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ABSTRACT 

The proposed genetic algorithm could solve the problem of task scheduling with a new initialization strategy to 

generate the initial population and new genetic operators to ensure best task–resource mapping that preserves good 

characteristics of the found solutions. Genetic Algorithm for Task Scheduling (GeneTaS) uses bio-inspired genetic 

algorithm to find an optimal schedule and adapts new fitness function to find the suitability of task and resource pair for 

best allocation. The use of evolutionary operators; crossover and mutation are found to move the solution very close 

towards optimality. The proposed algorithm is implemented using Gridsim, a simulator for task allocation problems and 

tested with arbitrary task graphs that are generated using DAGitizer. In the experimental setups, thousands of arbitrary task 

graphs are used and it is observed that the results of the proposed GeneTaS algorithm is found better than the compared 

scheduling algorithms, when scaled on performance metrices namely; makespan, resource utilization and speed up.  

 
Keywords: parallel and distributed computing, genetic algorithm, fitness function, cross over, mutation, makespan, resource utilization, 

speed up. 

 

INTRODUCTION 

Parallel and distributed computing facilitates the 

utilization of computational power of globally distributed 

resources. Also, it combines the utilities like infrastructure 

and software in order to provide an extensive support to 

the demand of computational power, storage and 

application services. Applications involve large complex 

procedures need lot of computational power to execute. 

Super computers that may have extra ordinary 

computation speed to complete the executions in short 

span of executing time may fulfil these demands. 

However, owning and maintaining super computers are 

very expensive and require specific geographic regions to 

install. Many surveys state that the CPU cycles of 

computers on the internet are remain unused. These idle 

computing powers can be used to meet the demand of 

large-scale applications that are used to solve problems in 

the field of medical science, astronomy, aeronautics, 

engineering, and commerce. Parallel and distributed 

computing technology aggregates the globally found 

resources and allows people to use them on agreements 

and policies. A business environment may support buying 

and selling of computing speed, storage spaces, 

application services. This can be achieved by the parallel 

and distributed commerce environment where computing 

power, applications, and devices are traded as 

commodities. The performance of a parallel and 

distributed system largely depends on the effective 

utilization of resources. Best allocation methods help in 

assigning large-scale business, scientific applications to 

the available resources for execution and it results in 

remarkably great performance. These allocation methods 

are known as scheduling algorithms. In general, 

scheduling algorithms focus to minimize the overall time 

required to complete the execution of applications. 

This study proposes an evolutionary based 

scheduling algorithm called Genetic Algorithm for Task 

Scheduling in parallel and distributed computing 

environment (GeneTaS) to schedule a group of tasks on 

the available resources. Genetic algorithm (GA) is an 

adaptive heuristic random search algorithm based on the 

evolutionary ideas of natural selection and genetics. GA 

was proposed by Holland [10]. GAs help to get optimal 

solutions and found to outperform several algorithms in 

the task scheduling problems [11, 12]. Also, it is found 

from the literature survey [13 through 27] [30 through 35] 

that GA provides best solutions for problems.  

Generally, bio-inspired algorithms are 

optimization algorithms that may convert the feasible 

solutions into optimal solutions. These algorithms take a 

set of solutions as initial population. In GA, each solution 

is represented as a chromosome. The genetic operators 

namely, selection, crossover, and mutation are used to 

transform chromosomes in to better chromosomes that 

forms a better population. To retain good features from the 

previous generation, the crossover operator exchanges the 

information between two chromosomes. The mutation 

operator in a random fashion alters single bit of a 

chromosome to increase the diversity of chromosomes and 

hence, prevents the premature convergence of solutions. 

The genetic process is repeated until the stopping criterion 

is satisfied. At the end of process, new set of 

chromosomes will be generated as population that could 

be considered as new generation. The best chromosomes 

from all generations are reported to be the best solutions.  

