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ABSTRACT 

An appropriate characterization of a two-layer interconnected system is of vital importance for reservoir appraisal 
and administration. In this work, the TDS Technique is used for the interpretation of transient pressure test of a two-layer 
system separated by a low-permeable stratum so its specific permeability and the permeability of the adjacent layer can be 
estimated. The new developed expressions were applied to one synthetic example when the flow capacity of layer 1 is 
higher than layer 2. Another simulated example was devoted to the inverted flow capacity case. The average absolute 
deviation errors for specific permeability is lower than 1.2 % and for layer 2 permeability is lower than 0.1 % 
demonstrating the accuracy and convenience of the methodology. 
 
Keywords: cross flow, composite reservoirs, radial flow, horizontal permeability, second pressure derivative. 
 
1. INTRODUCTION 

Many reservoir systems have more than one layer 
with hydraulic communication among them. Rahman, Bin 
Akresh, and Al-Thawad (2015) presented pressure and 
pressure derivative behavior for a two-layer system 
communicated behind the casing due to poor cementing 
jobs. During transient tests, the fluid in the adjacent layer 
may still migrate and contribute to the tested layer, if the 
integrity of cement is deteriorated or flow paths exist 
between them, leading an over-estimation of the 
productive capability of the tested reservoir layer. The 
mathematical model for such case was developed by 
Rahman (2014). Later, Escobar, Palomino and Ghisays-
Ruiz (2019) extended the TDS Technique, Tiab (1995), for 
interpretation of pressure tests with interconnection 
between two adjacent layers through leaks behind the 
casing using the model proposed by Rahman (2014). 
Escobar, Palomino and Ghisays-Ruiz (2019) identified a 
new flow regime, called radi-linear, which results from the 
simultaneous action of the radial horizontal flow regime 
with the vertical linear flow along the cement shaft.   

Because flow must be diagnosed to accurately 
characterize a tested layer, a new analytical method is 
proposed by Rahman and Nooruddin (2016) to estimate 
the effects of cross flow on the transient pressure behavior 
by quantifying the hydraulic conductivity or specific 
permeability, Fcb, between two layers separated by a low-
permeable stratum. The value of Fc is used to determinate 
the contribution from an adjacent layer to the production 
of the tested layer through the wellbore, corresponding to 
a pressure at a given time. Detecting cross flow and 
understanding the degree of the communication is 
essential from a production and reservoir engineering 
perspective in accordance with Jalali et al (2016). It allows 
capturing the real performance of the reservoir in order to 
improve its management and development as presented by 
Al-Wehaibi, Anisur and Issaka (2016). 

Rahman and Nooruddin (2016) presented an 
analytical solution considering the effect of the hydraulic 
conductivity when cross flow from an adjacent layer takes 
place between a reservoir systems composed by two 
adjacent layers separated by a low permeability stratum. 
Later, the pressure derivative behaviors were studied by 
Nooruddin and Rahman (2017). They demonstrated that 
once radial flow is affected by the low-permeable, the 
pressure derivative adopts an inverted S-shape during the 
response of the low-permeable stratum and, then, a second 
plateau is developed because of the other adjacent layer. In 
this work, the model of Rahman and Nooruddin (2016) 
was employed to extend the application of the TDS 
Technique, Tiab (1995) to estimate the specific 
permeability of the interbedded low-permeable stratum 
and the permeability of the second reservoir layer, as well. 
The obtained results were successfully applied to synthetic 
examples. Further, later and extensive applications of the 
TDS Technique can be found in the works of Escobar, 
Hernandez and Jongkittinarukorn (2018) and the books by 
Escobar (2018, 2109). 
 
2. MATHEMATICAL TREATMENT 

The mathematical model to account for the 
transient pressure behavior of a layer separated from 
another one by a low-permeable stratum with a hydraulic 
conductivity, Fcb, and the crossflow rate throughout the 
semi-permeable stratum, respectively, were presented by 
Rahman and Nooruddin (2016): 
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Where the specific permeability of the semi-
permeable barrier between the two layers and the 
maximum specific permeability are given by Nooruddin 
and Rahman (2017) are, respectively given by: 
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Other parameters in Equations (1) and (2) are 

given in Appendix A. 
The dimensionless quantities are defined by: 
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The effect of the specific permeability on the 

