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ABSTRACT 

This paper presents two novel methodological approaches to calculate the extrinsic parameters of cameras and the 

inverse kinematics of robots, two aspects commonly addressed in autonomous robotic operation that require performing 

three-dimensional (3D) reconstruction and object gripping. The functionality of these new approaches is demonstrated, and 

a comparison with current methodologies is performed. The first methodology detail how to calibrate the extrinsic 

parameters of a camera from linear regression, while the second explains how to find the inverse kinematics using the 

Newton-Raphson numerical method, also, a metric is presented to define the error between two homogeneous matrices. 

With this, we can show that it is possible to obtain a matrix of extrinsic parameters with an error of 
71.788 10x −

, and 

observe that the calculation of the inverse kinematics with the proposed method reduces the error on average by 99.8% 

concerning the conventional way.  
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INTRODUCTION 

In robotics, two fundamental problems must be 

solved to control a robot in its operating environment. The 

inverse kinematics is the first problem, which involves 

calculating the generalized coordinates based on the 

desired position and orientation [1], while the second 

problem involves analyzing the environment using RGB-

D cameras to determine positions of interest where the 

robot must be directed to execute grip tasks [2]. This 

analysis requires obtaining point clouds from the 

environment, which is related to the intrinsic and extrinsic 

parameters of the camera [3] [4]. Currently, several kinds 

of research have addressed both the analysis of inverse 

kinematics and the calculation of extrinsic and intrinsic 

camera parameters. Those addressing inverse kinematics 

are mostly based on numerical methods, where the error 

must be reduced to zero by iteratively calculating the value 

of the generalized coordinates, and researches focused on 

calculating camera parameters rely on algebraic tools to 

solve a homogeneous system avoiding trivial solutions.  

Calculation of inverse kinematics can be carried 

out using the algebraic method [5] or the geometric 

method together with the kinematic decoupling [6]. These 

generally work for non-redundant robots since they can be 

described with simple equations. In order to model 

mechanisms with more than six degrees of freedom, is 

necessary to apply iterative methods such as Cyclic 

Coordinate Descent (CCD) [7], which moves one joint at a 

time to position the gripper on a line that is projected from 

the desired position down to the joint that is in motion, 

reducing the Euclidean distance between the gripper and 

the desired position. However, the final gripper orientation 

is not considered, so to orient parts, CCD method is not 

functional. There are iterative methods supported by the 

robot differential kinematics and its Jacobian [8], where 

the joint speeds are related to the gripper linear and 

angular velocity to approximate a solution.  

Prempraneerach [9] presents an example of the inverse 

kinematics using the pseudo-inverse Jacobian to control 

the OWI-535 robot and its five (5) degrees of freedom. 

This research mentions singularity problems that can be 

avoided performing variations to the pseudo inverse 

expression based on statistical concepts such as Damped 

Least Squares (DLS) [10]. DLS adds a damping factor 

obtaining more stability to a sudden change of the angular 

position of the joints. Iterative methods are a suitable 

approach to tackle a great dimensional problem, such as 

inverse kinematic of redundant robots. The orientation and 

positioning of a gripper is a problem that does not have an 

exact solution, so it must be approximate.  

Camera calibration is generally performed, 

assuming a projection matrix to describe it [11], where 

cartesian coordinates are mapped to the image plane.  This 

model is usually known as “Pinhole Model” or “Finite 

Projective Camera” [12], and its parameters are called 

intrinsic and extrinsic camera parameters. The intrinsic 

parameters matrix contains the image projection, and the 

extrinsic parameters matrix describes the camera position 

and orientation respect to a reference frame, allowing the 

data captured by an RGB-D camera to be related respect to 

a coordinate system of interest.  

