), i.e., given the time 𝑡 and the 
price of the current derivative still cannot obtain a single 
value for the option. To do this, we assume a portfolio 
formed by an option and a quantity 𝛥of the underlying 
asset. The value of the portfolio over time 𝑡  is 
 𝜋(𝑆𝑡 , 𝑡) = 𝑉(𝑆𝑡 , 𝑡) − 𝛥(𝑆𝑡 , 𝑡)𝑆𝑡                                        (7) 
 
and the value of the portfolio between time 𝑡 and 𝑡 + 𝑑𝑡 is 
given by 
 𝑑𝜋 = 𝑑𝑉 − 𝛥𝑑𝑆𝑡                                                              (8) 
 

Note that the amount of the asset we own over 
time 𝑡 does not change between time 𝑡 and 𝑡 + d𝑡, the 
price of the asset changes by 𝑑𝑆𝑡, therefore the option 
price changes by 𝑑𝑉 and consequently, the value of the 
portfolio changes by 𝑑𝜋 (Neil, et to the, 2010), (Hull, 
2006). Substituting [6] in [8] we have 
 dπ = (∂V∂t + μSt ∂V∂St + 12σ2St2 ∂2V∂St2) dt + ∂V∂St σStdWt −  ΔdSt     (9) 

 
Replacing [5] in [9], Further simplifying must be 

 dπ = σSt (∂V∂St − Δ)  dWt+ (μSt ∂V∂St + 12σ2St2 ∂2V∂St2 + ∂V∂t − μΔSt) dt 
 

The factor (𝜕𝑉𝜕𝑆𝑡 − Δ) is very important because it 

controls the stochastic element in the portfolio d𝜋 and 

therefore the risk of it. If we take  Δ = 𝜕𝑉𝜕𝑆𝑡 for   everything 𝑡 ∈ 𝑇, we have indeed 
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𝑑𝜋 = (12𝜎2𝑆𝑡2 𝜕2𝑉𝜕𝑆𝑡2 + 𝜕𝑉𝜕𝑡) d𝑡                                           (10) 

 
Which is an entirely deterministic equation for 

the value of the portfolio at each time 𝑡. An important 
consequence is that the risk was eliminated obtaining a 
portfolio of zero risks. Now, since the case had not 
acquired the underlying asset, and instead have chosen the 
option of risk where capital has been invested in a bank, in 
this case, our increasing portfolio value during the same 
period𝑡 → 𝑡 + 𝑑𝑡, by a quantity 
 𝑑𝜋 = 𝑟𝜋𝑑𝑡                                                                     (11) 
 
which 𝑟 represents the rate of risk free rate, replacing [10] 
in [11] you have: 
 𝑟𝜋𝑑𝑡 = (12𝜎2𝑆𝑡2 𝜕2𝑉𝜕𝑆𝑡2 + 𝜕𝑉𝜕𝑡) 𝑑𝑡                                         (12) 

 
In addition, if we substitute [7] in [12] is obtained 

 𝑟 [𝑉 − 𝑆𝑡 𝜕𝑉𝜕𝑆𝑡] =  (12𝜎2𝑆𝑡2 𝜕2𝑉𝜕𝑆𝑡2 + 𝜕𝑉𝜕𝑡)                               (13) 

 
which it is valid for all times 𝑡 during the life of the 
option, that is, [13] it is equivalent to 
 𝜕𝑉𝜕𝑡 + 𝑟𝑆𝑡 𝜕𝑉𝜕𝑆𝑡 + 12𝜎2𝑆2 𝜕2𝑉𝜕𝑆𝑡2 = 𝑟𝑉                                      (14) 

 
This equation is known as the differential 

equation of Black-Scholes. 
Interestingly, the expected return 𝜇 does not 

appear in the equation [14], this is because an essential 
property of the Black-Scholes equation and not involving 
any variable that is affected by the choice of the investor 
risk. The variable 𝜇  depends on the preference of risk, the 
more time is assumed risk by the investor, the higher the 
value 𝜇 required, see (Hull, 2006). Note that the only 
parameters involved in the model and should be identified 
are volatility 𝜎  and interest rate risk free 𝑟.  
 
2.2 Solution Black-Scholes Equation 

The differential equation is a Black-Scholes EDP 
second linear order; It is a second-order partial derivative 
with a second order. It is linear in the sense that the two 
functions are the solution of the equation, and then any 
linear combination of the two functions is the solution of 
the equation. On the other hand, to solve the equation [14], 
we have to meet the boundary conditions, which are 
defined below. 
 