pressure and pressure derivative behavior -obtained from 
Equation (1) - is given in Figure-1. Notice that the smaller 
the Fcb value the later the response of the second layer. At 
middle time, when radial flow in layer 1 dominates the 
transient behavior the dimensionless pressure derivative 
shows the usual behavior - a plateau - with a value of one 
half. It is followed by the effect of the low-permeable 
interlayer stratum forming an inverted “s-shape” behavior. 
After that, a second plateau responding for radial flow in 
layer 2 is developed. The system is assumed to possess 
infinite transient behavior. The value of the pressure 
derivative depends upon the flow capacity ratio, , defined 
as: 
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Figure-1 presents the pressure derivative behavior 

for five different values of the specific permeability of the 
semi-permeable barrier, Fcb. A unique behavior for the 
five systems is needed to determine the characteristic 
points which are employed for the development of the 
interpretation equations proper of the TDS Technique. The 
analysis for this achievement is given by Escobar, Bonilla 
and Hernández (2018). Notice in Figure-1 that the 
dimensionless time at which the deviation from the 

pressure derivative plateau increases as the specific 
permeability of the semi-permeable barrier decreases; 
then, for behavior unification purposes, the dimensionless 
time must be multiplied by the specific permeability of the 
semi-permeable barrier to the power n, where n is an 
unknown parameter that affects the unified behavior. To 
find the value of n an arbitrary point is chosen during the 
time between the two plateaus seen on the pressure 
derivative curve which is the matching zone of interest on 
the curve when Fcb= 1. The arbitrary chosen reference 
point was the inflection point. An analogous point is taken 
from another curve with Fcb different than 1. This 
procedure led to find an n value of one. 
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Figure-1. Dimensionless pressure and pressure derivative 
versus dimensionless time behavior for several Fcb values. 
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Figure-2. Dimensionless pressure, pressure derivative and 
some dimensionless second pressure derivative versus 

dimensionless time behavior for several Fcb values. 
 

Figure-2 shows that the dimensionless time 
multiplied by Fcb provides unified curves of pressure, 
pressure derivative and second pressure derivative for a 
fixed value of . The effect of  for a Fcb of 1x10-5 is given 
in Figure-3. Notice that as  decreases so does the value of 
the maximum second pressure derivative and the 
minimum value of the pressure derivative increases. These 
above observations led to establish a relationship between 
the flow capacity ratio and ratios of pressure derivatives 
during the radial flow regimes of layers 1 and 2 as 
observed in Figure-4. From such plot results: 
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Figure-3. Dimensionless pressure derivative and 
dimensionless second pressure derivative versus 

dimensionless time behavior for Fcb= 1x10-5. 
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Figure-4. Relationship between  and the pressure 
derivative plateau ratios. 
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Figure-5. Relationship between  and the minimum 
dimensionless pressure derivative during the 

effect of Fcb 
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Figure-6. Relationship between  and the maximum 
dimensionless second pressure derivative during the 

effect of Fcb. 
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After replacing Equations (6) and (9) into 

Equation (10) will result: 
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According to Tiab (1995) the permeability of 

layer 1 is estimated from: 
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Observations from Figures-5 and -6 lead to obtain 

a correcting value of both the minimum dimensionless 
pressure derivative and the second maximum 
dimensionless pressure derivative depending on the 
capacity ratios. This is performed by adjusting the 
relationship between either minimum pressure derivative 
or maximum pressure derivative against . That 
relationships are used to find a correction factor to move 
the minimum pressure derivative or maximum second 
pressure derivative to of1.  
 

Case 1: k1h1k2h2 
 

The correction factor for effect of capacity ratio is 
given by: 
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And the governing expression for the minimum 

pressure derivative is: 
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min( ) =277460.0873/cb D CFF t                                 (14) 

 
After replacing the dimensionless time, Equation 

(8), in Equation (14) and solving for Fcb will result: 
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The correction factor for the effect of capacity 

ratio on the maximum second pressure derivative is: 
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And the maximum second pressure derivative is governed 
by: 
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After replacing Equation (8) in the above 

expression and solving for Fcb it yields: 
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Case 1: k1h1 ≤ k2h2 
 

In a similar fashion as for case 1, the resulting 
equations are: 
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3. EXAMPLES 

Although Nooruddin and Rahman (2017) 
presented two field case examples, they do not provide the 
complete set of reservoirs, fluids and well data for the 
estimation of the specific permeability. Therefore, two 

synthetic examples were provided for demonstration 
purposes. 
 
3.1 SIMULATED EXAMPLE 1 

Figure-7 contains pressure, pressure derivative 
and second pressure derivative versus time data for a test 
generated with data from the second column of Table-1. It 
is required to estimate the specific permeability of the 
semi-permeable interlayer. 

