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ABSTRACT 

This article presents the development of a virtual environment for testing industrial-type robotic applications, 

using artificial intelligence techniques through convolutional neural networks. The developed environment is made up of 

two RGB-D cameras for capturing information from the workspace in which the robot operates a conveyor belt and a work 

table. A ResNet-50 model within a Faster R-CNN is used to detect a tool, in order to indicate to the robot the position of it, 

to generate a pick and place application, from the table to the conveyor belt, as a method for validating the environment, 

reaching an average precision of detection of the object of interest greater than 82% and an 84% success rate on the pick 

and place task. 
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INTRODUCTION 

Technological advances have allowed robotics 

venture into many applications in the industry (Shanshan 

He, 2020) (Hsien-I Lin), being the simulated environments 

one of the main tools for the development of algorithms 

that allow evaluating the functionality of a robotic system 

(Yue Wang, 2020) (Qirong Tang), which, before its 

physical implementation, opens the possibility to propose 

multiple solutions and ensure the conditions for a real 

testing environment (Vladimir Kvrgic). 

Nowadays, one of the techniques that is 

integrating automation task algorithms for robotic agents 

is the convolutional neural network (CNN) (Arenas, 

2018). Many autonomous systems use CNNs for pattern 

recognition given their versatility, for instance, cardiac 

image analysis for localization of the heart, as presented in 

(Saeed Kermani). Other example is vehicle detection by 

using CNN variants such as Faster R-CNN that, by means 

of region proposals, determines the location of an object in 

an image or video sequence (Saeed Kermani) (Wei Liu). 

Robotic applications based on the Faster R-CNN exhibit 

various case studies, from precision agriculture 

applications (Shaohua Wan), e.g. strawberry detection and 

harvesting (Yang Yu), to the location of objects for 

ordering tools (Arenas, 2018). 

Application cases such as presented in 

(Muhammad) focus on the use of region-based CNNs in 

industrial environments for object recognition and tracking 

in manufacturing tasks. Those aspects highlight the 

importance and functionality of integrating these 

techniques in the automation of robotic tasks, where 

simulated environments present a significant tool of 

analysis and development. 

Derived from the arguments exposed previously, 

this article presents the implementation of a virtual 

environment for simulate operations with robots using 

artificial intelligence techniques such as convolutional 

networks based on regions. According to (Yueyue Liu), 

the application of Learning Transfer techniques allows the 

use of CNN architectures presented in the state of the art 

(Qian Zhang) in robotic tasks based on RGB-D 

information. Thus, the proposed environment uses RGB-D 

information, the use of region-based CNN through the 

transfer of learning for object recognition and location, as 

well as a robotic arm capable of performing industrial-type 

tasks. 

The environment is validated using a pick and 

place application in an industrial environment, where the 

system detects and indicates to the robot the location of it, 

in order to be grasped and placed on a conveyor belt. The 

environment is open to collaborative robotics works and 

even more to man-machine interaction works which have 

also gained great force in the state of the art (Emanuele) 

(Federica) (Seyyedhasani). 

The article is structured as follows: the present 

section corresponds to the introduction and review of the 

state of the art. Section 2 presents the methodology used 

and the training of the CNN-type network. Section 3 

presents the analysis and results of the virtual environment 

in the pick and place application and ends with section 4, 

in which the conclusions reached are presented.     

 

METHODS AND MATERIALS 

For the elaboration of the virtual environment, the 

software CoppeliaSim was used, which allows an 

interaction between the simulation and different 

programming software, to control different elements or 

devices to be used within the virtual environment, such as 

vision sensors, e.g. RGB and depth cameras; force and 

torque sensors, for when it is required to know the 

dynamic parameters of a robotic element; among others. 

CoppeliaSim also allows setting and adjusting 

parameters related to the physics and dynamics of the 

objects existing in the environment, which is an important 

factor to perform a simulation close to reality, so that, in 

the case of the environment to be implemented, the objects 

can be manipulated by the robot, transported on 

conveyors, stored, etc., depending on the pick and place 

application to be developed. 

On the other hand, a great advantage of this 

software is that it has licenses available for different 

robotic models, among which is the UR3 robotic 

manipulator (Figure-1a) that will be used in different 

applications within the project. Additionally, it allows 
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simulating its kinematics, thus facilitating its control and 

operation to execute different tasks.  

For the construction of the virtual environment, 

the following elements are available: an UR3 robotic 

device, 2 RGB-D cameras, 5 objects of interest, and a 

conveyor belt. 

 

 
                 (a)                                           (b) 
 

Figure-1. a) UR3 Robot. b) Maximum lateral range 

of the robot. 

