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ABSTRACT 

In this work we present the first Bernoulli number for reactivity calculation with the Savitzky-Golay filter in order 

to reduce fluctuations that are present in the neutron density signal; this filter uses the second degree polynomial 

approximation of Gram d=2, with different widths of the sampling window between N=25 y N=225. The fluctuations are 

simulated numerically considering noise with a Gaussian distribution around a mean value for the neutron density, with 

different standard deviations. We compare the numerical experiments using the proposed method and the Savitzky-Golay 

filter with the different filters reported in the literature, such as the first order delayed low-pass filter and the exponential 

filter. 
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INTRODUCTION 

Safety in a nuclear reactor depends on monitoring 

the reactivity, a parameter that describes the temporal 

evolution of the neutron density present during the nuclear 

reaction and the interaction with the fissile material. The 

study of this behavior is done using the point kinetic 

equations, and the solution to these equations being an 

integral-differential equation, which has all the neutron 

density points at each point in time. This equation is called 

the inverse point kinetic equation, since it describes the 

reactivity as a function of the neutron density (Duderstadt 

and Hamilton, 1976).  

Several papers have solved the inverse point 

kinetic equation in order to calculate reactivity, which is 

the most important parameter inside a nuclear reactor, 

making use of diverse methods that discretize the integral 

term that contains the neutron density (Shimazu et al., 

1987; Hoogenboom, 1989; Ansari, 1991; Suescún et al., 

2008; Hessam and Vosoughi, 2013). A recent paper shows 

high precision by using a matrix formulation in order to 

calculate the reactivity (Suescún et al., 2018), without 

considering the fluctuations in the neutron density present 

inside the nuclear reactor. This work makes use of the 

Euler-Maclaurin formula (Kuen Kwok, 2010) with the 

first Bernoulli number approximation, in order to 

discretize the neutron density; at the same time, that 

employ the Savitzky-Golay filter (Madisetti V., 2010) in 

order to reduce the fluctuations. This filter is designed to 

reduce the noise in two phases: applying least squares to a 

set of given samples and processing a fix polynomial by 

making use of a linear function (Cadan et al., 2014). 

 

THEORETICAL ASPECTS 

The point kinetic equations are a set of seven 

nonlinear differential coupled equations (Stacey, 2018): 
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( )P t  being the neutron density, iC  the precursor 

concentration, i  the i-th fraction of delayed neutrons, 

( )t  the reactivity,   the neutron generation time,   the 

total effective fraction of delayed neutrons and i  the 

decay constant of the i-th delayed neutron precursor group.  

When using the initial conditions, given by equations (3-

4), we must set the reactivity at the initial time to be null. 

This to obtain a reactor at a critical state. Solving the 

equations (1-4), we can obtain the reactivity as a function 

of the neutron density: 
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Equation (5) is known as the inverse point kinetic 

equation. The integral term is dependent of the neutron 

density. It is necessary to discretize this term in order to 

decrease the computational cost of the calculation. 

Equation (5) can be written as, 
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Where, 
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Equation (5) represents an expression for 

reactivity. It is used in the different methods which have 

been proposed, since it is the basis for the construction of 

digital reactivity meters, however there are difficulties in 

the implementation of this expression in real time, and it is 

therefore necessary to discretize the integral term known 

as neutron population density history.  

 

PROPOSED METHOD 

The Euler-Maclaurin formula consist in an 

equivalence between continuous and discrete time (Kuen 

Kwok, 2010) which contains the Bernoulli numbers 
x

B : 
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In this work, we consider the approximation 

considering the first Bernoulli number on equation (8), this 

is, x=1, and we get: 
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being 1
1

6
B  . 

The function F considered on equations (8-9), 

represents the approximation between the continuous and 

discrete times F(t) and F[n] respectively. Comparing the 

integrand F(t) on equations (8-9) with the integrand on 

equation (6), we get: 
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The discrete version of equation (10) is, 
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Being hi, the response of the system to a unitary 

impulse function (Haykin S, 1999) defined by: 
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It is necessary to derivate once the equations (10-

11), and evaluate this result at r=0 and r=n; replacing this 

on equation (9) we get: 
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Being t the time step. 