2.2.1 Boundary conditions for European options 

We denoted by 𝑉𝑐(𝑆𝑡 , 𝑡) and 𝑉𝑝(𝑆𝑡 , 𝑡) the prices 
of European call and put options respectively, strike  or 
exercise price 𝐾, maturity date 𝑇at a time  t < T and 𝑆𝑡 the 
current price of the asset. 
 
 

 European call option 

The price of a European call option 𝑉𝑐(𝑆𝑡 , 𝑡) 
satisfies 
 

{𝑉𝑐(𝑆𝑡 , 𝑡) =  𝑚𝑎𝑥{𝑆𝑡 − 𝐾, 0}    𝑓𝑜𝑟   0 < 𝑆𝑡 < ∞,𝑉𝑐(0, 𝑡) =   0                              𝑓𝑜𝑟      0 ≤ 𝑡 ≤ 𝑇,𝑙𝑖𝑚𝑆𝑡→∞𝑉𝑐(0, 𝑡) = 𝑆𝑡 − 𝐾𝑒−𝑟𝑡       𝑓𝑜𝑟      0 ≤ 𝑡 ≤ 𝑇. 
 

The first condition is given to the definition of choice; 
that is, for an arbitrary 𝑡 must verify that 𝑆𝑡 > 𝐾 the option 
will be exercised and its value is given 𝑆𝑡 − 𝐾, otherwise 
the option will not be exercised, and its value is zero, this 
condition is known as the end condition 𝑇 = 𝑡. The second 
and third conditions are derived from the assumption that 
the asset price follows a geometric Brownian motion. If  𝑆𝑡 = 0 for some time 𝑡 < 𝑇  and the option 𝑆𝑇 = 0 will 
not be exercised, thus obtaining the second condition 
(initial condition). Now, if 𝑆𝑡 → ∞ the value of the option 
approximates the value of the asset, that is, if 𝑆𝑡 it 
becomes too large the option is exercised and its value is 
given by 𝑆𝑡 − 𝐾, obtaining the third condition (condition 
at infinity). 
 
 European put option 

In the case of a put  𝑉𝑝(𝑆𝑡 , 𝑡) option meets:   
 { VP(St, t) =  max{K − St, 0}for   0 < St < ∞,VP(0, t) =   K                               for      0 ≤ t ≤ T,limSt→∞VP(0, t) = St − Ke−rtfor      0 ≤ t ≤ T,  

 
Where the reasoning is analogous to that of 

European call options. 
It is considered the following initial value 

problem and boundary for a European call option given 
by, 
 

{  
  𝜕𝑉𝑐𝜕𝑡 + 𝑟𝑆𝑡 𝜕𝑉𝑐𝜕𝑆𝑡 + 12𝜎2𝑆2 𝜕2𝑉𝑐𝜕𝑆𝑡2 = 𝑟𝑉𝑐𝑉𝑐(𝑆𝑡 , 𝑡) =  𝑚𝑎𝑥{𝑆𝑡 − 𝐾, 0}𝑓𝑜𝑟   0 < 𝑆𝑡 < ∞,𝑉𝑐(0, 𝑡) =   0                               𝑓𝑜𝑟     0 ≤ 𝑡 ≤ 𝑇,𝑙𝑖𝑚𝑆𝑡→∞ 𝑉𝑐(0, 𝑡) = 𝑆𝑡 − 𝐾𝑒−𝑟𝑡𝑓𝑜𝑟      0 ≤ 𝑡 ≤ 𝑇.      (15) 

 
The first step is to make the coefficients of this 

equation constant dependent on the independent variable 𝑆𝑡, to perform the following substitution, thereby 
 𝜏 = 12𝜎2𝑡 ,      𝑆𝑡 = 𝐾𝑒𝑥     and     Vc(St, t) = 𝐾𝐶(𝑥, 𝜏), 

In fact, 𝑥 = ln (𝑆𝑡𝐾) considering the partial 

derivatives is has 
 𝜕𝑥𝜕𝑆𝑡 = 1𝑆𝑡,       𝜕𝑥𝜕𝑡 = 0,       

𝜕𝜏𝜕𝑆𝑡 = 0 ,      
𝜕𝜏𝜕𝑡 = − 12𝜎2 

 
To replace the new variables, using the chain 

rule, we obtain 
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∂Vc∂t = − 12σ2K ∂C∂τ ,      ∂Vc∂St = e−xK ∂C∂x    and ∂2Vc∂St = 1Ke−2x (∂2C∂x2 − ∂C∂x) 

