
 VOL. 16, NO. 10, MAY 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1071

GeneTaS - AN OPTIMIZED TASK SCHEDULING STRATEGY USING
GENETIC ALGORITHM FOR PARALLEL AND DISTRIBUTED

COMPUTING ENVIRONMENT

P. Muthulakshmi1, D.I. George Amalarethinam2 and P. Yogalakshmi1
1Department of Computer Science, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai, Tamil Nadu, India

2Computer Science and Director (MCA), Jamal Mohamed College, Trichirappalli, Tamil Nadu, India

E-Mail: muthulap@srmist.edu.in

ABSTRACT

The proposed genetic algorithm could solve the problem of task scheduling with a new initialization strategy to

generate the initial population and new genetic operators to ensure best task–resource mapping that preserves good

characteristics of the found solutions. Genetic Algorithm for Task Scheduling (GeneTaS) uses bio-inspired genetic

algorithm to find an optimal schedule and adapts new fitness function to find the suitability of task and resource pair for

best allocation. The use of evolutionary operators; crossover and mutation are found to move the solution very close

towards optimality. The proposed algorithm is implemented using Gridsim, a simulator for task allocation problems and

tested with arbitrary task graphs that are generated using DAGitizer. In the experimental setups, thousands of arbitrary task

graphs are used and it is observed that the results of the proposed GeneTaS algorithm is found better than the compared

scheduling algorithms, when scaled on performance metrices namely; makespan, resource utilization and speed up.

Keywords: parallel and distributed computing, genetic algorithm, fitness function, cross over, mutation, makespan, resource utilization,

speed up.

INTRODUCTION

Parallel and distributed computing facilitates the

utilization of computational power of globally distributed

resources. Also, it combines the utilities like infrastructure

and software in order to provide an extensive support to

the demand of computational power, storage and

application services. Applications involve large complex

procedures need lot of computational power to execute.

Super computers that may have extra ordinary

computation speed to complete the executions in short

span of executing time may fulfil these demands.

However, owning and maintaining super computers are

very expensive and require specific geographic regions to

install. Many surveys state that the CPU cycles of

computers on the internet are remain unused. These idle

computing powers can be used to meet the demand of

large-scale applications that are used to solve problems in

the field of medical science, astronomy, aeronautics,

engineering, and commerce. Parallel and distributed

computing technology aggregates the globally found

resources and allows people to use them on agreements

and policies. A business environment may support buying

and selling of computing speed, storage spaces,

application services. This can be achieved by the parallel

and distributed commerce environment where computing

power, applications, and devices are traded as

commodities. The performance of a parallel and

distributed system largely depends on the effective

utilization of resources. Best allocation methods help in

assigning large-scale business, scientific applications to

the available resources for execution and it results in

remarkably great performance. These allocation methods

are known as scheduling algorithms. In general,

scheduling algorithms focus to minimize the overall time

required to complete the execution of applications.

This study proposes an evolutionary based

scheduling algorithm called Genetic Algorithm for Task

Scheduling in parallel and distributed computing

environment (GeneTaS) to schedule a group of tasks on

the available resources. Genetic algorithm (GA) is an

adaptive heuristic random search algorithm based on the

evolutionary ideas of natural selection and genetics. GA

was proposed by Holland [10]. GAs help to get optimal

solutions and found to outperform several algorithms in

the task scheduling problems [11, 12]. Also, it is found

from the literature survey [13 through 27] [30 through 35]

that GA provides best solutions for problems.

Generally, bio-inspired algorithms are

optimization algorithms that may convert the feasible

solutions into optimal solutions. These algorithms take a

set of solutions as initial population. In GA, each solution

is represented as a chromosome. The genetic operators

namely, selection, crossover, and mutation are used to

transform chromosomes in to better chromosomes that

forms a better population. To retain good features from the

previous generation, the crossover operator exchanges the

information between two chromosomes. The mutation

operator in a random fashion alters single bit of a

chromosome to increase the diversity of chromosomes and

hence, prevents the premature convergence of solutions.