The proposed methodology employs genetic 

algorithm to discover an optimal schedule. The study 

presents a new initialization strategy to generate the initial 

population and new genetic operators.  GeneTaS algorithm 

adapts new fitness function that finds the best resource for 
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a task to execute. Also, GeneTaS algorithm uses the 

evolutionary operators; crossover and mutation, which can 

move the solution very close to optimality. The proposed 

algorithm is implemented using Gridsim Simulator and 

tested with wide range of arbitrary task graphs that are 

generated using DAGitizer [29], a simulated environment 

to generate random task graphs of size ranging from 3 to 

1550 tasks. The results achieved through various testing in 

the experimental set ups show that the proposed GeneTaS 

algorithm has outperformed the compared Hybrid Genetic 

Algorithm (HGA) [13] and Triplet Bin Task Grouping and 

Prioritizing algorithm (TBTGP) [28] scheduling 

algorithms. 

 

The Proposed Genetic Algorithm for Task Scheduling  

The present study incorporates genetic algorithm 

to schedule applications on parallel and distributed. In the 

present study, GA is used to schedule workflow/DAG 

model of applications. In general, workflow preserves 

precedence constraints. GeneTaS algorithm focuses on 

minimizing the makespan and communication cost while 

maximizing the utilization of resources by balancing the 

load across parallel and distributed resources. Genetic 

Algorithms in the literature have not ensured the validity 

of both the initial population and the offsprings generated 

by genetic operators. GeneTaS overcomes these 

difficulties by adding the feasible solutions generated by 

TBTGP algorithm to the initial population. The string 

representation of GeneTaS involves the schedules of tasks 

on individual resources, Strings that preserve the 

precedence constraints are absorbed as valid strings. 

GeneTaS ensures not only the validity of the initial 

population but also guarantees the validity of offspring 

generated by genetic operators. All the strings generated 

by GeneTaS represent valid executable schedules. Table-1 

presents the pseudocode of GeneTaS algorithm. 

 

Table-1. GeneTaS algorithm. 
 

Algorithm Genetic Algorithm for Task Scheduling (DAG, Resource List) 

1. { 

2. Generate the chromosome population (popsize) through TBTGP algorithm 

and through random generation  

3. for chro= 1 to popsize do 

4. Find the validity through fitness function f(chro)   

5. while (not termination condition) 

6. { 

7. Select the chromosomes from the population having high fitness values 

8. Apply single point cross over operation on the parents to generate two new 

offsprings  

9. Mutate new offspring at each position in chromosome; reorder and restore  

10. Check the new offspring for its validity   

11. Valid chromosomes are accepted for producing new generation   

12. } 

13. if (best solution is obtained from the current generation) 

14. return(the best solution) 

15. else 

16. goto step 2   

17. } 

 

Chromosome representation of GeneTaS 

Proper representation of chromosome is the first 

step in GA. The chromosome may be known as string. A 

string is a candidate solution in GA and therefore, it 

should represent a complete schedule. The representation 

of a string involves the parameters available in the 

solution. It is found that the value encoding method is 

suitable for scheduling problem. The solution sequence 

consists of task identification number and resource 

identification number and they are represented as integer 

values. The assignment of task ‘m’ on resource ‘r’ for 

execution can be shown as (m,r). Valid schedules are 

considered for representing the strings and these strings 

form the initial population. Figure-1 shows a simple 

workflow application. Table-2 consists of computation 

costs of tasks represented through circles numbered from 1 

to 8 and the communication costs of the edges connecting 

the tasks are shown on the edge links of Figure-1. 

 
 

Figure-1. Simple DAG. 
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Table-2. Computation cost of tasks on resources. 
 

Computation Cost 

Tasks R1 R2 

T1 14 16 

T2 13 19 

T3 11 13 

T4 13 8 

T5 12 13 

T6 13 16 

T7 7 15 

T8 5 11 

 

Valid execution sequence for the DAG illustrated 

in Figure-1 that uses computational cost given in Table-2 

can be shown as, 

 

 
 

 
 

Each sequence of computational tasks will be 

executed on the respective resource and the order of tasks 

in the sequence indicates the order of execution. The 

schedule will be encoded as (T1, R1), (T2, R1), (T3, R1), 

(T4, R2), (T5, R1), (T6, R1), (T7, R1), (T8, R1). 