The following information is read from Figure-7. 
 
tSDmax = 3.7 hr tmin = 15 hr (t*P’)r1 = 4.06 psi (t*P’)r2 = 
3.801 psi 
 

Use Equations (12) and (11) to find the 
permeability of each layer: 
 

1

70.6(480)(2.2)(1.2)
220.35 md

100(4.06)
k    

 

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

t , hr

max 3.7 hrSDt 

 P
, 

 t
 *
 P

 '
 &

  
t 

  
*

P
 "

 p
s
i

2

min 15 hrt 

1( * ') 4.06 psi
r

t P 
2( * ') 3.801 psirt P 

 
 

Figure-7. Pressure, pressure derivative and second 
pressure derivative versus time log-log plot 

for example 1. 
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The flow capacity ratio is calculated with 

Equation (9) to be: 
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Use Equations (13) and (14) to estimate the flow 

capacity correction and the specific permeability, 
respectively, as follows: 
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Table-1. Reservoir, fluid and well data for worked 
examples. 

 

PARAMETER Example 1 Example 2 

k1, md 220 200 

k2, md 50 500 

1, % 18 15 

2, % 18 18 

ct1, 1/psi 1x10-6 2x10-5 

ct2, 1/psi 3x10-5 2x10-5 

h1, ft 100 120 

h2, ft 30 220 

rw1, ft 0.3 0.3 

rw2, ft 0.3 0.3 

s1 2 0 

s2 2 0 

FC, md-ft 0.0279 0.15 

q, bbl/D 480 200 

B, rb/STB 1.2 1.25 

, cp 2.2 3 

C, bbl/psi 0.005 0.0005 

Pi, psi 1970 5780 

kv1, md 6 30 

kv2, md 12 10 

kv1, md 0.004 0.1 

h0, ft 0.1 0.1 

Abs. error 1, % 2.3 - 

Abs. error 2, % 0.37 0.815 
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Figure-8. Pressure, pressure derivative and second 
pressure derivative versus time log-log plot 

for example 2. 
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Use Equations (22) and (24) to find the flow 
capacity correction and the specific permeability, 
respectively: 
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3.2. SIMULATED EXAMPLE 2 

Figure-8 reports simulated pressure, pressure 
derivative and second pressure derivative versus time data 
for a test generated with data from the third column of 
Table-1. It is required to estimate the specific permeability 
of the semi-permeable interlayer. 

The following information is read from Figure-8. 
 
tSDmax = 12 hr (t*P’)r1 = 2.21 psi (t*P’)r2 = 0.395 psi 
 

Find each layer’s permeability with Equations 
(12) and (11): 
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Find the flow capacity ratio from Equation (9); 
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4. COMMENTS ON THE RESULTS 

Two synthetic examples were worked to verify 
the accuracy of the provided equations. One of them 
devoted to a flow capacity ratio smaller than one and the 
other for flow capacity ratio higher than one. The 
methodology uses such characteristic points as the 
maximum second derivative and the minimum pressure 
derivative during the effect of the low-permeable 
interlayer. In all cases the obtained results provided 
absolute errors lower than 1 %. 

Additionally, an excellent equation to estimate 
the permeability of the adjacent layer was provided and 
successfully verified. See Equation (11). In the first 
example the absolute deviation error in the adjacent layer 
permeability was of 0.1 %. In the second example the 
error was of 0.08 %. 
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5. CONCLUSIONS 

a) The TDS Technique was extended to well pressure 

test data interpretation of a two-layer system 

separated by a low-permeable stratum. Equations to 

estimate the specific permeability using the maximum 

second pressure derivative and the minimum pressure 

derivative occurring during the effect of the low-

permeable stratum are developed and successfully 

tested with two synthetic examples with absolute 

averaged deviation errors lower than 1.2 %. 

b) Once the effect of the low-permeable interlayer has 

vanished, a second plateau develops indicating a 

domination of radial flow in the adjacent layer. An 

accurate equation to estimate the permeability of this 

layer was developed and successfully presented. The 

deviation error for this equation is lower than 0.1 %. 