The genetic process is repeated until the stopping criterion

is satisfied. At the end of process, new set of

chromosomes will be generated as population that could

be considered as new generation. The best chromosomes

from all generations are reported to be the best solutions.

The proposed methodology employs genetic

algorithm to discover an optimal schedule. The study

presents a new initialization strategy to generate the initial

population and new genetic operators. GeneTaS algorithm

adapts new fitness function that finds the best resource for

mailto:muthulap@srmist.edu.in

 VOL. 16, NO. 10, MAY 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1072

a task to execute. Also, GeneTaS algorithm uses the

evolutionary operators; crossover and mutation, which can

move the solution very close to optimality. The proposed

algorithm is implemented using Gridsim Simulator and

tested with wide range of arbitrary task graphs that are

generated using DAGitizer [29], a simulated environment

to generate random task graphs of size ranging from 3 to

1550 tasks. The results achieved through various testing in

the experimental set ups show that the proposed GeneTaS

algorithm has outperformed the compared Hybrid Genetic

Algorithm (HGA) [13] and Triplet Bin Task Grouping and

Prioritizing algorithm (TBTGP) [28] scheduling

algorithms.

The Proposed Genetic Algorithm for Task Scheduling

The present study incorporates genetic algorithm

to schedule applications on parallel and distributed. In the

present study, GA is used to schedule workflow/DAG

model of applications. In general, workflow preserves

precedence constraints. GeneTaS algorithm focuses on

minimizing the makespan and communication cost while

maximizing the utilization of resources by balancing the

load across parallel and distributed resources. Genetic

Algorithms in the literature have not ensured the validity

of both the initial population and the offsprings generated

by genetic operators. GeneTaS overcomes these

difficulties by adding the feasible solutions generated by

TBTGP algorithm to the initial population. The string

representation of GeneTaS involves the schedules of tasks

on individual resources, Strings that preserve the

precedence constraints are absorbed as valid strings.

GeneTaS ensures not only the validity of the initial

population but also guarantees the validity of offspring

generated by genetic operators. All the strings generated

by GeneTaS represent valid executable schedules. Table-1

presents the pseudocode of GeneTaS algorithm.

Table-1. GeneTaS algorithm.

Algorithm Genetic Algorithm for Task Scheduling (DAG, Resource List)

1. {

2. Generate the chromosome population (popsize) through TBTGP algorithm

and through random generation

3. for chro= 1 to popsize do

4. Find the validity through fitness function f(chro)

5. while (not termination condition)

6. {

7. Select the chromosomes from the population having high fitness values

8. Apply single point cross over operation on the parents to generate two new

offsprings

9. Mutate new offspring at each position in chromosome; reorder and restore

10. Check the new offspring for its validity

11. Valid chromosomes are accepted for producing new generation

12. }

13. if (best solution is obtained from the current generation)

14. return(the best solution)

15. else

16. goto step 2

17. }

Chromosome representation of GeneTaS

Proper representation of chromosome is the first

step in GA. The chromosome may be known as string. A

string is a candidate solution in GA and therefore, it

should represent a complete schedule. The representation

of a string involves the parameters available in the

solution. It is found that the value encoding method is

suitable for scheduling problem. The solution sequence

consists of task identification number and resource

identification number and they are represented as integer

values. The assignment of task ‘m’ on resource ‘r’ for

execution can be shown as (m,r). Valid schedules are

considered for representing the strings and these strings

form the initial population. Figure-1 shows a simple

workflow application. Table-2 consists of computation

costs of tasks represented through circles numbered from 1

to 8 and the communication costs of the edges connecting

the tasks are shown on the edge links of Figure-1.

Figure-1. Simple DAG.

 1

 4 3 2

 5 7

13
11

27

11

23 13

 6

16

23

9

 8

19

 VOL. 16, NO. 10, MAY 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1073

Table-2. Computation cost of tasks on resources.