 
Substituting the partial derivatives in [15] has the 

following function in terms of the new function 
 𝜕2𝐶𝜕𝑥2 + 𝜕𝐶𝜕𝑥 (2𝑟𝜎2 − 1) − 2𝑟𝜎2 𝐶 = 𝜕𝐶𝜕𝜏  

 
Indeed, the final condition (𝑇 = 𝑡) becomes an 

initial condition (𝜏 = 0) of the form 
 𝑉𝑐(𝑆𝑡 , 𝑡) = 𝐶(𝑥, 0) = 𝑚𝑎𝑥{𝑒𝑥 − 1 , 0} 
 
and the boundary conditions (when 𝑆𝑡 → 0 and 𝑆𝑡 → ∞) 
are equivalent to 
 𝑉𝑐(0, 𝑡) = 𝑉𝑐(𝐾 lim𝑥→−∞ 𝑒𝑥 , 𝑡) = lim𝑥→−∞ 𝐶(𝑥, 𝜏) = 0, lim𝑆𝑡→∞ 𝑉𝑐(𝑆𝑡 , 𝑡) = lim𝑥→∞𝐾𝐶(𝑥, 𝜏) = lim𝑥→∞𝐶(𝑥, 𝜏)= 𝑒𝑥 − 𝑒−𝜏𝛾 
 

where 𝛾 = 2𝑟𝜎2. Finally in terms of the system it 𝐶(𝑥, 𝜏) is 

given by 
 

{  
  𝜕𝐶𝜕𝜏 = 𝜕2𝐶𝜕𝑥2 + 𝜕𝐶𝜕𝑥 (𝛾 − 1) − 𝛾𝐶𝐶(𝑥, 𝜏) = 𝑚𝑎𝑥{𝑒𝑥 − 1 , 0}      𝑓𝑜𝑟   0 < 𝑥 < ∞,𝐶(𝑥, 𝜏) =   0                               𝑓𝑜𝑟      0 ≤ 𝜏 ≤ 𝑇,𝑙𝑖𝑚𝑥→∞ 𝐶(𝑥, 𝜏) = 𝑒𝑥 − 𝑒−𝜏𝛾          𝑓𝑜𝑟       0 ≤ 𝜏 ≤ 𝑇.        (16) 

 
A convert the equation it Black-Scholes, in 

canonical form, the diffusion equation is obtained, to 
thereby realize a new change of variable, i.e. 
 C(x, τ) = eαx+βτu(x, τ) 
 

Applying the chain rule to the new variable 
change and replacing the partial derivatives in [16] it is 
obtained 
 ∂u∂τ = ∂2u∂x2 + (2α + γ − 1) ∂u∂x + (α2 + γα − α − γ − β)u   (17) 

 

Then the term 
𝜕𝑢𝜕𝑥  vanishes when 

 2𝛼 + 𝛾 − 1 = 0                                                             (18) 
 
and the term 𝑢 is canceled when  
 𝛼2 + 𝛾𝛼 − 𝛼 − 𝛾 − 𝛽 = 0                                             (19) 
 

I.e., equations [17] and [18] have a unique 
solution when 𝛼 = − 12 (𝛾 − 1)   and   𝛽 = − 14 (𝛾 + 1)2 

 

If we replace 𝛼 and 𝛽 values [17], you can type 
the Black-Scholes equation in the form diffusive, i.e. 
 ∂u∂τ = ∂2u∂x2 

 
Therefore, we have the following system 

corresponding to the diffusion equation on a bounded 
domain with no initial conditions, 
 

{  
  ∂u∂τ = ∂2u∂x2                 for    − ∞ < x < ∞u(x, 0) = u0(x);                                                               limx→−∞ u(x, τ) = 0limx→−∞ u(x, τ) = limx→∞ ex−e−τγe(1+γ2 )x−e(γ−12 )x

  (20) 

 
It is important to note that 
 u(x, 0) = u0(x) = {e(1+γ2 )x − e(γ−12 )x      for    x > 0             0                     for    x ≤ 0 

 
To find the solution of the system [20] the 

separation of variables is used, i.e., 
 𝑢(𝑥, 𝜏) = 𝜙(𝑥)𝐻(𝜏) 
 

The fundamental idea is reduced [20] to a system 
of ODE’s. Indeed, 
 𝜕𝑢𝜕𝜏 =  𝜙(𝑥)𝐻′(𝑥) ,          𝜕2𝑢𝜕𝑥2 =  𝜙′′(𝑥)𝐻(𝜏), 
 

Replacing the differential equation [20] we have, 
 𝜙(𝑥)𝐻′(𝜏) =  𝜙′′(𝑥)𝐻(𝜏)                                             (21) 
 