 

Initial Population of GeneTaS 

The size of the population is fixed to be 20. Half 

of the population capacity is filled using schedules 

generated using TBTGP algorithm and the remaining part 

would be filled by random generation of task, resource 

pair. The validity of initial populations is checked using 

fitness function. The initial population of GeneTaS 

algorithm is generated using the pseudocode shown in 

Table-3. 

 

Table-3. GeneTaS population. 
 

 

 

The proposed Fitness function of GeneTaS  

A fitness function is used to scale the quality of 

an individuals in the population according to the given 

optimization objective. The fitness function is observed to 

be different for different problems. Considering 

scheduling problems, the fitness function can be defined 

based on deadline or budget constraints. Fitness function 

in GA involves the factors that influence the objective 

function of the problem. The proposed fitness function is 

designed to emphasize minimum makespan, maximize 

resource utilization by balancing load across resources and 

reservation of appropriate number of efficient resources. 

In the fitness function definition, makespan is the 

minimizing function whereas resource utilization is the 

maximizing function and reservation of resources depends 

on maximum number of tasks that is contained in the level 

of DAG. The fitness function of the string is evaluated by, 

 

F(i)={max(FT(ti,rj))/max(sum(FT(ti,rj)))}*(vs/ts)          (1) 

 

Where FT represents the finish time, vs and ts 

denotes valid sequences and total sequences respectively. 

The fitness function is used to evaluate the fitness value of 

strings. Based on the fitness value, roulette wheel 

mechanism selects the best strings. 

 

Roulette wheel selection of GeneTaS 

The reproduction process forms a new population 

by selecting strings form the old population based on their 

fitness values. The selection criterion focuses to select 

strings with higher fitness value and given priorities to 

survive to the next generation. Roulette wheel selection 

method is used to implement reproduction in GeneTaS 

algorithm. This selection method is adopting the 

methodology that was proposed by Kalyanmoy Deb [36]. 

The Roulette wheel selection needs six computations to 

select the chromosome that could form the initial 

population. The fitness value of each population (F(i)) is 

calculated and arrived at the average fitness function ( F ) 

followed by the computation of the expected count of each 

string A.  

 

A(i)=F(i)/(F)                                                                     (2) 

 

The probability (PB) of each string is the ratio 

between the expected count A and the population size N. 

The probability of the string is given as, 

               

PB(i)=A/N                                                                        (3) 

 

The cumulative probability is calculated using the 

probability ratio of each string. The value of cumulative 

probability of a string is expected to be one in order to get 

it selected for reproduction. The cumulative probability is 

expressed as follows, 

 

C(i)=C(i)+PB(i)                                                               (4) 

 

To select the strings for next generation, the 

following steps will be followed: first, a random number, 

‘rs’ is generated between 0 and 1, then the string that has 

the very close cumulative value with respect to ‘rs’is 
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chosen, the steps are repeated when the population 

strength is less than the population size. The selected 

strings found in the mating pool will be allowed to 

undergo crossover operation to produce new offsprings. 

 

Single point crossover operation of GeneTaS 

The crossover operator facilitates the utility of 

producing new offsprings from the existing population of 

strings. This study uses single point crossover to generate 

offspring for the next generation and the following steps 

are used to carry out the process, 

 

a) Select a random resource R1 from the resource list. 

b) Select a random task scheduled on the resource 

selected in step 1 

c) Select another random resource R2 form the resource 

list (resources selected in steps 1 and 3 should not be 

the same) 

d) Randomly select a task that is scheduled to execute on 

the resource selected in step 3 (selection of tasks in 

steps 2 and 4 should not violate the precedence 

constrains) 

e) Exchange the sequence of tasks of R1 that comes 

after the tasks selected in step 2 with the sequence of 

tasks of R2 that comes after the tasks selected in step 

4. 

f) Now save the arrangement as offspring 1 and 

offspring 2 obtained from steps 3 and 5 respectively. 

 

The probability of crossover rate is 0.65.  In 

addition, offsprings are created by exchanging the portions 

of a selected string by preserving the precedence 

constraints and the new offsprings will be validated for 

their survival. The remaining invalid strings will be 

allowed to mutate. 