 

The robot is placed on a work table with 

dimensions of 1.2x1.2 m wide and long, and a height of 

0.9 m high, in which it maintains a space on each side for 

tool relocation and arrangement, if necessary (Figure-2). 

On the table, the robot is located 25 cm from the nearest 

edge to the center of its base and centered 60 cm to the 

side and side of the two lateral edges, which allows taking 

advantage of the lateral spaces, since the maximum reach 

of the robot is 57.3 cm (Figure-1b). As for its front part, a 

space of 95 cm is maintained, with an available space of 

37.7 cm, to locate the tools that do not need to be ordered, 

or are in line to be placed by the user in front of the work 

table. 

 

 
 

Figure-2. Location of the robot in the virtual environment. 

 

A conveyor belt is placed, which can bring or 

carry the different objects as required in the application. 

Its location can be seen in Figure-2. The current 

parameters of the conveyor are a length of 2 meters, a 

width of 30 centimeters and a height of 90 centimeters. 

Also, its speed is 0.1 m/s (it can reach a maximum speed 

of 1 m/s) in the direction of the robot towards the tunnel.  

Among the objects of interest are scissors (two 

types), hammers (two types), screwdrivers (three types), a 

pulley, and a wooden box. Each object can be seen in 

Figure-3. 

 

 
 

Figure-3. Objects placed to be manipulated. 

 

To add the depth cameras to the environment, 

these must be parameterized according to the 

characteristics of the camera to be used. In this case, it is 

configured with a viewing angle of 86°, with a minimum 

operating range of 10 cm and a maximum of 2 m, 

according to the characteristics of an Intel RealSense 

D435i camera. Likewise, a resolution of 640x480 pixels is 

set, since for applications with deep learning techniques, 

especially focused on object detection, this resolution is 

sufficient. Using higher resolutions can significantly 

increase the application's processing time.  

In order to take the images of what the robot sees 

from its end effector, a local camera is available on it, as 

shown in Figure-4 (upper). To verify that it can see the 

objects from a vertical positioning of the robot, the test is 

performed by rotating one of its joints in the direction of 

the tools, obtaining the image shown in Figure-4 (lower). 

The figure shows how the robot sees the objects from its 

perspective, as well as the depth map, in which the objects 

are displayed on the table, calibrated for a maximum depth 

of 1 meter, since the robot does not require recognition at 

a greater distance since its maximum range is this 

distance. In case it is required to generate a larger depth 

map, the parameters can be modified as explained above. 
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Figure-4. Global camera localization. 

 

The use of two cameras, one fixed and one 

mobile, allows versatility in the range of applications that 

can be simulated within the environment, so that if the 

perspective of the robot is mainly required, the mobile 

camera arranged in the end effector can be used. However, 

if a camera is required to observe the environment in a 

general way, and remain fixed in one position, the superior 

global camera may be used. There may even be 

applications where both cameras are necessary. 

 

Test application 
To verify the functionality of the virtual 

environment, a pick and place application is made. In this 

application, an object of interest will be recognized and 

located by means of the global camera. In this case, the 

object will be a screwdriver, which will be detected by a 

neural network based on Deep Learning. After being 

detected, the robot will collect the object and place it on 

the conveyor belt. Eventually, the robot will return to its 

initial position. In this case, the mobile camera of the 

manipulator is not used, since the application to be carried 

out does not require it. 

First, the database to be used is created, for which 

the global camera will be used. With this, images of the 

environment are acquired by placing the screwdriver in 

different positions and orientations on the work table at 

random. Then, each image is manually labeled, where the 

screwdriver is enclosed in a bounding box, which indicates 

the location of the object within the image. With this 

procedure, a total of 800 images are obtained for training 

and 200 for validation of the neural network, with a size of 

640x480 pixels each image. An example of the images is 

shown in Figure-5. Inside the figure, the screwdriver is 

enclosed in a red box corresponding to the established 

bounding box. 

 

 
 

Figure-5. Sample of the database built. 

 

Once the database is built, the neural network to 

be used is established. For this application, it is proposed 

to use a Faster R-CNN (Ren Shaoqing), which has the 

capability to detect objects of interest with a high degree 

of accuracy and speed. In general terms, this neural 

network is composed of a convolutional neural network 

(CNN), which before reaching its output, is divided into 

two paths, one directly to a downsampling layer, and the 

other entering a region propose network (RPN), in charge 

of learning the possible locations and shapes of the 

bounding boxes, to finally join to the downsampling layer. 

Finally, the linked paths come out into a classification 

layer, to decide whether or not the proposed regions 

belong to an object of interest and what the coordinates of 

this object are. This structure is shown in Figure-6. 

As the main structure of the CNN, the ResNet-50 

model (He Kaiming) is used, which is composed of 50 

convolution layers. 

