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ABSTRACT 

In this work, the iterative schemes Taylor order-two (TO2) and Implicit Milstein with Diagonal Brownian 
(IMDB) are employed to provide a numerical solution to both the deterministic and stochastic point kinetics equations with 
feedback effects. The different numerical experiments are performed with 500 Brownian motions, their results are 
compared with the values reported in the literature, these comparisons showed how the proposed schemes produce good 
approximations in the calculation of the expected values for neutron density and reactivity, determining the time to the 
peak where the maximum in neutron density occurs with different step external reactivities for a reactor with feedback 
effects. 
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1. INTRODUCTION 

The point kinetic equations (PKE) [1] model the 
time evolution of the core of a nuclear reactor, in terms of 
the different events that modify the population of neutrons 
and the combustible material in the reactor core, some of 
these events are: neutron capture by the combustible 
material, the decay of fission products emitting neutrons, 
the same fission processes that give rise to new neutrons, 
among other events. However, this theoretical model does 
not explain why at low power levels the neutron density 
and the concentration of precursor groups exhibit 
fluctuations. 

The Stochastic point kinetic equations (SPKE) 
[2] are a more general model of the temporal evolution of 
the reactor core, since this includes the random and 
probabilistic aspects of neutrons, fission processes and 
decay processes, as well as the variation of the parameters 
involved in the reactor core such as the small variations in 
pressure, of the control rods, among others. The SPKE 
consists of a system of m + 1 strongly coupled non-linear 
stochastic differential equations, with m + 2 random 
variables, the m variables are the number of precursor 
groups to be considered, generally m = 6 provides 
information accurate enough. The other two random 
variables are the neutron density and the reactivity. The 
latter accounts for the rate of neutron production in the 
reactor core. The production of neutrons in the core 
releases large amounts of energy thereby raising the core’s 
temperature, in turn, this increase in energy causes a lower 
rate of fission processes with a consequent decrease in the 
production of neutrons. That is why the reactivity presents 
feedback effects, the consideration of this effect provides a 
better understanding of the dynamics of nuclear reactors. 
The SPKE model does not have an analytical solution, 
therefore it is necessary to use iterative numerical schemes 
that provide precise approximate solutions. 

In this work, the Taylor order-two (TO2) scheme 
is used to give approximate numerical solutions to the 

PKE and the Implicit Milstein with Diagonal Brownian 
(IMDB) for SPKE, this scheme has already been shown to 
be efficient in the numerical solution of the SPKE model 
[3]. The results obtained by TO2 and IMDB are compared 
with the Split-Step Forward Euler-Maruyama Method 
(EMM), the Derivative-Free Miltein Method (DFMM), the 
Analytical Exponential Technique (AET) [4], the RK2-2st 
Method [5], the ITS2 Method [6] and the ABM8 Method 
[1]. In the next section the theoretical aspects of the SPKE 
model with feedback effects are analysed. 
 
2. THEORETICAL CONSIDERATIONS  

     STOCHASTIC POINT KINETIC EQUATIONS 

The SPKE model was first introduced in [2], the 
matrix expression deduced by those authors is: 

 

1/2ˆ ˆ( ) ( ) ( ) ( )
d d

P t A P t Q t B t
dt dt

         (1) 

 
where |𝑃(𝑡)⟩ is the vector of random variables defined by 
equation (2), which accounts for the temporal evolution of 
the neutron and precursor populations, 𝐴̂ is the matrix of 
expected values defined in equation (3), |𝑄(𝑡)⟩ is the 

