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ABSTRACT 

The estimation of water influx from a surrounding aquifer into a Coalbed Methane (CBM) reservoir is a key 

parameter in an appropriate reservoir characterization activity since the degree of connection between natural fractures 

with other reservoir units has an economic impact. The solution of the traditional diffusivity equation for water influx cases 

has been somehow extended to CBM reservoirs so several ways of estimation the aquifer leakage factor has been 

introduced; including type-curve matching which involves trial-and-error processes. In this work, three expressions for the 

estimation of the aquifer leakage factor of CBM reservoirs are introduced using transient pressure analysis by reading 

characteristic featured taken from the pressure, pressure derivative and second pressure derivative versus time log-log plot. 

These equations were successfully tested with synthetic examples obtaining absolute deviation errors, in the worst 

scenario, lower than 10% which is very good for a parameter with such very small values. However, the best results 

provided errors lower than 1%. 
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1. INTRODUCTION 

Coalbed methane reservoirs are surrounded by an 

aquifer and possess natural fractures referred as cleats 

which are normally filled with water as described by 

Schafer, Hower and Ownes (1993). The production comes 

by gas desorption from coal seam due to depressurization 

so efficient dewatering is required before production of 

commercial gas volumes as expressed by Onsager and 

Cox (2000). An adequate reservoir characterization is very 

important so the degree of between these coals and other 

reservoir elements can be accurately estimated.  

Van Everdingen and Hurst (1949) solved the 

traditional diffusivity equation and gave solution for both 

constant water influx and constant pressure conditions at 

aquifer reservoir boundary for radial models. As far as 

transient pressure analysis is concerned, the first approach 

was given by Cox and Onsager (2002) who used a 

variation of the model by Van Everdingen and Hurst 

(1949) to be extended to CBM reservoir surrounded by an 

aquifer. Another approach was proposed by Hantush and 

Jacob (1955) which model assumed a constant pressure 

boundary at top and bottom of the confining layer. 

Methods to account for leaky aquifer models accounting 

for bottom/top water drive CBM reservoirs were presented 

by Neuman and Witherspoon (1972) and Guo, Stewart and 

Toro (2002) which is has a slight variation of the work by 

Hantush and Jacob (1955).  

This paper is an extension of the work by 

Escobar, Srivastava and Wu (2015) who accurately 

estimated the aquifer leakage factor in Coalbed methane 

(CBM) reservoirs using the TDS Technique, Tiab (1995), 

for finite reservoirs. The main objective was the estimation 

of the aquifer leakage factor in infinite CBM reservoir 

surrounded by an aquifer. The obtained results were very 

much alike those used as simulation input. 

2. MATHEMATICAL FORMULATION 

 

2.1 Mathematical Model 

Cox and Onsager (2002) provided the solution in 

Laplace space of the wellbore pressure for radial flow in a 

leaky aquifer system with wellbore storage and skin, 
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The dimensionless quantities are defined below 

as: 
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Figure-1. Pressure derivative versus time log-log behavior 

for several values of dimensionless leakage factors. 
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2.2 TDS Technique 

Tiab (1995) presented this technique which is 

based upon characteristic points found on the pressure and 

pressure derivative versus time log-log plot. 

Regarding the case exposed in this paper, observe 

in Figure-2, this feature is also seen in Figure-1, the 

dimensionless pressure and pressure derivative behavior. 

Note that the pressure derivative is distinguished by a flat 

straight line (zero slope) with an intercept of 0.5 during the 

radial flow regime. Once Equation (7) is equalized to 0.5, 

an expression to find permeability was introduced by Tiab 

(1995): 
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Figure-2. Dimensionless pressure, pressure derivative and 

second pressure derivative versus the product of 

dimensionless time multiplied by the dimensionless 

leakage factor log-log plot for bD = 1.E-10. 
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In addition, Tiab (1995) found an expression to 

determine the skin factor during radial flow by taking the 

pressure drop, Pr, reading at any arbitrary time, tr: 
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Figure-1 presents the pressure derivative behavior 

obtained from Equation (1). In this log-log plot it is 

observed that depending upon the leakage factor value, the 

steady-state period is reached at a different time.  

A normalized pressure derivative behavior is found 

by multiplying the dimensionless time by the dimensionless 

aquifer leakage factor as reported in Figure-2. Such figure 

also includes three specific features which are easily 

appreciated: (1) a point of intersection between the 

dimensionless pressure derivative and the dimensionless 

second pressure derivative, and (2) a point of intersection 

between radial flow and an artificially drawn straight line of 

a slope of -0.5 passing tangent to the pressure derivative. 