To estimate the camera model, there are two 

well-known methods used to propose and solve a 

homogeneous linear system: Direct Linear Transform and 

Zhang’s method. (DLT) method [13] algebraically 

manipulates the camera model to describe a homogeneous 

linear equations system, where the unknown variables are 

all the elements that make up the camera model. Přibyl, B 

[14] uses this method to estimate the position from line 

correspondences, solving the homogeneous system as a 

minimization problem by using least squares to find a 

vector that is not the trivial solution. Since DLT requires 

knowing the points in space that are being projected, 

“Zhang's method” [15] was developed, in which all 

reference points lie on a plane where it is easier to measure 

them. The camera calibration is achieved by using a 
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chessboard, where the points are the intersections of the 

squares, making their coordinates less complex to 

calculate.  

In this work, the inverse kinematics problem [16] 

and the extrinsic parameters camera calibration are treated 

with a different approach, demonstrating that they can be 

solved by implementing the Newton-Raphson numerical 

method for inverse kinematics and linear regression for 

calibration of the extrinsic camera parameters. As is 

described below, methods fully satisfy the problems 

raised; however, they have limitations that must be 

considered before being implemented. This work, in 

addition to presenting the methods, also describes how to 

implement them in an object manipulation work using an 

anthropomorphic robot.  In order to validate the method, a 

simulation environment was built in the “CoppeliaSim” 

software, where an object grasping task was successfully 

executed. 

This paper is divided into six sections, including 

this introduction. Second section contextualizes the 

problem handled. In the third section, DLT method is 

briefly explained, and the proposed method is presented 

highlighting the differences between them. The inverse 

kinematics calculation using the conventional and the 

proposed method is presented in the fourth section 

detailing the differences between them. The fifth section 

explains how to apply the methods in an object 

manipulation task and expose the results obtained. Finally, 

the sixth section presents work conclusions. 

 

PROBLEM FORMULATION 

When a grip task using a manipulator is required, 

modeling and analysis of the robot environment must be 

performed. It is necessary to characterize the position and 

orientation of some entities, such as the gripper of the 

robot and the objects to be manipulated, in addition, the 

robot configurations that allow grasping and depositing 

objects must be calculated. Figure-1 shows an example of 

an environment where these two problems arise. The 

image shows an environment with a robot, a camera and a 

conveyor belt with objects that must be manipulated. To 

grab objects, the robot must analyze the point cloud given 

by the camera to define a coordinate system to each object 

that can be taken as a reference to grabbing them. Then the 

gripper's coordinate system must be placed into the 

object's coordinate system using inverse kinematics to 

finally activate the gripper to hold it. Once the object is 

attached to the end effector, it can be manipulated to 

deposit in a specific position. 

It is natural to wonder how to get the camera’s 

homogeneous matrix, how to define the camera model to 

get the point clouds, and how to move the gripper to grab 

objects. This paper addresses these problems by presenting 

methodologies to define the camera model and calculate 

the inverse kinematics. Also, it is explained how to apply 

them in objects manipulation tasks.  

 

 
 

Figure-1. Problem illustration. 

 

EXTRINSIC CAMERA CALIBRATION 

Cameras can be described using a perspective 

projection (Frustum projection [17]) model called 

“PinHole” [12] (see Figure-2). In this model, a coordinate 

system is attached to the camera and is referred to using a 

homogeneous transformation matrix with respect to the 

inertial system (attached to the robot for this case). Each 

point that is defined with respect to the inertial coordinate 

system is projected onto the image plane in ( , )x yp p

coordinates. The mathematical description of these 

projections is presented in equations (1, 2). P vector, in 

homogeneous coordinates, is referred to the camera 

coordinate system using the homogeneous matrix H (see 

equation (1)). Then, a projection onto the image plane is 

carried out using the matrix of intrinsic parameters K 

(equation (2)), generating a vector that is again in 

homogeneous coordinates. The goal of camera calibration 

is to calculate the H and K matrices. Generally, the 

problem is represented by a single matrix (equation (3)), 

decomposed into the matrices of interest after being 

estimated. 