vector of external sources defined in equation (4), 𝐵̂1 2⁄  is 
the square root of the variance matrix defined in equation 
(5), |𝜔(𝑡)⟩ is the Wiener process vector defined in 
equation (6) or by √∆𝑡|η⟩, where |η⟩ is a vector of random 
numbers with mean zero and standard deviation unity, and ∆𝑡 is the time step. 
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where, n is the neutron density, 𝐶𝑚 is the concentration of 
precursors of the m-th group, 𝜌(𝑡) is the reactivity which 
accounts for neutron production, β is the total fraction of 
delayed neutron precursors, Λ is the mean neutron 
generation time, 𝜆𝑚 is the decay constant of class m of 
delayed neutron precursors, q is the magnitude of the 
external source of neutrons, 𝜔𝑚  are Wiener processes 
which are continuous-time and independent stationary 
increment stochastic processes, 𝜌𝑒𝑥𝑡  is the external 
reactivity, α is the reactivity temperature coefficient, 𝐾𝑐 is 
the reciprocal of the reactor´s thermal capacity coefficient, 𝑇(𝑡) is the reactor temperature and 𝑇0 is the initial 
temperature of the reactor. The elements of the matrix 𝐵̂1 2⁄  are described as follows: 
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where the parameters 𝜉, 𝑎𝑖, 𝑟𝑖 y 𝑏𝑖,𝑗 are: 
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where υ is the average number of neutrons generated per 
fission event. Equations (7) and (8) include the thermal 
feedback effects, these are not considered in [2]. Note as if 

in equation (1) 𝐵̂1 2⁄ = 0, the PKE model is obtained. A 
non-matrix way is: 
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In the next section the order-two Taylor scheme 

for PKE is shown. The Implicit Milstein Scheme applied 
to SPKE with the Diagonal Brownian variance reduction. 
 
3. ORDER-TWO TAYLOR SCHEME 

The order-two Taylor iterative scheme for the 
neutron density variables and for the m groups of 
precursors is: 
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Note that the first-time derivatives correspond to 

the system (15), and the second-time derivatives stem 
from deriving the system (15), these derivatives have been 
calculated analytically, and replaced into equation (16). 
The resulting system of equations can be rewritten in 
matrix form in the following way: 
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where the matrix  𝐴𝑘′  has the following form: 
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In short, the scheme called TO2 used to give an 

approximate numerical solution to the PKE in this work is: 
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4. IMPLICIT MILSTEIN SCHEME 

Milstein´s iterative scheme is the result of 
truncating the Itô-Taylor expansion at the fourth term 
[3,7], this expansion is the stochastic version of the 
popular Taylor series. Equation (21) describes the discrete 
Milstein's scheme. This scheme has a convergence order 
of 1.0. 
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Equation (23) introduces a Wiener process. This 

is characterised by being a continuous-time stochastic 
process with independent stationary increments, 𝜔𝑡=0 =0 with probability unity and 𝜔𝑡 − 𝜔𝑠 ~ ℵ(0, 𝑡 − 𝑠) for 0 ≤ 𝑠 ≤ 𝑡, where ℵ(𝜇, 𝜎2) denotes the normal distribution 
with expected value μ and variance 𝜎2 [9]. With the 
property introduced in equation (24), which is useful for 
the simulations. 
 

(0,1)          (24) 

 

However, the use of Milstein´s implicit version 
for a better approximation is considered, given the strong 
coupling and the nonlinearity that point kinetics exhibits in 
both its deterministic and stochastic formulation, this 
scheme is: 
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Applying equation (25) to the SPKE we get 
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Solving for  𝑃𝑘+1 we get 
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where I is the identity matrix. The calculation of the 
inverse of 𝐼 − ℎ 𝐴𝑘+1 has already been presented 
analytically [3] and its result will be used in this work. 
Thus, Milstein's implicit scheme applied to SPKE turns 
out to be: 
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where 
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In addition, the following product is 

approximated as: 
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5. DIAGONAL BROWNIAN 

The implicit Milstein scheme with Brownian 
diagonal considers a new independent Brownian motion 
which multiplies the terms of the main diagonal of the 
square root of the variance matrix in the following way: 
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6. RESULTS 
Taylor's method of order-two (TO2) and implicit 