Now if we perform the separation of variables 
and dividing [21] it 𝜙(𝑥)𝐻(𝜏)  is obtained by 
 𝐻−1(𝜏)𝐻′(𝜏) = 𝜙−1(𝑥)𝜙′′(𝑥) 
 

Equating to an arbitrary constant – 𝜆 or also 
known as constant separation must be  
 𝐻−1(𝜏)𝐻′(𝜏) = 𝜙−1(𝑥)𝜙′′(𝑥) = −𝜆 
 

Where two linear ordinary equations are obtained 
 1𝐻(𝜏)𝐻′(𝜏) = −𝜆     ⇔     𝐻′(𝜏) + 𝜆𝐻(𝜏) = 0               (22) 

 1𝜙(𝑥)𝜙′′(𝑥) = −𝜆     ⇔     𝜙′′(𝑥) + 𝜆𝜙(𝑥)  = 0           (23) 

 
Then, the solution [22] is given by 

 𝐻(𝜏) = 𝑐𝑒−𝜆𝜏 
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It 𝑐 is an arbitrary constant. Now, to study the 
solution [23] as there are characteristic values 𝜆 for which 𝜙(𝑥) it has no trivial solution to this discuss the following 
cases. 

Initially, the problem across the boundary line is 
 {𝑑2𝜙𝑑𝑥2 + 𝜆𝜙 = 0|𝜙(±∞)| < ∞                                                              (24) 

 
 If 𝜆 < 0, then the roots of the characteristic equation ρ2 + λ = 0  are real and so 𝜌 = ±√−𝜆  then 
 𝜙(𝑥) = 𝑐1𝑒√−𝜆𝑥 + 𝑐2𝑒−√−𝜆𝑥 
 

Where 𝑐1 and 𝑐2 are arbitrary constants, now if 
we apply the boundary condition, the solution must be a 
linear combination of solutions and decrease exponentially 
growing, therefore not met |𝜙(±∞)| < ∞. 

 If 𝜆 = 0, then 
d2𝜙d𝑥2 = 0 the solution is a characteristic 

value with constant characteristic function  𝜙(𝑥) =𝑐1. 
 
 If 𝜆 > 0, then the roots 𝜌2 + 𝜆 = 0 are complex 

conjugates, in effect 𝜙(𝑥) = 𝑒±𝑖√𝜆𝑥 here have cos √𝜆𝑥 and sin√𝜆𝑥 are linearly independent solution 1𝜙 𝑑2𝜙𝑑𝑥2  and indeed any solution the boundary problem 

is expressed as a linear combination of the two 
solutions given, 

 𝜙(𝑥) = 𝑐1 cos √𝜆𝑥 + 𝑐2 sin √𝜆𝑥 
 

Note that the set of characteristic values is also 
known as the spectrum; in our case, we have a continuous 
spectrum 𝜆 ≥ 0. 
Finally, we get  
 𝑢(𝑥, 𝜏) = 𝑒−𝜆𝜏(𝑐1 𝑐𝑜𝑠 √𝜆𝑥 + 𝑐2 𝑠𝑖𝑛 √𝜆𝑥)                    (25) 
 

The generalized principle of superposition, see 
(Ioro, 1988) (Stanley, 1993) we can integrate [25] on the 
spectrum, i.e., 
 𝑢(𝑥, 𝜏) =∫ (𝑐1(𝜆) 𝑒−𝜆𝜏cos √𝜆𝑥 + 𝑐2(𝜆)𝑒−𝜆𝜏 sin√𝜆𝑥)d𝜔∞0          (26) 

 
Where 𝑐1(𝜆) and 𝑐2(𝜆)   are arbitrary functions 𝜆. 

Making the following change of variable 𝜆 = 𝜔2   ⇔d𝜆 = 2𝜔d𝜔,   we have 𝑢(𝑥, 𝜏) is given by         
 𝑢(𝑥, 𝜏) = ∫ (𝐴(𝜔) cos𝜔𝑥𝑒−𝜔2𝜏∞

0 + 𝐵(𝜔) sin𝜔𝑥 𝑒−𝜔2𝜏) d𝜔  
 

If we apply the initial condition 𝑢(𝑥, 0) = 𝑢0(𝑥) 
 

𝑢0(𝑥) = ∫ (𝐴(𝜔) cos𝜔𝑥 + 𝐵(𝜔) sin𝜔𝑥)∞
0 d𝜔  

 
Where 𝐴(𝜔) and 𝐵(𝜔) are arbitrary functions. 