 

 
 

Figure-2. Pinhole model representation. 
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Zhang's method is widely used to calibrate 

cameras. It is generally adjusted with a chessboard where 

the inertial coordinate system is attached to one end of the 

square, and the intersections of the squares are 

subsequently measured to use them as the points for the 

model calibration.  This method uses at least 4 points to 

find the matrix T, which contains a homogeneous matrix 

that relates the coordinate system of the camera to the 

coordinate system of the chessboard. Because the 

relationship has not been calculated between the camera 

frame and the robot frame, this method cannot be applied.  

There is another method called “Direct Linear 

Transform” (DLT). It uses a minimum of 6 points that 

must not lie on a plane, which makes it more flexible 

when implementing a robot to generate points in space. 

This method requires obtaining all point measurements 

with respect to the robot frame and the image plane. Then 

it solves a homogeneous system to obtain the camera 

parameters. 

In order to obtain all required points, a sphere is 

attached to the gripper and used as a reference (see Figure-

3). Its position in the inertial frame can be found using the 

direct kinematics of the robot, while its position in the 

image plane can be found using morphological filters or 

detection networks. To get six points, the robot must move 

to 6 different configurations and then measure sphere 

position. 

 

 
 

Figure-3. Sphere attached to the gripper used to capture 

the points for the camera calibration. 

 

DLT method separates the matrix T into three 

vectors A, B and C. Equations system presented in (4) is 

algebraically manipulated to express the problem (5) using 

the vectors shown in (6) and (7). Equation (5) considers 

one point in space, and the remain 5 points required by 

this method are added according to (8) and (9). Equation 

(9) is not equal to zero since a contradictions vector is 

generated by error measurement W. In order to reduce the 

error, a minimization problem is proposed such that a non-

zero matrix T is found reducing the 𝛺 value (see equation 

(10)). This minimization problem can be solved using a 

Singular Value Decomposition (SVD) [18] for the matrix 

M. Decomposition by singular values will result in three 

matrices like the ones shown in (11), where the solution 

will be given by column V that belongs to the smallest 

singular value of the matrix S. After the matrix T is 

estimated, vector 
oX  can be calculated as in equation 

(12). In equation (13), a QR decomposition is performed 

to find the rotation matrix and the intrinsic parameters 

matrix. 
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DLT method is not iterative, and it requires 

solving a homogeneous system as a minimization problem 

using SVD and extract the interest matrices. In the 

proposed method, it is possible to calculate the extrinsic 

parameters matrix through a linear regression obtained 
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from a minimization problem. The method developed here 

is useful for problems that do not require calibration of 

intrinsic parameters, for example, in the case of previously 

calibrated cameras or in situations where it is desired to 

find the homogeneous matrix that relates the coordinate 

systems of various manipulators. The method is presented 

below, focusing on finding the homogeneous matrix that 

relates a camera and a robot.  

Initially, several points must be measured in two 

coordinate systems of interest using as reference the 

sphere attached to the gripper. The position of the sphere 

regarding the camera is obtained by finding P´ in equation 

(2) considering the deep found by RGB-D camera of 

analysed pixel. If 4 different positions of the sphere are 

measured, the problem can be represented as shown in 

Figure-5. There are two coordinate systems a and b with a 

known points 
0p  to 

3p . Equations (14) and (15) can be 

expressed if an auxiliary coordinate system r is assigned to 

the point 
0p  which has the same orientation of the a 

coordinate system. In equation (14), homogeneous matrix 

is composed of an identity matrix and a translation vector, 

point 
0p , measured with respect to the coordinate system 

a. Equation (15) is applied to find the matrix of interest 
a

bT . If the b

rT  matrix is estimated, it is possible to solve 

the problem. 