Computation Cost

Tasks R1 R2

T1 14 16

T2 13 19

T3 11 13

T4 13 8

T5 12 13

T6 13 16

T7 7 15

T8 5 11

Valid execution sequence for the DAG illustrated

in Figure-1 that uses computational cost given in Table-2

can be shown as,

Each sequence of computational tasks will be

executed on the respective resource and the order of tasks

in the sequence indicates the order of execution. The

schedule will be encoded as (T1, R1), (T2, R1), (T3, R1),

(T4, R2), (T5, R1), (T6, R1), (T7, R1), (T8, R1).

Initial Population of GeneTaS

The size of the population is fixed to be 20. Half

of the population capacity is filled using schedules

generated using TBTGP algorithm and the remaining part

would be filled by random generation of task, resource

pair. The validity of initial populations is checked using

fitness function. The initial population of GeneTaS

algorithm is generated using the pseudocode shown in

Table-3.

Table-3. GeneTaS population.

The proposed Fitness function of GeneTaS

A fitness function is used to scale the quality of

an individuals in the population according to the given

optimization objective. The fitness function is observed to

be different for different problems. Considering

scheduling problems, the fitness function can be defined

based on deadline or budget constraints. Fitness function

in GA involves the factors that influence the objective

function of the problem. The proposed fitness function is

designed to emphasize minimum makespan, maximize

resource utilization by balancing load across resources and

reservation of appropriate number of efficient resources.

In the fitness function definition, makespan is the

minimizing function whereas resource utilization is the

maximizing function and reservation of resources depends

on maximum number of tasks that is contained in the level

of DAG. The fitness function of the string is evaluated by,

F(i)={max(FT(ti,rj))/max(sum(FT(ti,rj)))}*(vs/ts) (1)

Where FT represents the finish time, vs and ts

denotes valid sequences and total sequences respectively.

The fitness function is used to evaluate the fitness value of

strings. Based on the fitness value, roulette wheel

mechanism selects the best strings.

Roulette wheel selection of GeneTaS

The reproduction process forms a new population

by selecting strings form the old population based on their

fitness values. The selection criterion focuses to select

strings with higher fitness value and given priorities to

survive to the next generation. Roulette wheel selection

method is used to implement reproduction in GeneTaS

algorithm. This selection method is adopting the

methodology that was proposed by Kalyanmoy Deb [36].

The Roulette wheel selection needs six computations to

select the chromosome that could form the initial

population. The fitness value of each population (F(i)) is

calculated and arrived at the average fitness function (F)

followed by the computation of the expected count of each

string A.

A(i)=F(i)/(F) (2)

The probability (PB) of each string is the ratio

between the expected count A and the population size N.

The probability of the string is given as,

PB(i)=A/N (3)

The cumulative probability is calculated using the

probability ratio of each string. The value of cumulative

probability of a string is expected to be one in order to get

it selected for reproduction. The cumulative probability is

expressed as follows,

C(i)=C(i)+PB(i) (4)

To select the strings for next generation, the

following steps will be followed: first, a random number,

‘rs’ is generated between 0 and 1, then the string that has

the very close cumulative value with respect to ‘rs’is

 VOL. 16, NO. 10, MAY 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1074

chosen, the steps are repeated when the population

strength is less than the population size. The selected

strings found in the mating pool will be allowed to

undergo crossover operation to produce new offsprings.

Single point crossover operation of GeneTaS

The crossover operator facilitates the utility of

producing new offsprings from the existing population of

strings. This study uses single point crossover to generate

offspring for the next generation and the following steps

are used to carry out the process,

a) Select a random resource R1 from the resource list.

b) Select a random task scheduled on the resource

selected in step 1

c) Select another random resource R2 form the resource

list (resources selected in steps 1 and 3 should not be

the same)

d) Randomly select a task that is scheduled to execute on

the resource selected in step 3 (selection of tasks in

steps 2 and 4 should not violate the precedence

constrains)

e) Exchange the sequence of tasks of R1 that comes

after the tasks selected in step 2 with the sequence of

tasks of R2 that comes after the tasks selected in step

4.

f) Now save the arrangement as offspring 1 and

offspring 2 obtained from steps 3 and 5 respectively.