Milstein with diagonal Brownian (IMDB) have been 
applied to the PKE and SPKE models with feedback 
effects, respectively,  for a graphite reactor 𝑈92235 , the 
physical parameters of this type of reactor are: thermal 
coefficient of reactivity 𝛼 = 5𝑥10−5 (𝐾−1), reciprocal 
coefficient of thermal capacity of the reactor 𝐾𝑐 =0,05 ( 𝐾𝑀𝑊), average number of neutrons generated per 

fission event 𝜐 = 2,5, neutron generation time Λ =5𝑥10−5 (𝑠), partial fractions of precursor groups 𝛽𝑖 =[0,00021 0,00141 0,00127 0,00074 0,00027], total 
fraction of precursors 𝛽 = ∑ 𝛽𝑖  and decay constants 𝜆𝑖 = [0,0124 0,0305 0,111 0,301 1,13 3,0] (𝑠−1). 

The different numerical experiments are carried 
out for external reactivities of 0.50 ($), 0.75 ($), 1.00 ($), 
1.50 ($) and 2.00 ($), where the sign ($) refers to dollars. 
These experiments are carried out with a magnitude of the 
external source of neutrons 𝑞(𝑡) = 0 and initial 

conditions 𝑛(0) = 1 ( 𝑔𝑐𝑚3) , 𝐶(0) = 𝛽𝜆1Λ 𝑛(0) ( 𝑔𝑐𝑚3). The 

deterministic method TO2 uses a time step of 10−5, the 
stochastic method proposed, IMDB, uses a time step of 10−3 with 500 Brownian motions as in the different 
stochastic methods reported in the literature. 

Table-1 shows results of the proposed method 
and some of the methods reported in the literature. The 
maximum values of neutron density and the time-to-peak 
in which this is reached for the different external 
reactivities are reported 0.50 ($), 0.75 ($) and 1.00 ($). 
Since the results using the deterministic methods ITS2 and 
ABM8 were not reported in the literature, the TO2 method 
is implemented in order to compare the precision of the 
stochastic methods. The results produce good numerical 
approximations of the proposed IMDB method since the 
time-to-peak in which the maximums of the neutron 
density occur are very similar to the other stochastic 
methods and the TO2 reference method. 

 
Table-1. Maximum peak of neutron density and its corresponding time for external reactivity. 

 𝑴𝒆𝒕𝒉𝒐𝒅 
𝝆𝒆𝒙𝒕 = 𝟎, 𝟓𝟎 ($) 𝝆𝒆𝒙𝒕 = 𝟎, 𝟕𝟓 ($) 𝝆𝒆𝒙𝒕 = 𝟏, 𝟎𝟎 ($) 𝑝𝑒𝑎𝑘 𝑡𝑖𝑚𝑒 𝑝𝑒𝑎𝑘 𝑡𝑖𝑚𝑒 𝑝𝑒𝑎𝑘 𝑡𝑖𝑚𝑒 

DFMM [4] 46,260 27,840 164,220 8,950 769,238 1,057 

RK2-2ST [5] 45,820 27,800 163,492 8,900 805,446 1,000 

EMM [4] 46,4939 28,3400 163,707 8,795 760,589 1,065 

IMDB 46,065 28,183 164,434 8,522 811,926 0,991 

ITS2 [6] - - - - 807,868 0,953 

ABM8 [1] - - - - 807,868 0,954 

TO2 45,703 28,301 163,283 8,811 807,860 0,953 

 
Increased the value of the external reactivity, the 

results of the different experiments considering the greater 
reactivities 1.50 ($) and 2.00 ($) are presented in Table-2. 

For these values of reactivity there are reference values 
using the deterministic methods ITS2 and ABM8, thus the 
two reference methods would be of better precision than 
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the TO2 method, however, the values are not very 
different and for our purpose of comparing with the 
stochastic methods, it turns out to be appropriate. The 
times to peak are very similar among the different 

stochastic methods, although IMDB seems to calculate by 
excess the maximum values of the neutron density, the 
time in which these maximums occur is according to the 
reference values. 