Replacing equation (13) into equation (6), the 

reactivity with the first Bernoulli number approximation is 

obtained: 
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Where, 
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In order to analyze the fluctuations, present inside 

the reactor, noise with a Gaussian distribution around a 

median value of the neutron density is used (Kitano et al., 

2000), represented by the expression: 
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Recently, the Euler-Maclaurin method with a first 

order delayed low-pass filter (Suescún et al., 2020) was 

used to reduce the fluctuations on the neutron density 

signal; such filter is represented, according to (Shimazu et 

al., 1987), by the formula: 
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Where τ is the filtering constant. 

Another filter used to reduce the fluctuations 

present inside a nuclear reactor, is the exponential filter 

(Mathews, 2000): 

 

( ) Ay
u y Ce                                               (18) 

 

where A, C are constants obtained using the least squares 

criterion. This is achieved with the neutron density signal, 

obtained by means of the different sensors located 

externally on the reactor; the average of these values is 

adjusted to an exponential shape.  
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Due to convenience, it is better to work with 

linear equations. Equation (18) can be linearized by using 

the following substitutions, 

 

ln( ) , , ln( )U u Y y B C      (19) 

 

Constants A and B on equation (19) is calculated 

making use of the least square method using the normal 

Gauss equations, having: 
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In order to reduce the fluctuations that are 

originated in the neutron density, the Savitzky-Golay filter 

is used. We suppose there is a vector x that contains the 

information of the data of a signal with noise (Cadan et al., 

2014) given by, 

 

 1 0 1 2 3,..., , , , , ,...,
T

M Mx x x x x x x x     (22) 

 

where M is the half width, which is related with the 

number of samples N in each block of information, given 

by 2 1N M  ,  for a total number L of samples to be 

filtered.  

It is necessary to consider a linear combination of 

base vectors, set in the following way: 

 

( ) ,i
is n n M n M        (23) 

 

where 0,1,2,...,i d . Each value of d , indicates the 

degree of the polynomial being used to reduce the 

fluctuations present on vector x. 

Now, we define a column matrix  2 1 ( 1)M dS     

such that each component contains a base vector is : 

 

 0 1 2, , ,..., dS s s s s
                                                     

(24) 

 

On equation (24) the noise is present, and it is 

necessary to decrease it; for such task, we build a 

polynomial x̂  of degree d, having: 
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Being ia  the polynomial coefficient vector.  

It is possible to define an error as the difference 

between the estimated by equation (25) and the signal that 

contains the vector with the noise, given by equation (24), 

as: 

 

ˆ Ce x x x S        (26) 

 

Minimizing the error on equation (26) by using 

the least squares method, we obtain: 
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Solving for c on equation (27), we obtain: 
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It is possible to solve for matrix G on equation 

(28) to obtain, 

 

  1
1 T

G SF S S S
       (29) 

 

Using equation (17), we can estimate the vector 

x̂ , which has the filtered signal given by, 
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The estimated signal can be written as: 
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Equation (31) can be written as a sum of 

convolutions such: 
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Some difficulties can occur if the convolution 

given by equation (32) is used. One such difficulties can 

be, that depending on the half width M, it is possible that a 

high computational cost is required. Another possibility is 

that sparse matrices can occur, which also increase the 

computational cost. It is recommended to calculate an 

equivalent form, but with less effort. This is achieved 

using the Gram polynomial, represented by: 
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Being ( )M
d

f n  a Gram polynomial of order d 

such that: 
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Replacing equation (34) on equation (33) and 

applying the least squares method, it is possible to write an 

equation which facilitates the reduction of the neutron 

density signal fluctuation, simply put: 
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The Gram polynomials on equation (35), are 

calculated taking into account the recursive formula: 
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RESULTS AND DISCUSSIONS 

In this section we present the different numerical 

experiments considering the first Bernoulli number in the 

Euler-Maclaurin method, having noise in the neutron 

density and filtering using Savitzky-Golay. The noise is 

generated using a Gaussian distribution, with 10 samples 

and with a generating seed of random numbers of 2
31

-1. 