The probability of crossover rate is 0.65. In

addition, offsprings are created by exchanging the portions

of a selected string by preserving the precedence

constraints and the new offsprings will be validated for

their survival. The remaining invalid strings will be

allowed to mutate.

The Mutation operation of GeneTaS

Mutation is an occasional random alteration of

the value of a string. The invalid strings undergo mutation

operation to transform them into valid strings. Some of the

ideas that could be used while mutation operator is

applied: (1) Swapping the sequence of tasks between two

randomly chosen resources, (2) swapping the positions of

tasks in a sequence and (3) swapping the task that is

scheduled to execute after a long idle time to one of the

schedules that falls before the long idle time. Similarly, if

the invalid string does not satisfy the precedence

constraints, repeated swapping of two tasks can be done to

meet the precedence constraint. GeneTaS algorithm

incorporates one or single point mutation. The probability

rate of mutation is 0.01. The following procedure helps to

adopt mutation in an invalid string to convert the same

into valid string.

GeneTaS algorithm allows 50 iterations in order

to meet the convergence condition but it achieves

favorable conditions between 25 and 35 iterations itself.

RESULTS AND DISCUSSIONS

The proposed Genetic Algorithm for Task

Scheduling is implemented using Gridsim. Simulation

based on GridSim uses the following parameter values,

- Resources: 1-15

- Processing Elements (PE): 1-10

- PE rate (MIPS): 5-50

- Gridlets: 512

- Gridlet length: 5k-10k

- Input file/output file size: 50-300 MB

The study underwent exhaustive experiments

with arbitrary task graphs to analyze its performance. The

results are compared with the results of TBTGP, which is

a list scheduling algorithm and HGA, an evolutionary

algorithm. It is analyzed that HG algorithms is found to

design with complex crossover operation; also it is found

unsuitable for large graphs and graphs with small

Computation Communication CCR values. The results of

the proposed algorithm are found to be better than the

compared algorithm. When comparing the algorithms to

scale the performances, it is observed that GeneTaS

algorithm outperforms the other algorithms by meeting the

objective of the study. GeneTaS is examined to be the best

in makespan, resource utilization and in speed up values.

Sample arbitrary task graph information is shown in

Figure-2. Figure-3 shows the pictorial view of the

generated task graph information for the inputs given via

the user interface. Summary of the generated DAG is

displayed in Figure-4. Figure-5 illustrates the plots of

schedules and the makespan of GeneTaS and HG

algorithms. The investigational results on makespan,

average resource utilization and speed-up ratios for

varying experimental setups are shown in Table-4 through

Table-6. Correspondingly, Figure-6 through Figure-8

show the Gantt chart for the values of Table-4 through

Table-6. The proposed GeneTaS algorithm gives better

result consistencies for all kinds of graphs with different

size, topology and CCR values. For instance, the arbitrary

task graph of size 100 with CCR = 1.2 scheduled on 8

resources results in a makespan value of 10529 (msec.),

9560 (msec.) and 8553 (msec.) for TBTGP, HGA and

GeneTaS algorithms respectively. Similarly, the DAG size

of 500 tasks executed on 64 resources shows the makespan

values as 36521 (msec.), 35657 (msec.) and 34294 (msec.)

for TBTGP, HGA and GeneTaS algorithms respectively.

The values in the Table-4 are computed for various input

parameters and the analysis concluded that GeneTaS

algorithm proves itself by showing remarkable execution

times for arbitrary task graphs ranging from 50 to 1000.