 

 
 

Figure-4. Coordinate systems of interest related by 

homogeneous matrices. 
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Each coordinate system has three unitary vectors 

projected onto each coordinate axis. b
rT  matrix can be 

calculated if the vectors specified in (16) are known and 

referred to the b system. As shown below, the unknown 

vectors b
ri  and b

rj  can be estimated using a linear 

regression. For this purpose dot product with auxiliary 

vectors , u g  and e  is used (Figure-4). These vectors are 

measured from the r coordinate system and they became 

unitary through equations (17) to (19). Since the 

orientation of systems r and a are the same, is valid to use 

points measured regarding system a.  Components of 

unitary vectors represent cosines directors of vector u, g 

and e used in dot product with vector b
ri , b

rj  and b
rk . 
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Once the cosine of the angle of  , u g  and e  

vectors respect to b
ri , b

rj  and b
rk  vectors are known, 

the dot products indicated in equations (20) and (21) can 

be proposed, these represent a set of equations where the 

unknowns are the vectors to use in the rotation matrix of 

equation (16). Equations (20) and (21) are a linear model 

that can be written as indicated in equation (22). X  must 

be understood as the inputs of the system, Y  as the 

expected values and the β  as the coefficients that must be 

estimated. There is a random error e  assumed with a 

normal distribution with zero mean and constant variance. 

Approximate model of (22) is presented in (23), which is 

solved through a minimization problem in which the β̂   

estimators must be found, reducing the sum of the squared 

errors between expected and estimated values (see 

equation (24)). The solution of this system is presented in 

equation (25), which implements a left pseudo-inverse. 
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In the proposed methodology, it is necessary to 

know at least 4 points in space that can be measured 

respect to the two coordinate interest systems, where one 

can belong to an RGB-D camera. In this method, the 

estimation of parameters from equation (43) are based in a 

0
b
p  vector, which is the base to perform all calculus. 

Final result depends largely on the accuracy of 0
b
p . DLT 

method unlike the explained method takes into account all 

the points, but it does not rely on one to carry out 

calculations. It is also important to note that the DLT 

method calculates intrinsic parameters at the same time, 

while the explained method can only be used to calculate 

the homogeneous matrix that relates two systems, not a 

projection matrix. Both methods estimate the parameters 

using a minimization problem; however, DLT method 

obtains a homogeneous system with the drawback of 

having the trivial solution. 

Matrix of intrinsic and extrinsic parameters 

allows to use equation (1) and (2) to perform the 

reconstruction of the environment from the information of 

each pixel coordinate and its depth. If a detection system 

indicates that some pixels belong to an object, its cartesian 

coordinates can be found, and the robot can be moved to 

it. To move the robot, a method that calculates the state 

vector of the robot is required, below inverse kinematics 

methods are presented. 

 

INVERSE KINEMATICS CALCULATION 

The classic method for iteratively calculating the 

robot inverse kinematics  is based on updating the state 

vector q  as shown in equation (26), where the updated 

value of the state vector 1k+q  is equal to its current kq  

value plus a change defined by the speed vector kW , the 

pseudo inverse of the Jacobian matrix 
+

J  and a weight 

vector α  that controls the  joints speed change. Equation 

(26) is given by the robot's differential kinematics where 

the angular and joint speeds are related. To apply the 

method, it is necessary to calculate a velocity vector 

reducing the error between the gripper coordinate system 

(see equation (27)) and the desired one (see equation (28)). 

Matrix 6

b
T  describes the coordinate system 6 referred to 

the base system. 
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In order to reduce the error between the 

coordinate systems, their distance is reduced as the vectors 

of the rotation matrix are oriented. This is achieved if the 

velocity vector is defined according to equation (29), 

where the linear velocity vector d  is the position error and 

the angular velocity vector ω  is defined by a sum of cross 

products (Rodríguez's formula [16]). Equation (29) results 

are used in equation (26) iteratively returning the future 

state vector to the current one, finding the generalized 

coordinates value and therefore the required robot 

configuration. 
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Equation (30) allows to calculate the Jacobian 

[16], it has a number of vectors defined by the Degrees of 

Freedom (DOF).  If a vector of the Jacobina represents a 

rotational joint, equation (31) must be used to define it, if 

it represents a prismatic joint, equation (32) must be used. 