The standard deviation is varied between σ=0.001 and 

σ=0.01. The time step in the reactivity calculation is 

0.01t s   and 0.1t s  . The constants used in this work 

are commonly present in the interaction of neutrons with 

the fuel element 
235

U, which are the decay constants 

1
1 0.0127 s  ; 1

2 0.0317 s  ; 1
3 0.115 s  ;

1
4 0.311 s  ; 1

5 1.4 s  and 
1

6 3.87 s  , the 

delayed neutron fraction 1 0.000266  ; 2 0.001491  ;

3 0.001316  ; 4 0.002849  ; 5 0.000896  and 

6 0.000182  , the instantaneous neutron generation time 

52 10 s
   .For the Savitzky-Golay filter, we employ a 

Gram polynomial of order d=2 and a sample size that is 

varied between N=25 and N=225. The accuracy of the 

method and the Savitzky-Golay method, S-G, is compared 

with the combination of the Euler-Maclaurin method and 

the first order delayed low-pass filter with a filtering 

constant 1.5   and the combination of the Euler-

Maclaurin method with an exponential filter with a sample 

numbers of 10. 

Tables 1-2 show the results for the mean absolute 

error and for the maximum difference between reactivity 

in pcm (per cent mille), respectively. The standard 

deviation is fixed at 0.001   and the time step

0.01t s  . On Table-1 it is possible to evidence that the 

proposed method, with a sample size of N=25, reduces the 

fluctuations for the values 0.00243 11.6442   when 

comparing with the first order delayed low-pass filter, 

which has good results only for small reactivity values. If 

the sample size is increased in the proposed method to 

N=225, it is evident the reduction in the fluctuations for 

0.00243 0.12353   compared with the exponential 

filter, which shows good results, even for big values of the 

reactivity. On Table-2 we note, that when the S-G filter is 

used with a sample size of N=25, the maximum difference 

in the reactivity calculation, shows good results for the 

range 0.00243 1.00847  . 

 

Table-1. Mean absolute error for a standard deviation of 0.001   and a time step of 0.01t s  . 
 

( ) t
P t e

  

Mean Absolute Error 

E-M 

E-M with 

Low-Pass 

Filter 

E-M with 

Exponential 

Filter 

E-M with 

S-G Filter 

N=25 

E-M with S-

G Filter 

N=225 

0.00243   tf=1000 s 0.54 0.05 0.23 0.16 0.05 

0.006881   tf=500 s 0.52 0.18 0.22 0.15 0.05 

0.01046   tf=800 s 0.50 0.16 0.21 0.15 0.04 

0.02817   tf=600 s 0.44 0.39 0.19 0.13 0.04 

0.12353   tf=300 s 0.32 1.43 0.14 0.09 0.03 

1.00847   tf=150 s 0.12 2.99 0.05 0.04 1.01 

11.6442   tf=60 s 0.02 3.33 0.01 0.66 288.19 

52.80352   tf=10 s 0.06 5.77 0.01 107. 22 642.74 

 



                                  VOL. 16, NO. 1, JANUARY 2021                                                                                                             ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                        102 

 

 

 

 

 

Table-2. Maximum differences for a standard deviation of 0.001   and a time step of 0.01t s  . 
 

( ) t
P t e

  

Maximum Differences [pcm] 

E-M 

E-M with 

Low-Pass 

Filter 

E-M with 

Exponential 

Filter 

E-M with S-

G Filter 

N=25 

E-M with S-

G Filter 

N=225 

0.00243   tf=1000 s 3.25 1.53 1.73 0.88 0.23 

0.006881 
 

tf=500 s 3.10 4.24 1.65 0.84 0.22 

0.01046   tf=800 s 3.01 6.38 1.60 0.81 0.21 

0.02817   tf=600 s 2.67 16.46 1.41 0.72 0.19 

0.12353   tf=300 s 2.14 60.27 0.94 0.50 0.18 

1.00847   tf=150 s 1.49 228.08 0.74 0.33 146.22 

11.6442   tf=60 s 1.12 452.41 0.41 372.59 1440200.00 

52.80352 
 

tf=10 s 7.71 322.45 0.45 49344.00 350990.00 

 

On Tables 3-4, the time step in the reactivity 

calculation takes the value of 0.1t s   maintaining a 

standard deviation of 0.001  . It is evident that when 

there are small values for the reactivity, the recommended 

sample size is N=225 since it has better reduction to the 

fluctuations, the mean absolute error is 0.03 pcm at 

0.01046  . With respect to the maximum difference in 

the reactivity, we observe that the sample size N=25 

works well, even for big values of  . For a value of 

52.80352  the maximum difference reaches 38.53 10 , 

contrary to what happens if the window width is N=225 

where it does not converge to a value. 