 

The Mutation operation of GeneTaS 

Mutation is an occasional random alteration of 

the value of a string. The invalid strings undergo mutation 

operation to transform them into valid strings. Some of the 

ideas that could be used while mutation operator is 

applied: (1) Swapping the sequence of tasks between two 

randomly chosen resources, (2) swapping the positions of 

tasks in a sequence and (3) swapping the task that is 

scheduled to execute after a long idle time to one of the 

schedules that falls before the long idle time. Similarly, if 

the invalid string does not satisfy the precedence 

constraints, repeated swapping of two tasks can be done to 

meet the precedence constraint. GeneTaS algorithm 

incorporates one or single point mutation. The probability 

rate of mutation is 0.01. The following procedure helps to 

adopt mutation in an invalid string to convert the same 

into valid string.   

GeneTaS algorithm allows 50 iterations in order 

to meet the convergence condition but it achieves 

favorable conditions between 25 and 35 iterations itself. 

 

 

 

 

RESULTS AND DISCUSSIONS 

The proposed Genetic Algorithm for Task 

Scheduling is implemented using Gridsim. Simulation 

based on GridSim uses the following parameter values, 

 

-  Resources: 1-15 

-  Processing Elements (PE): 1-10 

-  PE rate (MIPS): 5-50 

-  Gridlets: 512 

-  Gridlet length: 5k-10k 

-  Input file/output file size: 50-300 MB 

 

The study underwent exhaustive experiments 

with arbitrary task graphs to analyze its performance. The 

results are compared with the results of TBTGP, which is 

a list scheduling algorithm and HGA, an evolutionary 

algorithm. It is analyzed that HG algorithms is found to 

design with complex crossover operation; also it is found 

unsuitable for large graphs and graphs with small 

Computation Communication CCR values. The results of 

the proposed algorithm are found to be better than the 

compared algorithm. When comparing the algorithms to 

scale the performances, it is observed that GeneTaS 

algorithm outperforms the other algorithms by meeting the 

objective of the study. GeneTaS is examined to be the best 

in makespan, resource utilization and in speed up values.  

Sample arbitrary task graph information is shown in 

Figure-2. Figure-3 shows the pictorial view of the 

generated task graph information for the inputs given via 

the user interface. Summary of the generated DAG is 

displayed in Figure-4. Figure-5 illustrates the plots of 

schedules and the makespan of GeneTaS and HG 

algorithms. The investigational results on makespan, 

average resource utilization and speed-up ratios for 

varying experimental setups are shown in Table-4 through 

Table-6. Correspondingly, Figure-6 through Figure-8 

show the Gantt chart for the values of Table-4 through 

Table-6. The proposed GeneTaS algorithm gives better 

result consistencies for all kinds of graphs with different 

size, topology and CCR values. For instance, the arbitrary 

task graph of size 100 with CCR = 1.2 scheduled on 8 

resources results in a makespan value of 10529 (msec.), 

9560 (msec.) and 8553 (msec.) for TBTGP, HGA and 

GeneTaS algorithms respectively. Similarly, the DAG size 

of 500 tasks executed on 64 resources shows the makespan 

values as 36521 (msec.), 35657 (msec.) and 34294 (msec.) 

for TBTGP, HGA and GeneTaS algorithms respectively. 

The values in the Table-4 are computed for various input 

parameters and the analysis concluded that GeneTaS 

algorithm proves itself by showing remarkable execution 

times for arbitrary task graphs ranging from 50 to 1000. 