Similarly, the arbitrary task graph of 250 tasks

with CCR=0.6 executed on 32 resources shows better

resource utilization for GeneTaS than the compared

algorithms and the results are 65.62, 66.49 and 85.29 for

TBTGP, HGA and GeneTaS algorithms respectively. It is

observed that GATs algorithm shows more than 70

percentage of resource utilization for both computational

and communicational intensive graphs whereas the

compared algorithms are found be less in utilization for

 VOL. 16, NO. 10, MAY 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1075

the same input values. With respect to speed-up values,

GeneTaS algorithm gets almost close to one for most of

the runs with different parameter values. The consistency

of results produced by GeneTaS with the change in

parameter values proves that the proposed algorithm is

very efficient and effective. For example, the speed-up

values of TBTGP, HGA and GeneTaS are found to be

0.6927, 0.7381 and 0.9226 respectively while executing a

task graph of size 100 with CCR value as 2.1 on 16

resources. Similarly, it can be noted that the speed-up

values of GeneTaS is greater than the compared

algorithms for various input specifications. Hence, it can

be confirmed that GeneTaS algorithm is highly productive

in nature for any kind of input values, whereas HGA

algorithm is confined to certain limitations to prove its

efficiency and TBTGP algorithm is a not an evolutionary

algorithm however, it proves its performance to a better

level.

Figure-2. Arbitrary task graph information.

Figure-3. User Interface for input values to generate DAG generated DAG.

 VOL. 16, NO. 10, MAY 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1076

Figure-4. Summary of the generated DAG with CCR value.

Figure-5. Schedule information generated for GeneTaS and HG algorithms.

Table-4. Makespan of TBTGP, HGA and GeneTaS algorithms for arbitrary task graphs.

No. of

Tasks
Resources

Algorithms

TBTGP HGA GeneTaS TBTGP HGA GeneTaS TBTGP HGA GeneTaS

Makepan (msec.) for Arbitrary

Task Graph of CCR=0.6

Makespan (msec.) for Arbitrary

Task Graph of CCR=1.2

Makespan (msec.) for Arbitrary

Task Graph of CCR=2.1

50

4 6645 5741 5171 8565 7786 5925 11393 10319 8852

8 4072 3653 3267 7691 6876 5571 14327 12995 11716

16 3445 2637 2332 4417 3786 2501 8772 7671 6585

500

32 31937 31386 30878 33505 32701 31313 36521 35657 34294

64 20959 19324 18267 22671 21768 19666 24861 23970 23020

128 14884 14179 12871 16069 15566 12751 20584 19538 18217

1000

64 44176 42457 39983 46048 44971 42360 48645 47714 45873

128 35316 34276 32086 38777 37557 34943 41797 40953 38623

256 25889 24865 23007 28374 27393 24821 31814 31420 29490

 VOL. 16, NO. 10, MAY 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1077

Figure-6. Makespan of TBTGP, HGA and GeneTaS algorithms.

Table-5. Average Resource Utilization (ARU) of TBTGP, HGA and GeneTaS algorithms for arbitrary task graphs.

No. of

Tasks
Resources

Algorithms

TBTGP HGA GeneTaS TBTGP HGA GeneTaS TBTGP HGA GeneTaS

ARU (%) for Arbitrary Task

Graph of CCR=0.6

ARU (%) for Arbitrary Task

Graph of CCR=1.2

ARU (%) for Arbitrary Task

Graph of CCR=2.1

250

16 63.45 67.41 84.79 69.73 70.36 72.41 69.45 72.30 75.24

32 65.62 66.49 85.29 69.96 72.03 77.94 67.01 71.68 70.97

64 65.95 75.38 73.33 69.47 71.36 70.08 68.06 68.23 76.21

500

32 71.20 75.26 72.34 70.28 68.81 80.05 66.72 66.56 77.89

64 65.79 74.44 74.30 69.99 72.05 82.19 69.71 68.75 75.48

128 65.06 67.09 75.97 65.72 70.31 77.38 67.66 72.33 76.85

1000

64 71.59 68.15 74.24 65.78 67.76 80.14 65.58 67.58 74.38

128 69.67 71.59 83.06 66.34 69.53 83.22 66.97 66.54 74.92

256 73.54 72.55 81.11 69.47 73.04 73.21 65.05 70.46 73.33

0

0.2

0.4

0.6

0.8

1

1.2

16 (R) 32 (R) 64 (R) 32 (R) 64 (R) 128 (R)

100 (T) 250 (T)

M
a
k

es
p

a
n

(m
se

c.
)

Tasks (T) and Resources (R)

Makespan of arbitrary task graph of CCR=1.2

TBTGP

HGA

GATS

 VOL. 16, NO. 10, MAY 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1078

Figure-7. Average Resource Utilization of TBTGP, HGA and GeneTaS algorithms.