On Tables 5-6 we increase the standard deviation 

to 0.01  and we use a time step of 0.01t s  . The S-G 

filter reduces the fluctuations well, with a window width 

of N=25, when the reactivity is 700 pcm  . However, 

when we increase the sample size to N=225, the method 

increases precision, but it is reduced for reactivities such 

that 550 pcm  , this mean, for 1.00847  . 

 

 

Table-3. Mean absolute error for a standard deviation of 0.001   and a time step of 0.1t s  . 
 

( ) t
P t e

   

Mean Absolute Error 

E-M 

E-M with 

Low-Pass 

Filter 

E-M with 

Exponential 

Filter 

E-M with 

S-G Filter 

N=25 

E-M with 

S-G Filter 

N=225 

0.00243   tf=1000 s 0.53 0.09 0.22 0.15 0.04 

0.006881   tf=500 s 0.51 0.25 0.20 0.14 0.04 

0.01046   tf=800 s 0.49 0.28 0.20 0.13 0.03 

0.02817   tf=600 s 0.44 0.69 0.17 0.11 0.05 

0.12353   tf=300 s 0.30 2.60 0.12 0.08 5.37 

1.00847   tf=150 s 0.11 10.12 0.05 1.30 198.81 

11.6442   tf=60 s 13.27 137.18 3.79 52.91 1046.9 

52.80352   tf=10 s 2.19 × 1018 8.60 × 1019 29.10 222.67 Infinite 
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Table-4. Maximum differences for a standard deviation of 0.001   and a time step of 0.1t s  . 
 

( ) t
P t e

  

Maximum Differences [pcm] 

E-M 

E-M with 

Low-Pass 

Filter 

E-M with 

Exponential 

Filter 

E-M with 

S-G Filter 

N=25 

E-M with 

S-G Filter 

N=225 

0.00243   tf=1000 s 2.56 1.79 1.24 0.66 0.14 

0.006881 
 

tf=500 s 2.44 4.69 1.19 0.63 0.13 

0.01046   tf=800 s 2.36 7.04 1.15 0.60 0.12 

0.02817   tf=600 s 2.08 18.07 1.04 0.51 1.33 

0.12353   tf=300 s 1.45 66.00 0.78 0.33 228.51 

1.00847   tf=150 s 1.09 250.02 0.47 187.22 81000.00 

11.6442   tf=60 s 391.77 2144.75 29.19 10086.00 326000.00 

52.80352 
 

tf=10 s 4.83 × 1019 1.09 × 1021 259.69 8526.6 Infinite 

 

Table-5. Mean absolute error for a standard deviation of 0.01   and a time step of 0.01t s  . 
 

( ) t
P t e

  

Mean Absolute Error 

E-M 

E-M with 

Low-Pass 

Filter 

E-M with 

Exponential 

Filter 

EM with S-

G Filter 

N=25 

EM with S-

G Filter 

N=225 

0.00243   tf=1000 s 5.43 0.24 2.34 1.60 0.48 

0.006881   tf=500 s 5.21 0.34 2.25 1.53 0.47 

0.01046   tf=800 s 5.04 0.33 2.17 1.48 0.45 

0.02817   tf=600 s 4.49 0.53 1.93 1.31 0.39 

0.12353   tf=300 s 3.23 1.53 1.39 0.94 0.28 

1.00847   tf=150 s 1.22 3.02 0.52 0.35 1.10 

11.6442   tf=60 s 0.20 3.34 0.08 0.69 324.57 

52.80352   tf=10 s 0.40 6.09 0.17 54.09 648.13 

 

 

Table-6. Maximum differences for a standard deviation of 0.01   and a time step of 0.01t s  . 
 