This -0.5-slope straight line is strategically drawn to obtain 

the characteristic point with the shortest testing time. The 

first characteristic point has a dimensionless time value of 

0.945. Then: 
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The second intersection mentioned, according to 

the plot, is equivalent to a dimensionless time value of 

0.188, so if this is set equal to Equation (5), it provides the 

following expression: 
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being trnhsi the point of intersect between the radial flow and 

the negative half-slope tangent to the pressure derivative 

line. 

The third characteristic point is seen at late time 

behavior when steady-state behavior develops. The 

pressure drop provides a horizontal line. This pressure 

drop was correlated with several dimensionless aquifer 

leakage factor as observed in Figure-3. The pressure 

shows a clearly and strong dependency on leakage factor 

at which steady state takes place. This is established as 

given below: 
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Hence, it is easy to observe that the pressure drop 

is constant once the steady state is completed reached in a 

log-log plot of dimensionless pressure drop versus 

dimensionless time. Nonetheless, to find the steady-state 

pressure can be used any conventional plot by drawing a 

horizontal line on the late steady-state period and locating 
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the intercept on the y-axis. As commented before, this is 

identified by a flat behavior of either pressure or pressure 

drop, and then this value is replaced into Equation (12) to 

simply obtain the leakage factor. It should be remembered 

that pressure drop is sensitive to skin effect, in contrast to 

pressure derivative; then, Pss in Equation (12) must be 

free of skin effects. This means that: 

 

ss i wf sP P P P = − −                                                (13) 

 

ss ws wf sP P P P = − −                                               (14) 
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Figure-3. Behavior of the leakage factor as a function 

of the pressure drop during steady-state period. 

 

Equation (13) and Equation (14) are applied to 

both drawdown and buildup tests, respectively. 

It is recommended to use the equivalent time 

proposed by Agarwal (1980) in buildup tests. 

 

3. EXAMPLES 

 

3.1 Synthetic Example 1 

Cox and Onsager (2002) model was used to 

develop a simulated test with the below information: 

 

B = 1.00 bbl/STB  q = 820 STB/D 

h = 19 ft    = 0.73 cp   

Lc = rw = 0.33 ft  ct = 3.8x10-5 psi-1   

 = 10 %  k = 692 md     

CD = 0   bD = 2.8989x10-7 

S = 0  

 

Figure-4 provides pressure, pressure derivative 

and second pressure derivative versus time for example 1. 

This test should be interpreted only for the purpose of 

estimating the leakage factor. 

   

Solution by TDS Technique 

The following information was read from Figure-

4: 
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Figure-4. Log-log plot of pressure, pressure derivative and 

second pressure derivative versus time for example 1. 

 

t1D2i = 0.5723 hr   trnhsi = 0.117 hr      Pss+S=49.13 psi 

 

The point of intersection between derivative and 

second derivative is used to determine leakage factor from 

Equation (10); 

 
2
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The point of intersection between the radial flow 

regime and the negative half-slope tangent to the pressure 

derivative line is also used to find the leakage factor from 

Equation (11); 
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Since the pressure drop due to a skin factor of 

zero is zero. Then, Pss= 49.13 psi which used in Equation 

(12) will provide: 
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3.2 Synthetic Example 2 

Another pressure test was simulated with the 

below information: 

 

B = 1.00  bbl/STB q = 1032 STB/D 

h = 90 ft    = 0.73 cp   

Lc = xf = 30 ft  ct = 3.8x10-5 psi-1   

 = 10 %  k = 1200 md     

CD = 0   bD = 9.7222x10-5 

S = 0  

 

Figure-5 contains a log-log plot of pressure drop, 

pressure derivative and second pressure derivative versus 

time. Also find the leakage factor using TDS technique. 
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Figure-5. Log-log plot of pressure, pressure derivative and 

second pressure derivative versus time for example 2. 

 

Solution by TDS Technique 

The following information was read from Figure-

5: 

 

t1D2i = 8.14 hr      trnhsi = 1.66 hr     Pss+S=4.665 psi 

  

Estimate the leakage factor from Equation (10), 

using the time at which both pressure derivative and 

second pressure derivative intercept. 
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From Equation (11), determine another value of 

leakage factor with the point of intersection between the 

radial flow regime line and the negative half-slope tangent 

to the pressure derivative line; 
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The leakage factor is found from the application 

of Equation (12); 

 
(1200)(90)(4.665)
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4. COMMENTS ON THE RESULTS 

The results obtained for the determining the 

leakage factor from the three different ways applying TDS 

technique were excellent; especially those obtained from 

the Equation (12) which is a correlation between the 

pressure derivative behavior and leakage factor values 

when steady state takes place. This could be possible since 

this expression uses only a natural parameter such as 

pressure. This allows obtaining absolute deviation errors 

less than 1%. 