Similarly, the arbitrary task graph of 250 tasks 

with CCR=0.6 executed on 32 resources shows better 

resource utilization for GeneTaS than the compared 

algorithms and the results are 65.62, 66.49 and 85.29 for 

TBTGP, HGA and GeneTaS algorithms respectively. It is 

observed that GATs algorithm shows more than 70 

percentage of resource utilization for both computational 

and communicational intensive graphs whereas the 

compared algorithms are found be less in utilization for 
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the same input values. With respect to speed-up values, 

GeneTaS algorithm gets almost close to one for most of 

the runs with different parameter values. The consistency 

of results produced by GeneTaS with the change in 

parameter values proves that the proposed algorithm is 

very efficient and effective. For example, the speed-up 

values of TBTGP, HGA and GeneTaS are found to be 

0.6927, 0.7381 and 0.9226 respectively while executing a 

task graph of size 100 with CCR value as 2.1 on 16 

resources. Similarly, it can be noted that the speed-up 

values of GeneTaS is greater than the compared 

algorithms for various input specifications. Hence, it can 

be confirmed that GeneTaS algorithm is highly productive 

in nature for any kind of input values, whereas HGA 

algorithm is confined to certain limitations to prove its 

efficiency and TBTGP algorithm is a not an evolutionary 

algorithm however, it proves its performance to a better 

level.  

 

 
 

Figure-2. Arbitrary task graph information. 

 

 
 

Figure-3. User Interface for input values to generate DAG generated DAG. 
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Figure-4. Summary of the generated DAG with CCR value. 

 

 
 

Figure-5. Schedule information generated for GeneTaS and HG algorithms. 

 

Table-4. Makespan of TBTGP, HGA and GeneTaS algorithms for arbitrary task graphs. 
 

No. of  

Tasks 
Resources 

Algorithms 

TBTGP HGA GeneTaS TBTGP HGA GeneTaS TBTGP HGA GeneTaS 

Makepan (msec.) for Arbitrary 

Task Graph of CCR=0.6 

Makespan (msec.) for Arbitrary 

Task Graph of CCR=1.2 

Makespan (msec.) for Arbitrary 

Task Graph of CCR=2.1 

50 

4 6645 5741 5171 8565 7786 5925 11393 10319 8852 

8 4072 3653 3267 7691 6876 5571 14327 12995 11716 

16 3445 2637 2332 4417 3786 2501 8772 7671 6585 

500 

32 31937 31386 30878 33505 32701 31313 36521 35657 34294 

64 20959 19324 18267 22671 21768 19666 24861 23970 23020 

128 14884 14179 12871 16069 15566 12751 20584 19538 18217 

1000 

64 44176 42457 39983 46048 44971 42360 48645 47714 45873 

128 35316 34276 32086 38777 37557 34943 41797 40953 38623 

256 25889 24865 23007 28374 27393 24821 31814 31420 29490 
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Figure-6. Makespan of TBTGP, HGA and GeneTaS algorithms. 

 

Table-5. Average Resource Utilization (ARU) of TBTGP, HGA and GeneTaS algorithms for arbitrary task graphs. 
 

No. of  

Tasks 
Resources 

Algorithms 

TBTGP HGA GeneTaS TBTGP HGA GeneTaS TBTGP HGA GeneTaS 

ARU (%) for Arbitrary Task 

Graph of CCR=0.6 

ARU (%) for Arbitrary Task 

Graph of CCR=1.2 

ARU (%) for Arbitrary Task 

Graph of CCR=2.1 

250 

16 63.45 67.41 84.79 69.73 70.36 72.41 69.45 72.30 75.24 

32 65.62 66.49 85.29 69.96 72.03 77.94 67.01 71.68 70.97 

64 65.95 75.38 73.33 69.47 71.36 70.08 68.06 68.23 76.21 

500 

32 71.20 75.26 72.34 70.28 68.81 80.05 66.72 66.56 77.89 

64 65.79 74.44 74.30 69.99 72.05 82.19 69.71 68.75 75.48 

128 65.06 67.09 75.97 65.72 70.31 77.38 67.66 72.33 76.85 

1000 

64 71.59 68.15 74.24 65.78 67.76 80.14 65.58 67.58 74.38 

128 69.67 71.59 83.06 66.34 69.53 83.22 66.97 66.54 74.92 

256 73.54 72.55 81.11 69.47 73.04 73.21 65.05 70.46 73.33 
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Figure-7. Average Resource Utilization of TBTGP, HGA and GeneTaS algorithms. 

 

Table-6. Speed-up values of TBTGP, HGA and GeneTaS algorithms for arbitrary task graphs. 
 