Can now be expressed 𝑢(𝑥, 𝜏) in terms of complex 
exponential whose purpose is to take control of the 
solution as the real line, i.e. 
 𝑢(𝑥, 𝜏) = ∫ 𝑐(𝜔)𝑒−𝑖𝜔𝑥∞−∞ 𝑒−𝜔2𝜏𝑑𝜔                               (27) 

 
Applying the initial condition 𝑢(𝑥, 0) = 𝑢0(𝑥) 

again verified that, 
 𝑢0(𝑥) = ∫ 𝑐(𝜔)𝑒−𝑖𝜔𝑥∞−∞ d𝜔                                          (28) 

 
Where we have [28] is a representation of the 

Fourier integral, and (Haberman, 1987). So  𝑐(𝜔) is the 
Fourier transform 𝑢0(𝑥), i.e.,  
 𝑐(𝜔) = 12𝜋 ∫ 𝑢0(𝑥)𝑒𝑖𝜔𝑥∞−∞ 𝑑𝑥                                         (29) 

 
Substituting 𝑐(𝜔) in [29] and since 𝑥  it is a 

dummy variable, ente  𝑥 = 𝑠, obtaining 
 𝑢(𝑥, 𝜏) = 12𝜋 ∫ 𝑢0(𝑠)[∫ 𝑒−𝜔2𝜏𝑒𝑖𝜔(𝑥−𝑠)𝑑𝜔∞−∞ ]𝑑𝑠∞−∞         (30) 

 
If we make the following variable change and we 𝑔(𝑥) = ∫ 𝑒−𝜔2𝜏𝑒𝑖𝜔𝑥d𝜔∞−∞ , like integrating [30] contains 𝑔(𝑥 − 𝑠) ay not 𝑔(𝑥) because the interest is in finding the 

function 𝑔(𝑥) whose Fourier transform is 𝑒−𝜔2𝜏 and 

calculate 𝑔(𝑥 − 𝑠). As 𝑒−𝜔2𝜏 a gaussian see (Haberman, 
1987), we have 
 𝑔(𝑥) = √𝜋𝜏 𝑒−𝑥24𝜏  
 

Therefore, the solution is given by 
 𝑢(𝑥, 𝜏) = 12√𝜋𝜏∫ 𝑢0(𝑠)𝑒− 14𝜏(𝑥−𝑠)2𝑑𝑠∞

−∞  

 
Now, we see 𝑢0(𝑠) =  𝑢0(𝑥)  that 𝑢0(𝑥) indeed 

as defined in [20] so  
 𝑢(𝑥, 𝜏) = 12√𝜋 𝜏 ∫ [𝑒(1+𝛾2 )𝑥 − 𝑒(𝛾−12 )𝑥] 𝑒− 14𝜏(𝑥−𝑠)2𝑑𝑠∞

0  

 
Therefore a way of expressing the previous 

integrating in a more resumed  is if we do 𝑦 = (𝑠−𝑥)√2𝜏 , ie 𝑠 = 𝑥 + 𝑦√2𝜏 ⟺ d𝑠 = √2𝜏d𝑦, replacing and analyzing 
the limits of integration have 
 
 If 𝑠 = 0 then 𝑦 = − 𝑥√2𝜏. 
 If 𝑠 → ∞, then the upper limit is lim𝑠→∞ (𝑠−𝑥)√2𝜏 = +∞. 
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then, 
 u(x, τ) = 1√2π ∫ [e(1+γ2 )(x+y√2τ)+∞

− x√2τ− e(γ−12 )(x+y√2τ)] e− 14τ(x−(x+y√2τ))2dy 

 
Note that the above integrating what can separate 

as two full-time to distribute, if we complete the first 
comprehensive squares get 
 ∫ e(1+γ2 )(x+y√2τ)+∞
− x√2τ e−12y2dy
= e12(γ+1)x +14(γ+1)√2 τ√2π ∫ e−12(y−(γ+1)√2 τ2 )2dy+∞

− x√2τ  

 

Now, if we do 𝑧 = 𝑦 − (𝛾+1)√2 𝜏2   and if we study the new 

limits of integration have 
 

 If 𝑦 = − 𝑥√2𝜏, then,𝑧 = − 𝑥√2𝜏 − (𝛾+1)√2 𝜏2  

 If 𝑦 → ∞, then, lim𝑦→∞ 𝑧 = +∞ 
 
That is,  
 ∫ e(1+γ2 )(x+y√2τ)+∞
− x√2τ e−12y2dy
=  e12(γ+1)x +14(γ+1)√2 τ√2π ∫    e−12(z)2dz+∞

− x√2τ−(γ+1)√2 τ2  

 
Similarly, you can get the integral. 