Table-6. Speed-up values of TBTGP, HGA and GeneTaS algorithms for arbitrary task graphs.

No. of

Tasks
Resources

Algorithms

TBTGP HGA GeneTaS TBTGP HGA GeneTaS TBTGP HGA GeneTaS

Speed-up Ratio for Arbitrary

Task Graph of CCR=0.6

Speed-up Ratio for Arbitrary

Task Graph of CCR=1.2

Speed-up Ratio for Arbitrary

Task Graph of CCR=2.1

100

8 0.5760 0.5797 0.8607 0.6495 0.6635 1.0941 0.6453 0.7135 0.9900

16 0.5856 0.5961 0.5979 0.6407 0.6417 0.9462 0.6927 0.7381 0.9226

32 0.5906 0.6573 1.0093 0.7304 0.7450 0.8871 0.6565 0.6521 0.7800

250

16 0.6152 0.6639 0.9261 0.5494 0.5614 1.0088 0.6956 0.7036 0.9428

32 0.5284 0.5916 1.4968 0.7120 0.7279 1.0220 0.6890 0.7459 0.9649

64 0.5821 0.6187 1.5721 0.7461 0.7607 1.1028 0.7149 0.7152 0.8103

500

32 0.5909 0.6410 1.1485 0.6293 0.6619 0.9518 0.7241 0.7271 0.8073

64 0.5922 0.6825 0.7875 0.6453 0.6501 0.7241 0.7380 0.7565 0.9376

128 0.6191 0.6633 1.0044 0.6528 0.6588 0.7699 0.7150 0.7083 0.7855

0

0.2

0.4

0.6

0.8

1

1.2

16 (R) 32 (R) 64 (R) 32 (R) 64 (R) 128 (R)

100 (T) 250 (T)

A
R

U
 (

%
)

Tasks (T) and Resources (R)

Average Resource Utilization of arbitrary task graph of CCR=0.6

TBTGP

HGA

GATS

 VOL. 16, NO. 10, MAY 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1079

Figure-8. Speed-up values of TBTGP, HGA and GeneTaS algorithms.

CONCLUSIONS

In this paper, a nature-inspired algorithm called

Genetic Algorithm for Task Scheduling is proposed to

schedule tasks in parallel and distributed environment. It is

designed to give optimal schedules with the available

resources. Genetic Algorithm is an evolutionary approach

to derive optimal solution from the existing solutions.

Hence, the initial population consist of individuals

(schedules) from TBTGP algorithm a list scheduling

algorithm is used for the evolution of generations to

produce optimized schedules. Randomness is found to

favor most of the situations and therefore a partial

population is filled with random combination of tasks and

resources. The random combinations are ensured to be

valid by preserving the precedence constraints. The

genetic operators are applied suitably on strings to get

optimized results. After a considerable number of

iterations, the results are found to converge as optimum. In

this methodology, a new fitness function has been

proposed to validate the strings that can be considered as

an individual in the population for next successive

generations. The fitness function is designed to focus on

both the task and resource. According to experimental

results conducted on different types of task graphs with

varying range of CCR values and various kinds of

resource selections, GeneTaS gives consistent

performance with lower makespan and higher resource

utilization. In order to schedule the regular graphs, we

consider the system of simultaneous equations viz., Gauss

Elimination Method, Laplace Method and Fast Fourier

Transformation Method. In the proposed work, we focus

on makespan, resource utilization and load balancing,

other performance metrics can also be considered that

include flow time, throughput, memory specification,

contention awareness, etc. to explore the hidden potential

of the parallel and distributed system. While applying

optimization techniques the initial population could be

generated using the combined strategies of critical tasks

and duplication mechanism. Making use of rescheduling

point in the pre-emptive mode of execution can be

considered in the future works.

REFERENCES

[1] Haluk Topcuoglu, Salim Hariri, Min-You Wu. 2002.

Performance-Effective and Low-Complexity Task

Scheduling for Heterogeneous Computing. IEEE

Transactions on Parallel and Distributed Systems.