No. of  

Tasks 
Resources 

Algorithms 

TBTGP HGA GeneTaS TBTGP HGA GeneTaS TBTGP HGA GeneTaS 

Speed-up Ratio for Arbitrary 

Task Graph of CCR=0.6 

Speed-up Ratio for Arbitrary 

Task Graph of CCR=1.2 

Speed-up Ratio for Arbitrary 

Task Graph of CCR=2.1 

100 

8 0.5760 0.5797 0.8607 0.6495 0.6635 1.0941 0.6453 0.7135 0.9900 

16 0.5856 0.5961 0.5979 0.6407 0.6417 0.9462 0.6927 0.7381 0.9226 

32 0.5906 0.6573 1.0093 0.7304 0.7450 0.8871 0.6565 0.6521 0.7800 

250 

16 0.6152 0.6639 0.9261 0.5494 0.5614 1.0088 0.6956 0.7036 0.9428 

32 0.5284 0.5916 1.4968 0.7120 0.7279 1.0220 0.6890 0.7459 0.9649 

64 0.5821 0.6187 1.5721 0.7461 0.7607 1.1028 0.7149 0.7152 0.8103 

500 

32 0.5909 0.6410 1.1485 0.6293 0.6619 0.9518 0.7241 0.7271 0.8073 

64 0.5922 0.6825 0.7875 0.6453 0.6501 0.7241 0.7380 0.7565 0.9376 

128 0.6191 0.6633 1.0044 0.6528 0.6588 0.7699 0.7150 0.7083 0.7855 
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Figure-8. Speed-up values of TBTGP, HGA and GeneTaS algorithms. 

 

CONCLUSIONS 

In this paper, a nature-inspired algorithm called 

Genetic Algorithm for Task Scheduling is proposed to 

schedule tasks in parallel and distributed environment. It is 

designed to give optimal schedules with the available 

resources. Genetic Algorithm is an evolutionary approach 

to derive optimal solution from the existing solutions. 

Hence, the initial population consist of individuals 

(schedules) from TBTGP algorithm a list scheduling 

algorithm is used for the evolution of generations to 

produce optimized schedules. Randomness is found to 

favor most of the situations and therefore a partial 

population is filled with random combination of tasks and 

resources. The random combinations are ensured to be 

valid by preserving the precedence constraints. The 

genetic operators are applied suitably on strings to get 

optimized results. After a considerable number of 

iterations, the results are found to converge as optimum. In 

this methodology, a new fitness function has been 

proposed to validate the strings that can be considered as 

an individual in the population for next successive 

generations. The fitness function is designed to focus on 

both the task and resource. According to experimental 

results conducted on different types of task graphs with 

varying range of CCR values and various kinds of 

resource selections, GeneTaS gives consistent 

performance with lower makespan and higher resource 

utilization. In order to schedule the regular graphs, we 

consider the system of simultaneous equations viz., Gauss 

Elimination Method, Laplace Method and Fast Fourier 

Transformation Method. In the proposed work, we focus 

on makespan, resource utilization and load balancing, 

other performance metrics can also be considered that 

include flow time, throughput, memory specification, 

contention awareness, etc. to explore the hidden potential 

of the parallel and distributed system. While applying 

optimization techniques the initial population could be 

generated using the combined strategies of critical tasks 

and duplication mechanism. Making use of rescheduling 

point in the pre-emptive mode of execution can be 

considered in the future works. 

 

REFERENCES 

 

[1] Haluk Topcuoglu, Salim Hariri, Min-You Wu. 2002. 

Performance-Effective and Low-Complexity Task 

Scheduling for Heterogeneous Computing. IEEE 

Transactions on Parallel and Distributed Systems. 

[2] Liou J, Palis M A. 1996. An Efficient Task Clustering 

Heuristic for Scheduling DAGs on Multiprocessors. 

Proceeding of workshop on resource management, 

symposium of parallel and distributed processing. pp. 

152-156. 

[3] Tang X, Li K, Liao G, Li R. 2010. List Scheduling 

with Duplication for Heterogeneous Computing 

Systems. Journal of Parallel Distributed Computing. 