Furthermore, recall that the function of the 
normal distribution with zero mean and unit variance is 
given by 
 N(d) = 1√2π ∫ e−12s2dsd

−∞  

 
Therefore, if −𝑧 = 𝑠  we can express the solution 

as 
 u(x, τ) = e12(γ+1)x +14(γ+1)√2 τN(d1)− e12(γ−1)x +14(γ−1)√2 τN(d2) 
 

Where,  
 𝑑1 = 𝑥√2𝜏 + 12 (𝛾 + 1)√2𝜏and 𝑑2 = 𝑥√2𝜏 + 12 (𝛾 − 1)√2𝜏 
 

Note that if we make changes variable in the 
opposite direction to return to the solution of the Black-
Scholes equation we have 
 𝑉𝑐(𝑆𝑡 , 𝑡) = 𝑆𝑡  𝑁(𝑑1) − 𝐾𝑒−𝑟(𝑇−𝑡)𝑁(𝑑2)                       (31) 

Where,  
 𝑑1 = 𝑙𝑜𝑔(𝑆𝑡𝐾 )+(𝑟+𝜎22 )(𝑇−𝑡)𝜎√𝑇−𝑡    y   𝑑2 = 𝑙𝑜𝑔(𝑆𝑡𝐾 )+(𝑟−𝜎22 )(𝑇−𝑡)𝜎√𝑇−𝑡  

 
With 𝑆𝑡 > 0, 𝑡 ∈ (0,∞] and using the fact that 
 √2τ = √2(T−t)σ22 = σ√T − t   and   

γ+12 = rσ2 + 12. 
 

Note that 𝑁(𝑑1) and  𝑁(𝑑2) they [31]  represent 
the probability of exercising the option, plus agreement as 

defined 𝑑1 and  𝑑2 to the extent 𝑆𝑡 > 𝐾 that 𝑙𝑜𝑔 (𝑆𝑡𝐾) tends 

to infinity, therefore, d1 and d2 so will, otherwise 𝑆𝑡 < 𝐾  
tend to minus infinity, i.e. have the absolute certainty to 
exercise the option and not exercise, respectively. 

Therefore, given the relationship known as put-

call parity (Hull, 2006), (Venegas, 2008) you have to, 
 Vc + Ke−r(T−t) = Vp+St 
 

Through this relationship, given the value of a 
European call option, you can easily determine the value 
of European put option with the same aging time 𝑡 and 
preset price 𝐾, and vice versa. It is essentially a putthat is 
less risky than a call. A considerable variation of S, leaves 
the investor discovered a call, however, in much put to 
lose 𝐾.  

In this case, for calculating a call option 𝑉𝑐 it is 
necessary to calculate the value of its parameters 𝜎, 𝑟, 𝐾, 𝑇, 𝑆𝑡. Since volatility 𝜎 is a measure of uncertainty, 
and it is potentially stochastic in the model estimation is 
performed using the classical and Bayesian approach, the 
other parameters are known from the financial market 
information. 
 
2.3 Estimation of Volatility 

 
2.3.1 Focus classic 

Classical estimation is necessary to define the 
distribution of assigned behavior probability samples and 
determine the manner that best describes this information. 

To this end, and considering 𝜙 = 𝜎2 the random 
variable  
 𝑅𝑡 = 𝑆𝑡−𝑆𝑡−1𝑆𝑡−1  ~ 𝑁(0, 𝜙)                                                 (32) 

 
Which defines the performance of an asset over 

time 𝑡 − 1 and time 𝑡 (today). Consequently, the density 
function for  𝑅𝑡  is given by 
 𝑓(𝑟|𝜙) = 1√2𝜋𝜙 𝑒𝑥𝑝 (− 𝑟22𝜙) ,     𝜙 > 0                            (33) 

 
To obtain an estimate 𝜙 used the maximum 

likelihood method which consists in finding 𝜙̂𝑀𝑉 a way 
that maximizes the likelihood function 
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𝐿(𝑟1, ⋯ , 𝑟𝑛|𝜙) =∏ 𝑓(𝑟𝑖|𝜙) = (2𝜋𝜙)−𝑛2 exp (− 12𝜙∑ 𝑟𝑖2𝑛𝑖=1 )𝑛𝑖=1                (34) 

 
With r1, r2, ⋯ , rk a sample size n. Indeed, considering the 
function 
 lnL(r1, ⋯ , rn|ϕ) = − n2 ln(2πϕ) − 12ϕ∑ ri2ni=1               (35) 