Vector -1

b

iz  is oriented according to the rotational or 

prismatic joint axis using the Denavith - Hartemberg (DH) 

convention. Superscript is used to reference the vector 

respect to the base frame and subscript is related with the 

joint that the vector represents. A detailed explanation can 

be found in [16]. 
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The approach proposed is based on applying the 

Newton-Raphson numerical method to a series of 

equations directly related to the robot direct kinematics 

and the derivatives of its matrices. The functions found do 

not represent the robot kinematics model, unlike the 

conventional method; additionally, the Jacobian found is 

obtained from the same function to which the roots are 

being found. Results show smaller errors using the 

proposed method than those obtained with the classical 

method. 

In order to explain the proposed method, the 

Newton - Raphson numerical method for a Multivariable 

Vector Function (MVF) is initially defined. In equation 
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(33) roots for the nonlinear MVF ( )f X  are found. This 

function depends on a X  vector (see equation 34) where 

the generalized coordinates for a six DOF robot are 

represented. Taylor series are used to approximate ( )f X  

as a linearized function around the a operation point as is 

shown in equation (35). In equation (36), vector X  is 

obtained by assigning a zero value to ( )f X , this equation 

is iteratively used to find the system roots (see equation. 

(37)). To avoid invertibility problems, the Jacobian inverse 

is changed for its pseudoinverse. 
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1( ( )) ( )f−= −X a J a a                                                      (36) 

 

1 ( ( )) ( )i i i if+
+ = −X X J X X                                           (37) 

 

To apply the previous method, a vector function 

that analyses the error between two homogeneous matrices 

is proposed (see equation (38)). If function norm is zero, 

then two matrices must be equal. This is a metric proposed 

to evaluate the error. 
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                       (38) 

 

( )posF X  represents the position error and 

( )orientF X  contains the dot product error between the 

rotation matrices vectors. When it is necessary to orient 

only one axis of the rotation matrices, use the dot product 

error of the analyzed axis. To orient all axes, use only the 

dot product error of two axis. 

For equation (35) is necessary to calculate the 

gradient of each function to generate the Jacobian. For this 

purpose, equation (27) is symbolically described (see eq. 

(39)) to have the interest vectors expressed as a function of 

the state vector to later calculate the symbolic Jacobian. A 

problem with this approach is presented due to the high 

computational cost involved in the calculation of the 

symbolic Jacobian. To avoid this problem, partial 

derivatives are analysed as shown in equations (40) and 

(41). 
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Resulting derivatives are found as shown in 

equation (42) which are simplified in equation (43). The 

result indicates that in order to calculate the partial vectors 

derivatives of the homogeneous matrix b
nT  regarding a 

component of the state vector q , it is necessary to use the 

direct robot kinematics changing only the matrix 

containing the analyzed state vector component for its 

partial derivative of the same component. Thus, each 

column in equations (40) and (41) can be filled building 

the Jacobian.  
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Both conventional and proposed method iterate 

over a function that needs an update of the Jacobian for 

each cycle. The difference between these methods resides 

in how the Jacobian is defined and the functions at which 

their roots are found. In the proposed methodology is 

necessary to know the derivative of a homogeneous 

transformation regarding the variable that contains it, 

while the conventional method requires to know the 

vectors ( -1 -1, ,b b b

i n iz t t ) which are referenced to the base 

frame.  Note that in the classic method the Jacobian can be 

defined by computing the direct kinematics once, while in 

the proposed method, the Jacobian is defined by iterating 

over the matrices of direct kinematics, so the proposed is 

expected to be slower.  

 

RESULTS 

CoppeliaSim [19] is used to verify the results of 

the methods previously explained. An ABB IRB 4600 

robot is implemented; its DH parameters are presented in 

Table-1. To calibrate the extrinsic parameters of the 

camera, four points are measured from the robot frame and 

camera frame, as shown in Table-2, then equations (20) 

and (21) are constructed resulting in equations (44) and 

(45). Subsequently, each vector is determined using linear 

regression of (25), as is shown in equation (46). 