 

 
 

Figure-6. Structure of the Faster R-CNN. Source: 

Mathworks®. 

 

The training of the Faster R-CNN is done in 4 

stages. The first stage is in charge of training the section of 

the RPN independently, to have as output a regression 

from which the coordinates of the bounding boxes are 

obtained. The second stage trains the classification section 

of the network, taking into account the regions proposed in 

the first stage. The third one trains again the RPN, but in a 

fine way, that is, varying in a minor factor the weights 

learned in the previous stages, sharing, in the same way, 

the weights of the classification part. Finally, in stage four, 

it is performed a fine-tuning of the classification layers. 

Since the architecture is a pre-trained model, it is 

generally fine-tuned, so its learning rate is low (less than 

1x10-3) from the first stage. The number of images used 

per iteration is 1, since this type of network is trained 
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image by image. The training parameters at each stage are 

show in Table-1. 

 

Table-1. Training parameters of the Faster R-CNN. 
 

 Learning Rate Epochs 

Stage 1 1x10
-3

 10 

Stage 2 1x10
-3

 10 

Stage 3 5x10
-4

 8 

Stage 4 5x10
-4

 8 

 

As a result of the network training, it is obtained 

three types of graphs that show the behavior throughout 

the training during the four stages. The first one, shown in 

Figure-7, is the network losses, that is, the cost by mistake 

at the time of generating the bounding boxes or wrongly 

classifying the image. During the training stages of the 

RPN, the network obtained a low and decreasing cost, 

which means that the network effectively learned to 

correctly locate the object of interest. In the classification 

stages, it was more difficult for the network to learn what 

a screwdriver actually was and that it was not. However, 

its loss was decreasing and less than 0.5, which allows us 

to infer that the network had a high rate of correct 

classifications. This can be seen by looking at Figure-8, 

where their average accuracy at these stages was over 

90%. On the other hand, Figure-9 shows the root mean 

square error (RMSE), which indicates that the bounding 

boxes generated by the network had so much error with 

respect to those proposed in the database, showing errors 

lower than 1, that is, that the bounding boxes generated 

were within those proposed. 

 

 
 

Figure-7. Loss at every stage of training. 

 

 
 

Figure-8. Accuracy at every stage of training. 

 

 
 

Figure-9. Root mean square error at each stage 

of training. 

 

RESULTS 

First, the network performance tests are carried 

out. For this, the built validation set is used. An example 

of network detection for a validation image is shown in 

Figure-10. As you can see, in upper part, the network 

actually detects the screwdriver; however, it also locates a 

wrong box at the top where the pulley is located. When 

comparing the two detections, it can be seen that the 

confidence with which it detects the pulley is less than 

85%, while for the screwdriver, the network is more than 

95% sure that it is the object of interest. For this reason, it 

was decided to apply a confidence threshold, so that the 

network would discard objects detected with a threshold of 

less than 85%. This way, it is obtained the image shown in 

lower part, where it only detects the screwdriver inside the 

image. 
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Figure-10. Network detection. No confidence threshold 

(upper). With confidence threshold (lower). 

 

To verify the capacity of the network with the 

entire validation set, the precision vs recall graph is used. 

This graph allows to see how well the boxes obtained by 

the network overlap with those detected manually. This is 

done with a 0% to 100% overlap evaluation (100% 

indicates that the box is completely overlapped on the 

proposal). With this, the graph shown in Figure-11 is 

obtained, where the network obtains an average accuracy 

of 82% in terms of screwdriver detection, which is a high 

value for detection systems (over 75%). 

Once the network has been tested, it is coupled to 

the virtual environment via the global camera. For the 

application, the RG2 gripper is used, as it allows an easy 

and firm grip on the objects. 

 

 
 

Figure-11. Precision vs. Recall of the Faster R-CNN. 

 

The process of the pick and place application 

begins with the image capture by the global camera, so 

that this is entered into the Faster R-CNN. Once the 

network has detected the object, as shown in Figure-12a, 

the detection box is moved to the depth map (Figure-12b), 

in order to know the location of the screwdriver within the 

environment.  

 

(a) 

 

(b) 
 

Figure-12. Detection of the screwdriver in (a) the photo 

taken by the global camera and (b) by the global 

depth camera. 
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Once the screwdriver coordinates are known, the 

robot is directed to the approximate location of the 

screwdriver by means of the kinematics function provided 

by the CoppeliaSim software for the UR3, as shown in 

Figure-13a. Once it is positioned, the end effector is closed 

in order to grip the object of interest, as can be seen in 

Figure-13b. 

 

 
(a)                                        (b) 

 

Figure-13. (a) Location of the end effector on the 

screwdriver. (b) Grip of the object. 