 
Where is an unbiased estimator as follow? 
 𝜙̂𝑀𝑉 = 1𝑛−1∑ ri2ni=1                                                          (36) 

 
2.3.2 Bayesian approach 

From the Bayesian approach, the parameter is 
considered as a random variable that can be modeled using 
a distribution continuous priori probability ℎ(𝜙) which 
information, in terms of probabilities, can be updated by 
observations of a sample 𝑟1, 𝑟2,⋯ , 𝑟𝑛 as suggested 
(Bernardo et to the, 1993) and (Gelman et to the, 2003). 
Accordingly, a posterior distribution provides a 
comprehensive description of the random number 𝜙  
obtained from the quantization of priors and the sample 
information is obtained. 

To determine the density function of the posterior 
distribution, it is observed, of the Bayes Theorem that 
from likelihood function 𝐿(𝑟1, ⋯ , 𝑟𝑛|𝜙) given in [34] and 
a prior distribution ℎ(𝜙) it is possible to find the posterior 
distribution as follows: 
 ℎ(𝜙|𝑟1, ⋯ , 𝑟𝑛) = 𝐿(𝑟1,⋯,𝑟𝑛|𝜙)ℎ(𝜙)∫ 𝐿(𝑟1,⋯,𝑟𝑛|𝜙)ℎ(𝜙)∞0                                 (37) 

Then as 𝜙 > 0 the Inverse Gamma distribution 
and prior candidate distribution ofϕ, which allows 
asymmetry within its structure it is assumed. Thus the 
density function is defined as 
 ℎ(𝜙) = 𝛽𝛼Γ(𝛼)𝜙−(𝛼+1) exp (− 𝛽𝜙) ,    𝛼, 𝛽 > 0                   (38) 

 
From the [37], posterior distribution is given by 

 h(ϕ|r1, ⋯ , rn) = h(ϕ) = β1α1Γ(α1)ϕ−(α1+1) exp (− β1ϕ )    (39) 

 

Which 𝛼1 = 𝛼 + 𝑛2 and 𝛽1 = 𝛽 + ∑ ri22ni=1  

coincides with the Gamma Reverse given [38], 
distribution parameters (𝛼1, 𝛽1). 
 
3. RESULTS AND DISCUSSIONS 

The time series used are the daily returns of the 
shares of the company “Colombiana de Hidrocarburos” 
ECOPETROL SA to calculate the number of returns, 
given in [32]. It has been used closing prices daily of 
existing shares on the market in the period between 02 / 
January / 2018 and 15 / August / 2018, for a total of 151 
observations obtained on the website www.bvc.com.co. 

The histogram in Figure-1 shows the price series 
data does not follow a normal distribution, slightly skewed 
to the left and mesokurtic, with a coefficient of asymmetry 
-0.3361 and kurtosis -1.2615.  
 

 

 
 

Figure-1. Histogram actions ECOPETROL. 
 

In Figure-2. The differences were observed 
between the number of closing prices {𝑃𝑡}𝑡=1𝑇=151 and the 
number of returns {𝑅𝑡}𝑡=1𝑇=150, which behaves statistically, 

as a steady process, with a p-value  of the 0.01 die by 
Dickey-Fuller a level of significance of the 5%. 
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Figure-2. Series of prices and returns ECOPETROL. 
 

Also, in Table-1 it is noted that the series 𝑅𝑡 is 
similar to a normal distribution, since it is slightly skewed 
to the left and leptokurtic, with a coefficient of asymmetry 
-0.018 and kurtosis 0.1516. However, applying the 
Shapiro-Wilk and Jarque- Bera to determine whether the 
series 𝑅𝑡 behaves like a normal distribution; indeed the p-
values are 0.7022 and 0.8847, respectively, which there is 
sufficient evidence to establish that the series 𝑅𝑡 does not 
follow a normal distribution with the significance level  5%. 
 

Table-1. Descriptive actions ECOPETROL. 
 

Measure 
Statistical 

Closing price Return 

Half 2816.689 0.00215853 

Median 2895 0.0008 

variance 64969.3 0.000541103 

Des. Standard 254.8908 0.0232616 

Asymmetry -0.3361003 -0.0180576 

kurtosis -1.261524 0.152163 

 
In Table-2 are observed values hyperparameter of 

Inverse Gamma prior distribution, which was evaluated 
using the statistical software R, and R2OpenBUGS 
worked with the library. 