 

Table-1. DH parameters for the IRB 4600 Robot. 
 

Matriz [deg]  [ ]d m  [ ]a m  [deg]  

0

b
T  175.4−  0  0.5146  0  

0

1 0( )qT  0150.1 q− +  0.495  0.2122  90−  

1

2 1( )qT  178.1 q− +  0.3366  1.1191 34.5−  

2

3 2( )qT  236.3 q+  0.5463−  0.1616  90.6−  

3

4 3( )qT  3q  0.7962  0.8272  95  

4

5 4( )qT  4139.6 q− +  0.0034−  0.0037  93.6  

5

6 6( )qT  6176.6 q− +  0.0006  0.0098  93.7−  

 

 

Table-2. Captured points to calibrate the extrinsic camera parameters. 
 

Sistema 

coordenado 
0p  

1p  
2p  

3p  

Inercial 

0

316.42 10

0.733

2.576

b

x −

=

 −
 

− 
 
 

p

 

1

324.66 10

0.563

4.042

b

x −

=

 −
 
 
 
 

p

 

2

322.97 10

0.884

2.904

b

x −

=

 −
 
 
 
 

p

 

3

1.121

0.915

2.621

b =

− 
 
− 
 
 

p

 

Cámara 

0

3

1.498

41.45 10

2.04

a

x −

=

− 
 
− 
 
 

p

 

1

3

0.405

49.69 10

1.591

a

x −

=

 
 
− 
 
 

p

 

2

3

3

15.05 10

48.009 10

2.708

a

x

x

−

−

=

 
 
− 
 
 

p

 

3

1.621

1.146

1.907

a =

− 
 
− 
 
 

p

 

 

The matrix in (16) is completed with vectors 

from (46) and is used together with (14) to solve equation 

(15). The calculated matrix can be seen in equation (47). 

Using the norm of (38) (omitting the last element of the 

vector), the error between the obtained matrix from the 

simulator and the calculated matrix is equal to 
71.788 10x −

, 

proving that the matrices are almost the same. It is 

expected a bigger error in a real environment due to the 

camera distortion and measurement errors.   

 

3

3

3

1.903

1.513

0.1226

8.24 10 1.297 1.466

6.55 10 1.618 0.328

1.104 0.1816 45.53 10

b
r

x

x

x

−

−

−

 
 

=
 
 − 

 −
 
− 
 

− −  

i

                    (44) 

3

3

3

3

3

8.24 10

6.551 10

1.104

8.24 10 1.297 1.466

6.55 10 1.618 0.328

1.104 0.1816 45.53 10

b
r

x

x

x

x

x

−

−

−

−

−

 −
 
− = 
 

−  

 −
 
− 
 

− −  

j

                   (45) 

 

9

9 9

6.74 10 0.819 0.5735

0.999 2.152 10 1.507 10

b T
r

b T
r

x

x x

−

− −

   
=   

     

i

j
               (46) 

 

9

9 9 3

14

6.7 10 0.819 0.573 2.375

1 5.5 10 3.86 10 25.03 10

2.1 10 0.5735 0.819 4.58

0 0 0 1

a
b

x

x x x

x

−

− − −

−

=

 −
 

− − − 
 

− 
 
 

T

         (47) 

 



                                VOL. 16, NO. 20, OCTOBER 2021                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                              2080 

Knowing the image depth channel generated by 

RGB-D cameras, a point cloud is obtained as shown in 

Figure-5. 

 

 
 

Figure-5. 3D Environment reconstruction. 

 

By using a segmentation system based on deep 

learning, such as a Mask-RCNN [20], it is possible to filter 

the information allowing to create the points cloud for the 

detected objects (see Figure-6).  

 

 
 

Figure-6. Objects segmentation and its points cloud. 