( ) t
P t e

  

Maximum Differences [pcm] 

E-M 

E-M with 

Low-Pass 

Filter 

E-M with 

Exponential 

Filter 

E-M with 

S-G Filter 

N=25 

E-M with S-G 

Filter N=225 

0.00243   tf=1000 s 34.02 1.95 16.96 8.87 2.35 

0.006881   tf=500 s 32.50 4.55 16.19 8.47 2.23 

0.01046   tf=800 s 31.49 6.66 15.68 8.20 2.15 

0.02817   tf=600 s 27.95 16.69 13.88 7.26 1.88 

0.12353   tf=300 s 22.13 60.54 9.26 4.98 1.25 

1.00847   tf=150 s 14.59 228.31 7.38 2.80 146.46 

11.6442   tf=60 s 11.44 452.42 4.08 365.16 1658300.00 

52.80352   tf=10 s 94.38 320.22 5.11 31999.00 356360.00 
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Tables 7-8 show that the values obtained when 

increasing the time step to 0.1t s  , maintaining the 

same standard deviation. It is possible to observe that the 

fluctuations are reduced for a sample size of N=225, with 

the S-G filter. Good results are obtained for values of 

0.02817  compared with the exponential filter, and 

even for a sample size of N=25. 

 

Table-7. Mean absolute error for a standard deviation of 0.01   and a time step of  0.1t s  . 
 

( ) t
P t e

  

Mean Absolute Error 

E-M 

E-M with 

Low-Pass 

Filter 

E-M with 

Exponential 

Filter 

E-M with 

S-G 

Filter 

N=25 

E-M with 

S-G Filter 

N=225 

0.00243   tf=1000 s 5.35 0.65 2.19 1.39 0.33 

0.006881   tf=500 s 5.10 0.74 2.05 1.31 0.32 

0.01046   tf=800 s 4.97 0.72 2.02 1.29 0.30 

0.02817   tf=600 s 4.42 0.95 1.77 1.12 0.27 

0.12353   tf=300 s 3.09 2.63 1.21 0.76 5.54 

1.00847   tf=150 s 1.18 10.13 0.46 1.65 199.93 

11.6442   tf=60 s 100.41 1141.1 8.12 139.11 833.75 

ω = 52.80352 tf=10 s 2.19x10
19

 8.62x10
20 

39.79 224.74 Infinite 

 

Table-8. Maximum differences for a standard deviation of 0.01   and a time step of 0.1t s  . 
 

( ) t
P t e

  

Maximum Differences [pcm] 

E-M 

E-M with 

Low-Pass 

Filter 

E-M with 

Exponential 

Filter 

E-M with 

S-G Filter 

N=25 

E-M with 

S-G Filter 

N=225 

0.00243   tf=1000 s 25.13 3.66 12.59 6.55 1.35 

ω = 0.006881 tf=500 s 24.17 6.34 12.08 6.19 1.27 

0.01046   tf=800 s 23.64 8.59 11.74 5.96 1.22 

0.02817   tf=600 s 21.32 18.91 10.54 5.13 1.42 

0.12353   tf=300 s 14.21 66.16 7.92 3.32 228.79 

1.00847   tf=150 s 10.57 249.85 4.65 182.66 81930.00 

11.6442   tf=60 s 14568.00 20900.00 20.20 25678.00 158060.00 

ω =52.80352 tf=10 s 4.83x10
20

 1.09x10
22

 330.05 8525.6 Infinite 

 

CONCLUSIONS 

The numerical experiments done in this work, 

using the Euler-Maclaurin method with an approximation 

of the first Bernoulli number and Savitzky-Golay filter 

with a Gram polynomial of order d=2, were done so that 

we could reduce the fluctuations present in a nuclear 

reactor. Such fluctuations in the neutron density were 

simulated with a noise with a Gaussian distribution. We 

used values for the standard deviation between σ=0.001 

and σ=0.01. The results were compared with the Euler-

Maclaurin method combined with the first order delayed 

low-pass filter and with Euler-Maclaurin method 

combined with the exponential filter. We showed that 

when the sample size of N=225 in the Savitzky-Golay 

filter, the precision of the method is reduced when the 

reactivity increases, however, when the sample size was 

N=25, the results are a better approximation. 
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