According to these measures shows that the 
distribution has a positive asymmetry, state natural 
distribution. In the case of hyperparameter is evident that 
the scale is smaller compared to the way it induces 
distribution more leptokurtic, i.e. assign a higher 
probability for low values of volatility. 
 
 
 

Table-2. Measurements of the prior distribution. 
 

Apriori GammaInverse 

hyperparameter 
𝜶𝟏 3.0611 𝛽1 0.00066 

Measurements 

Half 0.0003 

Median 0.0002 

fashion 0.0002 

 
In Figure-3. It is noted for posterior distribution 𝜎2 based on the prior distribution reference. In this case, it 

was evidenced that the posterior distribution has a 
symmetrical behavior within a range. Accordingly, the 
back half as a measure that summarizes the information as 𝜎2 shown in Table-3 is taken. 
 

 
 

Figure-3. Form the prior distribution and subsequent. 
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Table-3. Dimensions of the posterior distribution. 
 

Focus 𝝈̂𝟐 𝝈̂ Interval 

Classic 0.00054 .0232 (0.0208, 0.0262) 

Bayes 0.00059 0.0236 (0.0227, 0.0242) 

 
Once determined the value of the volatility from 

the different approaches, the remaining parameters in the 
model [14] are taken freeform according to the behavior of 
the market.  

How much is won or lost, really, for a European 
call option? Suppose you want to buy a European call 
option underlying asset for shares of Ecopetrol. 

The contract establishes the first day that 
performs operations on the BVC; in our case in January 
2018, the share price was 𝑆𝑡 = $2260on that day. The 
contract is set to one year,𝑇 = 1, with a strike price 𝐾 = $2520 also estimated that volatility is 𝜎𝑐 =  0.0232 
(classic) and 𝜎𝐵 =  0.0236 (Bayes) and a free interest rate 
risk 𝑟 = 0.07214344608. Indeed, the price to pay for 
every financial option according to the estimation of 
volatility from the classical and Bayesian approach is 
1142.39 and 947.55, respectively. Check the expiration 
date of the option, the owner of this decides whether 
exercised or not such contract; he realizes that the share 
price is $ 2650. 
 
4. CONCLUSIONS 

In this work, the mathematical model was derived 
for the assessment of options known as the Black-Scholes 
equation, which consists of a linear partial differential 
equation of second order with initial and boundary 
conditions. The model allows us to find the courage to pay 
for exercising the right to a European call option (or put), 
taking as independent variables t and St  overtime and that 
is the value of the asset over time t; known values of the 
parametersr rate risk free rate, σ volatility, K set price 
(strike) and T ripening time. 

This deduction is made from a stochastic 
differential equation describing the price of a derivative 
with a random component and a deterministic. It is found 
that the value of the option is independent of the expected 
asset μ, which is one of the initial performance parameters. 

As the model is linear possesses an analytical 
solution, which is obtained by transforming the equation 
of Black-Scholes is a diffusion equation which is solved 
by combining the methods of separation variables and 
inverse Fourier transform. Finally, from the parity ratio, 
you can be obtained the value of the put or (call) 
corresponding European option. 

Finally, note that in [31] does not appear μ. We 
can also be replaced St and since this is a state variable 
since this is the asset’s price at the time of the contract, it 
could be the average buying and selling. The 𝑟 and σ 
parameters must be identified and 𝑇 and 𝐾 contained in 
the contract. Moreover, we can, knowing the value of the 
option at any intermediate time, i.e., it is an asset to be 
traded at any time. If we start to move these values, we 

noticed a sensitivity to𝑇, since the price of the option 
increases if you increase the maturation time 𝑇. Also, there 
is a sensitivity𝜎 to increases for the price if volatility rises. 

However, using Bayesian methods, it was 
observed that the estimation of the parameter volatility 
tends to take a range of narrower values found in the 
classical approach, i.e., said regions credibility to 95% 
have lower variability in the estimate. Also, it was shown 
that Bayesian methods achieve better capture information 
returns than the classic method. 

To conclude, if the share price differs gains or 
losses on options and then make the best financial decision 
depends on the value of 𝐾, that is, if 𝑆𝑡 ≥ 𝐾, where 𝑆𝑡 is 
the price of the known future action, should exercise the 
option, It implies a profit by buying the underlying St-K. If 
you take into account what you pay for the option but take 
to future value 𝑇, then, it actually wins (or possibly lost) St-K-Vc(St, t)erT. On the other hand, if  K < St, should not 
exercise the option, which implies a loss Vc(St, t)erT by 
purchasing the contract. Accordingly, the evidence to 
evaluate the premium from the volatility estimate from the 
Bayesian approach presents a lower risk ratio. 
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