 
Table-2. Maximum peak of neutron density and its corresponding time for external reactivity. 

 𝑴𝒆𝒕𝒉𝒐𝒅 
𝝆𝒆𝒙𝒕 = 𝟏, 𝟓𝟎 ($) 𝝆𝒆𝒙𝒕 = 𝟐, 𝟎𝟎 ($) 𝒑𝒆𝒂𝒌 𝒕𝒊𝒎𝒆 𝒑𝒆𝒂𝒌 𝒕𝒊𝒎𝒆 

RK2-2ST [5] 39472,347 0,169 148565,750 0,100 

IMDB 44990,492 0,164 188180,805 0,093 

AET [4] 33119,580 0,174 128083,100 0,101 

ITS2 [6] 43024,605 0,168 167845,682 0,098 

ABM8 [1] 43024,600 0,168 167845,600 0,098 

TO2 43043,262 0,168 167990,418 0,098 

 
Figures 1a-1e show the different numerical 

experiments previously carried out to obtain the neutron 
density depending on the external reactivity. The 
stochastic behaviour is clearly seen for external reactivities 
0.50 ($), 0.75 ($) and 1.00 ($), being more noticeable for 
small reactivities. It is observed how the average value 
calculated by the proposed IMDB method using the 500 
Brownian motions approximates the deterministic value 
calculated with the TO2 method. For high reactivities 1.50 
($) and 2.00 ($), the stochastic effects seem to decrease. 
 

 
 

Figure-1a 𝜌𝑒𝑥𝑡 = 0,50 ($). 
 

 
 

Figure-1b. 𝜌𝑒𝑥𝑡 = 0,75 ($). 
 

 
 

Figure-1c. 𝜌𝑒𝑥𝑡 = 1,00 ($). 
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Figure-1d. 𝜌𝑒𝑥𝑡 = 1,50 ($). 
 

 
 

Figure-1e. 𝜌𝑒𝑥𝑡 = 2,00 ($). 
 

Table-3 shows the expected values for the density 
of the neutron population and the reactivity for different 
values of external reactivity and simulation times 
considered in this work, and those reported in the 
literature. Figure-2 shows the behaviour of reactivity over 
time for the different values of external reactivity. It is 
observed that the reference method and the proposed 
method have an increasing difference when the value of 
external reactivity increases.  

 
Table-3. Values of the neutron density and reactivity by the proposed method. 

 

𝝆𝒆𝒙𝒕 ($) 𝒕𝒊𝒎𝒆 (𝒔) 

𝑀𝑒𝑡ℎ𝑜𝑑 

IMDB TO2 𝐸[𝑛(𝑡)] 𝐸[𝜌(𝑡)] ($) 𝑛(𝑡) 𝜌(𝑡) ($) 0,50 100 7,365 -0,35395 7,302 -0,35271 0,75 50 17,180 -0,48698 17,168 -0,48620 1,00 25 37,016 -0,59147 37,062 -0,59039 1,50 5 231,429 -0,54481 233,794 -0,52372 2,00 2 487,162 -0,79767 505,142 -0,67752 

 

 
 

Figure-2. Reactivity for each step external reactivity. 
 

7. CONCLUSIONS 
In this work, the proposed implicit Milstein with 

diagonal Brownian (IMDB) method to solve stochastic 
equations of point kinetics with feedback effects 
considering different step external reactivity values was 
presented. Comparison of the obtained results with those 
in the literature shows that the proposed method has good 
precision and its results were validated with some very 
high-precision deterministic methods such as the ITS2 and 
ABM8 methods. When the values reported in the literature 
were not available, our results were compared with the 
deterministic method using the order-two Taylor series 
(TO2). Our method of calculation has some important 
advantages such as a low computational cost, since it does 
not require the calculation of inverse matrices nor 
derivatives since they can be calculated analytically and 
are easy to implement. 
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