70(4): 323-329. 

[4] Omara F A, Arafa M M. 2010. Genetic Algorithms 

for Task Scheduling Problem. Journal of Parallel 

Distributed Computing. 70(1): 13-22.  

[5] Rewini HE, Lewis T, Ali H. 1994. Task Scheduling in 

Parallel and Distributed Systems. Prentice Hall, New 

Jersey. 

[6] Hyunjin K, Sungho K. 2010. Communication-Aware 

Task Scheduling and Voltage Selection for Total 

Energy Minimization in a Multiprocessor System 

0

0.2

0.4

0.6

0.8

1

1.2

16 (R) 32  (R) 64  (R) 32  (R) 64  (R) 128  (R)

100 ( T) 250 (T)

S
p

ee
d

-u
p

 r
a
ti

o

Tasks  (T) and Resources (R)

Speed-up values of arbitrary task graph of CCR=1.2

TBTGP

HGA

GATS



                                VOL. 16, NO. 10, MAY 2021                                                                                                                    ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                              1080 

using Ant Colony Optimization. Information Science. 

181(18): 3995-4008. 

[7] Mirabi M. 2011. Ant Colony Optimization Technique 

for the Sequence-Dependent Flowshop Scheduling 

Problem. International Journal of Advanced 

Manufacturing Technology. 55(1-4): 317-326. 

[8] Liu H, Abraham A, Snášel V, McLoone S. 2012. 

Swarm Scheduling Approaches for Work-Flow 

Applications with Security Constraints in Distributed 

Data-Intensive Computing Environments. Information 

Science. 192: 228-243. 

[9] Tao Q, Chang H Y, Yi Y, Gu C Q, Li W J. 2011. A 

Rotary Chaotic PSO Algorithm for Trustworthy 

Scheduling of a Grid Workflow. Computing and 

Operational Research. 38(5): 824-836. 

[10] Holland J H. 2011. Adaptation in Natural and 

Artificial Systems. University of Michigan Press, Ann 

Arbor. 

[11] Falzon G, Li M. 2012. Enhancing Genetic Algorithms 

for Dependent Job Scheduling in Grid Computing 

Environments. Journal of Super Computing. 62(1): 

290-314. 

[12] Wu A S, Yu H, Jin S, Lin K, Schiavone G. 2004. An 

Incremental Genetic Algorithm Approach to 

Multiprocessor Scheduling. IEEE Trans Parallel 

Distributed System. 15(9): 824-834. 

[13] Yan Kang, Defu Zhang. 2012. A Hybrid Genetic 

Scheduling Algorithm to Heterogeneous Distributed 

System. Applied Mathematics. pp. 250-254. 

[14] Rajabioun R 2011. Cuckoo optimization algorithm. 

Applied soft computing. 

[15] Saurabh Kumar Garg, Srikumar Venugopal, James 

Brober, Rajkumar Buyya. 2013. Double Auction-

Inspired Meta-Scheduling of Parallel Applications on 

Global Grids. Journal of Parallel and Distributed 

Computing. 

[16] Lizhe Wang, Samee U. Khan, Dan Chen, Joanna 

Kołodziej, Rajiv Ranjan, Cheng-zhong Xu, Albert 

Zomaya. 2013. Energy-aware parallel task scheduling 

in a cluster. Future Generation Computer Systems. 

[17] Chung-Hsing Hsu, Wu Chun Feng. 2005. A Feasibility 

Analysis of Power Awareness in Commodity-Based 

High-Performance Clusters. CLUSTER. 

[18] Xiaomin Zhu, Rong Ge, Jinguang Sun, Chuan He. 

2013. 3E: Energy-Efficient Elastic Scheduling for 

Independent Tasks in Heterogeneous Computing 

Systems. The Journal of Systems and Software. 

[19] Ye Huang, Nik Bessis, Peter Norrington, Pierre 

Kuonen, Beat Hirsbrunner. 2013. Exploring 

Decentralized Dynamic Scheduling for Grids and 

Clouds Using the Community-Aware Scheduling 

Algorithm. Future Generation Computer Systems. 