Equation (11) which uses the intersect point 

formed between the radial flow and the negative half-slope 

tangent to the pressure derivative line (artificially added) 

provided more accurate results than Equation (10), which 

comes from the intersect point formed between the two 

derivatives. It may be due to the facts: (1) includes two 

artificial parameters, meaning they are estimated not 

measured, and (2) it is difficult to exactly define such 

intercept. However, both expressions give results with 

deviation errors less than 10% in a high-sensitive 

parameter. 

 

5. CONCLUSIONS 

Three new expressions are introduced for 

determination of the leakage factor from transient pressure 

analysis using the TDS technique. The equations were 

successfully tested providing errors lower than 1% in the 

best case. 

 

ACKNOWLEDGEMENTS 

The authors thank Professor Romulo Medina 

Collazos, College of Engineering Dean at Universidad 

Surcolombiana and the Department of Mining and 

Petroleum Engineering of the University of Chulalongkorn 

for providing financial support for the completion of this 

study.  

 

REFERENCES 

 

Agarwal R. G. 1980. A New Method to Account for 

Producing Time Effects When Drawdown Type Curves 

Are Used To Analyze Pressure Buildup and Other Test 

Data. Society of Petroleum Engineers. doi:10.2118/9289-

MS. 

 

Cox D.O. and Onsager P. R. 2002. Application of Leaky 

Aquifer Type Curves for Coalbed Methane 

Characterization. Paper SPE 77333 presented at the SPE 

Annual Technical Conference and Exhibition, San 

Antonio, Texas, 29 September-2 October. Doi: 

10.2118/77333-MS. 

 

Escobar F.H., Srivastava P. and Wu X. 2015. A practical 

method to determine aquifer leakage factor from well test 

data in CBM reservoirs. Journal of Engineering and 

Applied Sciences. 10(11): 4857-4863. 

 

Guo B., Stewart G. and Toro M. 2002. Linearly Supported 

Radial Flow-A Flow Regime in Layered Reservoirs. 

Society of Petroleum Engineers. doi:10.2118/77269-PA. 

 

Hantush M.S. and Jacob C.E. 1955. Non-Steady Radial 

Flow in an Infinite Leaky Aquifer. Transactions of 

American Geophysics. U. 36, 95. 

 

Neuman S.P. and Witherspoon P.A. 1972. Field 

determination of the hydraulic properties of leaky multiple 

aquifer systems. Water Resources Research. 8(5): 1284-

1298. 

 

Onsager P. R. and Cox D. O. 2000. Aquifer Controls on 

Coalbed Methane Development in the Powder River 



                                VOL. 16, NO. 20, OCTOBER 2021                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                              2072 

Basin, Wyoming. Society of Petroleum Engineers. doi: 

10.2118/63090-MS. 

 

Schafer PS., Hower T. and Ownes R.W. 1993. Managing 

Water-Drive Gas Reservoirs. Gas Research Institute. p. 

193. 

 

Tiab D. 1995. Analysis of Pressure and Pressure 

Derivative without Type-Curve Matching: 1- Skin and 

Wellbore Storage. Journal of Petroleum Science and 

Engineering, 12: 171-181. Also Paper SPE 25423 (1993) 

Production Operations Symposium held in Oklahoma 

City, OK.  

 

Van Everdingen A. F. and Hurst W. 1949. The 

Application of the Laplace Transformation to Flow 

Problems in Reservoirs. Society of Petroleum Engineers. 

doi: 10.2118/949305-G. 

 

Nomenclature 

 

B  Volume factor, rb/STB 

b  Leakage factor, ft 

C  Wellbore storage coefficient, bbl/psi 

ct  Total system compressibility, psi-1 

h  Reservoir thickness, ft 

k  Reservoir permeability, md 

Lc  Characteristic length (xf or rw), ft 

P  Pressure, psi 

Pi  Initial reservoir pressure, psi 

Pwf  Wellbore flowing pressure, psi 

q  Water flow rate, BPD 

rw  Wellbore radius, ft 

S  Skin factor 

s   Laplace parameter 

t  Time, hr 

tD  Dimensionless time coordinate 

tD*PD’  Dimensionless pressure derivative 

tD
2*PD”  Dimensionless second pressure derivative 

(t*P’)  Pressure derivative 

(t2*P”)  Second pressure derivative 

xf  Half-fracture length, ft 

 

Greeks 

 

 Porosity, fraction 

 Viscosity, cp 

 

 

 

 

 

 

 

 

 

 

 

Suffices 

 

conf Confining layer 

D Dimensionless 

i Initial 

1D2i 
Intercept of pressure derivative and second 

pressure derivative 

r Radial 

rnhsi 

Intersect of the radial flow line and the 

negative half-slope tangent to pressure 

derivate line 

ss Steady state 

v, conf Vertical in confining layer 

 