NOMENCLATURE 

 
B Oil volume factor, rb/STB 
C Wellborestoragecoefficient, bbl/psi 

ct Total system compressibility, psi−1 

Fcb Specific permeability of the semi-permeable        
barrier 

h Reservoir thickness, ft 
k Formation permeability, md 
P Pressure, psi 
q Oil flow rate, BPD 
rw Wellbore radius, ft 

s Skin factor 
t              Drawdown time, hr 
P Pressure drop, psi 
tD Dimensionless time 

tD*PD’ Dimensionless pressure derivative 
t*P’ Pressure derivative, psi 
Y Parameter defined by Equation (A.3) 
Z Parameter defined by Equation (A.4) 
 
Greeks 
 Parameters defined by Equation (A.7) and (A.8) 

Δ Change, drop 
 Porosity, fraction 
 Flow capacity ratio defined by Equation (9) 
CF Flow capacity correction factor 
µ Viscosity, cp 
 Parameters defined by Equations (A.5) and (A.6) 
 
Suffices 

1 Layer 1 
2 Layer 2 
2Dmax   Maximum of second derivative 
D Dimensionless 
min Minimum  
r Radial 
w Well, wellbore 

w’ Apparent wellbore 
 

REFERENCES 

 
Al-Wehaibi B. A., Anisur Rahman N. M. and Issaka M. B. 
2016, April 25. Estimating the Degree of Inter-Reservoir 
Communication Between Two Reservoirs Using 
Advanced Numerical Well Testing Model. Society of 
Petroleum Engineers. doi:10.2118/182809-MS. 
 
Escobar F.H. 2015. Recent Advances in Practical Applied 
Well Test Analysis. Nova publishers New York. Published 
by Nova Science Publishers, Inc. † New York. 
 
Escobar F.H. 2019. Novel, Integrated and Revolutionary 
Well Test Interpretation Analysis. Intech | Open Mind, 
England. 278p. DOI: 
http://dx.doi.org/10.5772/intechopen.81078. ISBN 978-1-
78984-850-2 (print). ISBN 978-1-78984-851-9 (online). 
 
Escobar F.H., Jongkittnarukorn K. and Hernandez C.M. 
2018. The Power of TDS Technique for Well Test 
Interpretation: A Short Review. Journal of Petroleum 
Exploration and Production Technology con ISSN 2190-
0566. pp. 1-22. https://doi.org/10.1007/s13202-018-0517-
5. 2018. 
 
Escobar F.H., Palomino A.M. and Ghisays-Ruiz A. 2019. 
An Approximation of Behind Casing Hydraulic 
Conductivity between Layers from Transient Pressure 
Analysis. Dyna ISSN 0012-7353, 86(210): 108-114, July - 
September. DOI: 
https://doi.org/10.15446/dyna.v86n210.76739. 
 
Escobar F.H., Bonilla L.F. and Hernández C.M. 2018. A 
practical calculation of the distance to a discontinuity in 
anisotropic systems from well test interpretation. DYNA, 
85(207): 65-73, October - December. 
 
Jalali M., Embry J. M., Sanfilippo F., Santarelli F.J. and 
Dusseault M.B. 2016, May 25. Cross-flow analysis of 
injection wells in a multilayered reservoir. Petroleum, 
2(3). doi:10.1016/j.petlm.2016.05.005. 
 
Rahman N.M.A. 2014. Measuring behind casing hydraulic 
conductivity between reservoir layers. US patent and 
Trademark Office. Patent Application Number 
14/182.430. 2014. 
 
Rahman N. M.A, Bin Akresh S. A. and Al-Thawad F. M. 
2015. Diagnosis and Characterization of Cross Flow 
behind Casing from Transient-Pressure Tests. Society of 
Petroleum Engineers. doi:10.2118/174999-MS. Sep. 
 
Rahman, N. M.A. and Nooruddin, H.A. 2016. Measuring 
inter-reservoir cross flow rate between adjacent reservoir 
layers from transient pressure tests. US patent and 
Trademark Office. Patent Application Number 
WO/2016/115197. 
 



                                VOL. 15, NO. 22, NOVEMBER 2020                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2020 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               2766 

Nooruddin H. A. and Rahman N. M. A. 2017, March 6. A 
new analytical procedure to estimate interlayer cross-flow 
rates in layered-reservoir systems using pressure-transient 
data. Society of Petroleum Engineers. 
doi:10.2118/183689-MS. 
 
Tiab D. 1995. Analysis of pressure and pressure derivative 
without type-curve matching: 1 skin and wellbore storage. 
J Pet Sci. Eng. 12:171-181.  
 
Appendix A. Expressions complementing Equations (1) 
and (2) as presented by Rahman and Nooruddin (2016) 
are: 
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