 

After the robot has picked up the object, it moves 

from its pickup location, passing through its initial 

position (Figure-14), and ending its journey on the 

delivery conveyor belt. 

 

 
 

Figure-14. Robot passes through the start position 

holding the collected object. 

 

Once located over the conveyor belt, 

approximately 4 cm above it, the robot opens the gripper, 

dropping the screwdriver on the belt, so that it is sent 

elsewhere, as shown in Figure-15. 

 

 
(a)                                        (b) 

 

Figure-15. (a) The positioning of the robot on the 

conveyor belt (b) Dropping the screwdriver on the belt. 

 

Finally, the robot returns to its initial position 

waiting for its next pickup. 

This process is repeated 50 times to validate the 

virtual environment, using the Faster R-CNN, the internal 

kinematics system of the software and the approximate 

gripping capacity of the robot. From these repetitions, 

firstly, it is verified that the screwdriver has been located 

correctly. If this was not detected, the robot will not be 

able to perform the collection, since it will not know 

where the object is. 

Once the detection has been validated, it is 

verified that the robot has grasped the object, so that when 

the robot starts its journey, the gripper holds the 

screwdriver. Likewise, it is evaluated if the robot holds the 

object during the path from where it collected the object to 

the belt, without dropping it. Finally, it is verified that 

when the screwdriver is dropped on the belt, it does not 

fall and remains inside the conveyor belt. 

The results obtained are shown in Table-2. In this 

table it is possible to observe, for each stage of the task, 

the successful completion of the stage over the amounts of 

repetitions that were made in that stage. For example, for 

the stage of successful grips, there are a total of 48 

repetitions done, because in the previous stage the network 

did not detected the tool in two trials, so only the 

repetitions with correct detections were evaluated in the 

second stage. Additionally, at the end of the table, it is 

shown the performance taking into account the total of 

repetitions done in the whole task. 
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Table-2. Results of the tests performed. 
 

 
Correct / 

Repetitions 
Success rate 

Object detected 

correctly 
48/50 96% 

Successful grips 47/48 97.9% 

Fixed grip during 

trajectory 
42/47 89.3% 

Object Dispatch on 

the conveyor 
42/42 100% 

Overall performance 

doing the whole task 
42/50 84% 

 

As it is possible to observe in the results, on only 

two occasions the network was not able to detect the 

object, because the confidence at the moment of 

classifying it was below the established threshold of 85%, 

so in those tests, the robot did not execute the task. 

Within the repetitions where the network was 

able to locate the screwdriver, the robot could not generate 

the grip of the object in one try, because, when it closed 

the grip, it hit the object sending it to one side, but not 

between the two fingers, making the robot execute the task 

but leaving the object on the table. 

When the robot was able to pick up the 

screwdriver, during the trajectory, on five occasions the 

object fell from the gripper, due to the fact that the grip 

made was not totally firm or, in two repetitions, the fingers 

of the gripper remained very close to the edge located 

between the handle and the blade. However, in 

approximately 90% of the trajectories, the screwdriver did 

not fall. 

Finally, in all the final dispatches, from when the 

robot placed the screwdriver in the conveyor, they were 

successful, that is to say, in no delivery the object fall of 

the conveyor. 

Overall, the entire system was able to correctly 

perform the entire pick and place application by 84%, 

even without support systems to know a proper grip or a 

more efficient trajectory. 

 

CONCLUSIONS 

In this work, the construction of a virtual 

environment was carried out, within which various tools or 

objects were arranged to be used in pick and place 

applications, by means of a UR3 robotic device. In order 

to give more application scope to the environment, two 

deep cameras were available, so that not only the 

environment can be seen from a static point, but also from 

a dynamic one, located in the end effector. 

To validate the environment, a basic pick and 

place application was made, using a Faster R-CNN to 

detect an object of interest within the environment and 

thus be able to execute the task of collecting and locating a 

screwdriver on a conveyor belt. The trained network 

achieved an average accuracy of 82% with the validation 

set, demonstrating that it was able to locate the tool in 

different orientations and positions within a work area. 

Thanks to the detection capacity of this network, within 

the environment validation tests, it was possible to 

correctly detect the object in the virtual environment 96% 

of the time, demonstrating the coupling capacity between 

the Deep Learning techniques and the simulated 

environments for the execution of robotic tasks. 

On the other hand, although the robot was able to 

grab the object almost all the time, its grip was not always 

firm, which caused the tool to fall repeatedly. This allows 

us to see the possibility of applying an artificial 

intelligence system that gives the robot the ability to make 

a better decision on how to grab the tool properly, to 

prevent it from loosening when the robot is moving to take 

the object somewhere else. 
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