[20] Wei Liu, Wei Du, Jing Chen, Wei Wang, Guo Sun 

Zeng. 2014. Adaptive Energy-Efficient Scheduling 

Algorithm for Parallel Tasks on Homogeneous 

Clusters. Journal of Network and Computer 

Applications. 

[21] Rajni, Inderveer Chana. 2013. Bacterial Foraging 

Based Hyper-Heuristic for Resource Scheduling in 

Grid Computing. Future Generation Computer 

Systems. 

[22] K.M. Passino. 2002. Biomimicry of Bacterial Foraging 

for Distributed Optimization and Control. IEEE 

Control Systems Magazine. 

[23] Sucha Smanchat, Maria Indrawan, Sea Ling, Colin 

Enticott, David Abramson. 2013. Scheduling 

Parameter Sweep Workflow in the Grid Based on 

Resource Competition. Future Generation Computer 

Systems. 

[24] Ramya R and Shalini Thomas. 2012. An Optimal Job 

Scheduling Algorithm in Computational Grids. 

Special Issue of International Journal of Computer 

Applications. 

[25] Anis Gharbi et al. 2013. An Effective Genetic 

Algorithm for a Complex Real-World Scheduling 

Problem. International Journal of Mechanical, 

Industrial Science and Engineering. 

[26] Bsoul, M, Phillip I, Hinde C. 2012. Micosim: A 

Simulator for Modelling Economic Scheduling in 

Grid Computing. World Academy of Science, 

Engineering and Technology, International Science. 

[27] Maryam Rabiee and Hedieh Sajedi. 2013. Job 

Scheduling in Grid Computing with Cuckoo 

Optimization Algorithm. International Journal of 

Computer Applications. 

[28] D.I. George Amalarethinam, P. Muthulakshmi. 2014. 

A Proficient Low Complexity Algorithm for 



                                VOL. 16, NO. 10, MAY 2021                                                                                                                    ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                              1081 

Preeminent Task Scheduling Intended for 

Heterogeneous Environment. Journal of Theoretical 

and Applied Information Technology. 67(1): 1-11. 

[29] D.I. George Amalarethinam, P. Muthulakshmi. 2012. 

DAGITIZER - A Tool to Generate Directed Acyclic 

Graph through Randomizer to Model Scheduling in 

Grid Computing. Advances in Computer Science, 

Engineering and Applications, Springer Verlag. pp. 

969-978. 

[30] Walaa AbdElrouf, Adil Yousif and Mohammed Bakri 

Bashir. 2016. High Exploitation Genetic Algorithm 

for Job Scheduling on Grid Computing. International 

Journal of Grid and Distributed Computing. 9: 221-

228. 

[31] T. Selvakumar et al. 2016. Implementation of 

Pervasive Semantic Grid Computing in Hospital 

Scenario. International Research Journal in Advanced 

Engineering and Technology. 2: 517-522. 

[32] S. Vaaheedha Kfatheen et al. 2017. ETS: An Efficient 

Task Scheduling Algorithm for Grid Computing. 

Advances in Computational Sciences and 

Technology. 10: 2911-2925. 

[33] Hajara Idris et al. 2017. An Improved Ant Colony 

Optimization Algorithm with Fault Tolerance for Job 

Scheduling in Grid Computing Systems. Plos One. 

[34] Firas Albalas et al. 2017. Optimized Job Scheduling 

Approach based on Genetic Algorithms in Smart Grid 

Environment. International Journal of Communication 

Networks and Information Security. 9: 172-176. 

[35] F Kurus Malai Selvi et al. 2012. Grid Scheduling 

Strategy using GA. International Journal of Computer 

Technology and Applications. 3: 1800-1806. 

[36] Kalyanmoy Deb. 2001. Multi-objective Optimization 

Using Evolutionary Algorithms. John Wiley & Sons, 

Inc. New York, USA. 

http://link.springer.com/book/10.1007/978-3-642-30111-7
http://link.springer.com/book/10.1007/978-3-642-30111-7