[2] Liou J, Palis M A. 1996. An Efficient Task Clustering

Heuristic for Scheduling DAGs on Multiprocessors.

Proceeding of workshop on resource management,

symposium of parallel and distributed processing. pp.

152-156.

[3] Tang X, Li K, Liao G, Li R. 2010. List Scheduling

with Duplication for Heterogeneous Computing

Systems. Journal of Parallel Distributed Computing.

70(4): 323-329.

[4] Omara F A, Arafa M M. 2010. Genetic Algorithms

for Task Scheduling Problem. Journal of Parallel

Distributed Computing. 70(1): 13-22.

[5] Rewini HE, Lewis T, Ali H. 1994. Task Scheduling in

Parallel and Distributed Systems. Prentice Hall, New

Jersey.

[6] Hyunjin K, Sungho K. 2010. Communication-Aware

Task Scheduling and Voltage Selection for Total

Energy Minimization in a Multiprocessor System

0

0.2

0.4

0.6

0.8

1

1.2

16 (R) 32 (R) 64 (R) 32 (R) 64 (R) 128 (R)

100 (T) 250 (T)

S
p

ee
d

-u
p

 r
a
ti

o

Tasks (T) and Resources (R)

Speed-up values of arbitrary task graph of CCR=1.2

TBTGP

HGA

GATS

 VOL. 16, NO. 10, MAY 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1080

using Ant Colony Optimization. Information Science.

181(18): 3995-4008.

[7] Mirabi M. 2011. Ant Colony Optimization Technique

for the Sequence-Dependent Flowshop Scheduling

Problem. International Journal of Advanced

Manufacturing Technology. 55(1-4): 317-326.

[8] Liu H, Abraham A, Snášel V, McLoone S. 2012.

Swarm Scheduling Approaches for Work-Flow

Applications with Security Constraints in Distributed

Data-Intensive Computing Environments. Information

Science. 192: 228-243.

[9] Tao Q, Chang H Y, Yi Y, Gu C Q, Li W J. 2011. A

Rotary Chaotic PSO Algorithm for Trustworthy

Scheduling of a Grid Workflow. Computing and

Operational Research. 38(5): 824-836.

[10] Holland J H. 2011. Adaptation in Natural and

Artificial Systems. University of Michigan Press, Ann

Arbor.

[11] Falzon G, Li M. 2012. Enhancing Genetic Algorithms

for Dependent Job Scheduling in Grid Computing

Environments. Journal of Super Computing. 62(1):

290-314.

[12] Wu A S, Yu H, Jin S, Lin K, Schiavone G. 2004. An

Incremental Genetic Algorithm Approach to

Multiprocessor Scheduling. IEEE Trans Parallel

Distributed System. 15(9): 824-834.

[13] Yan Kang, Defu Zhang. 2012. A Hybrid Genetic

Scheduling Algorithm to Heterogeneous Distributed

System. Applied Mathematics. pp. 250-254.

[14] Rajabioun R 2011. Cuckoo optimization algorithm.

Applied soft computing.

[15] Saurabh Kumar Garg, Srikumar Venugopal, James

Brober, Rajkumar Buyya. 2013. Double Auction-

Inspired Meta-Scheduling of Parallel Applications on

Global Grids. Journal of Parallel and Distributed

Computing.

[16] Lizhe Wang, Samee U. Khan, Dan Chen, Joanna

Kołodziej, Rajiv Ranjan, Cheng-zhong Xu, Albert

Zomaya. 2013. Energy-aware parallel task scheduling

in a cluster. Future Generation Computer Systems.

[17] Chung-Hsing Hsu, Wu Chun Feng. 2005. A Feasibility

Analysis of Power Awareness in Commodity-Based

High-Performance Clusters. CLUSTER.

[18] Xiaomin Zhu, Rong Ge, Jinguang Sun, Chuan He.

2013. 3E: Energy-Efficient Elastic Scheduling for

Independent Tasks in Heterogeneous Computing

Systems. The Journal of Systems and Software.