 

The calculus of inverse kinematics has been 

tested using both methods explained. In the classical 

method the weight vector is set to one. Also, the Norm of 

equation (38) has been used to analyze the total error 

between the desired homogeneous matrix and the gripper 

matrix. For the first test, the reference homogeneous 

matrix was set as presented in equation (48); additionally, 

a state vector equal to the null vector was used to start the 

methods. Results obtained after performing the inverse 

kinematics are shown in Figure-7, considering both the 

orientation and position of the gripper. In all methods, 

error variation stabilized close at nineteen iterations. 
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−
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 
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Figure-7. Norm of equation (38) using the three 

methods explained. 

 

According to Figure-7, there is a significant 

difference in the execution speed when performing the 

inverse kinematics for the three analyzed methods. In the 

inverse kinematics calculation, the Jacobian solution is the 

most time-consuming task due to its iterative construction. 

The conventional method achieves to calculate the 

Jacobian in less time since it uses vectors found by 

calculating the robot direct kinematics, while the proposed 

method involves a longer procedure; however, the 

obtained error is smaller. Symbolic method is the most 

expensive and time consuming for calculating the 

Jacobian. 

In order to validate the method functionality, a 

random homogenous matrix is chosen, and its inverse 

kinematics with its state vector is calculated. The state 

vector is used to move and to orient the robot in the 

simulation environment using both the conventional and 

the proposed method. Then the homogeneous matrix of the 

gripper is obtained from the simulator and compared with 

the initially proposed matrix. The procedure is performed 

five times as shown in table 3. The results show that our 

method produces smaller errors. On average the proposed 

method reduces the error by 99, 84% in comparison with 

the conventional method. 

It is important to notice that the explained 

methods still have singularity problems that should be 

addressed using a damping factor in the Jacobian 

pseudoinverse. Otherwise, for some positions, the 

determinant obtained could be equal to zero preventing the 

inverse kinematics from being determined. 

 

Table-3. Resulting error between Coppelia homogeneous 

matrix and desired homogeneous matrix. 
 

Test\ Method Conventional IK Proposed IK 

1 378.9 10x −
 

52.26 10x −
 

2 393.03 10x −
 

52.568 10x −
 

3 33.02 10x −
 

57.81 10x −
 

4 31.04 10x −
 

54.18 10x −
 

5 375.3 10x −
 

42.1 10x −
 

 

Through the inverse kinematics exposed, it is 

possible to direct the robot to the centroid of the 

segmented object shown in Figure-6. In this way, a 

satisfactory grip is achieved as presented in Figure-8. 
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                                                               (a)                                                                    (b) 
 

Figure-8. a) Robot gripper located at the calculated centroid. b) Object manipulation. 

 

CONCLUSIONS 

This paper presents two methods to calculate both 

the robot inverse kinematics and the homogeneous 

matrices relating two coordinated systems. Deductions 

found are based in the minimization of an objective 

function where the roots represent the problem solution. 
Results obtained within the simulation environment 

validate the methods functioning so they can be used in 

other developments requiring the calibration of extrinsic 

parameters and the calculation of the robot generalized 

coordinates.  
High dimensionality problems such as the inverse 

kinematics can be addressed using the Newton Raphson 

numerical method. The proposed method achieves higher 

accuracy calculating the state vector in comparison within 

the conventional method, although it involves a higher 

computational cost and longer execution time. Method to 

be used must be decided considering accuracy and 

processing time. Jacobian calculation using symbolic 

functions involves a high computational cost. For this 

reason, is justified to perform a partial derivatives analysis 

to reduce the Jacobian construction time. 

The Exposed method to calibrate homogeneous 

matrices represents an alternative to classical methods as 

DLT and Zhang’s methods. It can be used on problems 

where the position and orientation of two coordinate 

systems are unknown, and where an intrinsic parameters 

matrix is not required. A limitation of the proposed 

methodology is the large dependence of the result on the 

accuracy in the measurement of the chosen point since all 

calculations will be based on it. 
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