[19] Ye Huang, Nik Bessis, Peter Norrington, Pierre

Kuonen, Beat Hirsbrunner. 2013. Exploring

Decentralized Dynamic Scheduling for Grids and

Clouds Using the Community-Aware Scheduling

Algorithm. Future Generation Computer Systems.

[20] Wei Liu, Wei Du, Jing Chen, Wei Wang, Guo Sun

Zeng. 2014. Adaptive Energy-Efficient Scheduling

Algorithm for Parallel Tasks on Homogeneous

Clusters. Journal of Network and Computer

Applications.

[21] Rajni, Inderveer Chana. 2013. Bacterial Foraging

Based Hyper-Heuristic for Resource Scheduling in

Grid Computing. Future Generation Computer

Systems.

[22] K.M. Passino. 2002. Biomimicry of Bacterial Foraging

for Distributed Optimization and Control. IEEE

Control Systems Magazine.

[23] Sucha Smanchat, Maria Indrawan, Sea Ling, Colin

Enticott, David Abramson. 2013. Scheduling

Parameter Sweep Workflow in the Grid Based on

Resource Competition. Future Generation Computer

Systems.

[24] Ramya R and Shalini Thomas. 2012. An Optimal Job

Scheduling Algorithm in Computational Grids.

Special Issue of International Journal of Computer

Applications.

[25] Anis Gharbi et al. 2013. An Effective Genetic

Algorithm for a Complex Real-World Scheduling

Problem. International Journal of Mechanical,

Industrial Science and Engineering.

[26] Bsoul, M, Phillip I, Hinde C. 2012. Micosim: A

Simulator for Modelling Economic Scheduling in

Grid Computing. World Academy of Science,

Engineering and Technology, International Science.

[27] Maryam Rabiee and Hedieh Sajedi. 2013. Job

Scheduling in Grid Computing with Cuckoo

Optimization Algorithm. International Journal of

Computer Applications.

[28] D.I. George Amalarethinam, P. Muthulakshmi. 2014.

A Proficient Low Complexity Algorithm for

 VOL. 16, NO. 10, MAY 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 1081

Preeminent Task Scheduling Intended for

Heterogeneous Environment. Journal of Theoretical

and Applied Information Technology. 67(1): 1-11.

[29] D.I. George Amalarethinam, P. Muthulakshmi. 2012.

DAGITIZER - A Tool to Generate Directed Acyclic

Graph through Randomizer to Model Scheduling in

Grid Computing. Advances in Computer Science,

Engineering and Applications, Springer Verlag. pp.

969-978.

[30] Walaa AbdElrouf, Adil Yousif and Mohammed Bakri

Bashir. 2016. High Exploitation Genetic Algorithm

for Job Scheduling on Grid Computing. International

Journal of Grid and Distributed Computing. 9: 221-

228.

[31] T. Selvakumar et al. 2016. Implementation of

Pervasive Semantic Grid Computing in Hospital

Scenario. International Research Journal in Advanced

Engineering and Technology. 2: 517-522.

[32] S. Vaaheedha Kfatheen et al. 2017. ETS: An Efficient

Task Scheduling Algorithm for Grid Computing.

Advances in Computational Sciences and

Technology. 10: 2911-2925.

[33] Hajara Idris et al. 2017. An Improved Ant Colony

Optimization Algorithm with Fault Tolerance for Job

Scheduling in Grid Computing Systems. Plos One.

[34] Firas Albalas et al. 2017. Optimized Job Scheduling

Approach based on Genetic Algorithms in Smart Grid

Environment. International Journal of Communication

Networks and Information Security. 9: 172-176.

[35] F Kurus Malai Selvi et al. 2012. Grid Scheduling

Strategy using GA. International Journal of Computer

Technology and Applications. 3: 1800-1806.

[36] Kalyanmoy Deb. 2001. Multi-objective Optimization

Using Evolutionary Algorithms. John Wiley & Sons,

Inc. New York, USA.

http://link.springer.com/book/10.1007/978-3-642-30111-7
http://link.springer.com/book/10.1007/978-3-642-30111-7

