
 VOL. 16, NO. 20, OCTOBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2150

EXPLORING A NOVEL STRATEGY FOR SAT

Edgardo S. Barraza Verdesoto1, Edwin Rivas Trujillo2 and Henry Montaña Quintero2

1Universidad Fundación Tecnológica Autónoma de Bogotá, Colombia
2Universidad Distrital Francisco José de Caldas Bogotá, Colombia

E-Mail: hmontanaq@udistrital.edu.co

ABSTRACT

The SAT problem is a very important topic in the computer science, its condition of NP problem has been a focus

of studies and approaches for resolving it in a low computational cost as well in time as in space, e.g., the International

SAT competition that started in 1992 and remain in force until the date. Its importance stems from the fact that resolves

decision problems that can be very complex because of its number of restrictions. This paper presents a novel strategy

based on clusters of literals that conforms the nodes of a dynamic tree that resolves the SAT problem, the implementation

of which includes the clause as the cluster and a heuristic function to select it. In addition, the implementation is compared

against recognized solvers that has been winners of competitions of SAT solvers.

Keywords: SAT, heuristic function, clusters, literal, clause.

1. INTRODUCTION

Satisfiability (SAT) [1] is a problem that search

to give a logic answer to a formula expressed in

Conjunctive Normal Form (CNF). This paper introduces a

strategy to calculate satisfiability by using a novel

technique which uses the clause as the unit to resolve it.

Typical algorithms that resolve SAT repeatedly

use the procedure named unit propagation over the

formula CNF [2]. Informally, this operation assigns a

logical value to a literal which decreases the number of

literals in the clauses; the routine stops when reaches

satisfiability or unsatisfiability. On the other hand, when

the procedure leads to unsatisfiability a reverse action,

named backtracking, applies the logical value contrary to

the chosen for the last literal used. DPLL algorithms [3]

[4] [5] [6] are solvers based on this technique. SAT solvers

have applications in several fields such as Data Mining

[7], Big Data [8] [9] or electronic applications [10].

This paper proposes to use the clauses as a cluster

of literals to evaluate by reducing the scope generated by

the CNF. The strategy is to select the best clause based on

weights calculated by a heuristic function in each stage of

the algorithm, that require it; The literals inside of the

selected clause will take the value "true" one by one for

the evaluation of the CNF. In the backtracking process, the

failed literal will take the value "false" and join with the

next literal valued "true"; This process involves unit

propagation and pruning at the same time. The

implementation of this method is simple and have the

same or better performance than algorithms highly

recognized

The document has the following organization,

first of all, an overview about the SAT solvers does.

Second, the algorithm is mathematically formalized.

Third, an implementation is proposed for performing

analysis and benchmarking against various popular and

recognized algorithms. Finally, the conclusions are

presented.

2. OVERVIEW ABOUT THE SAT AND SOLVERS

SAT is a set of decision problems whose instances

are Boolean expressions written in a CNF format which

should answer the question: ¿Is there any logic assignment

that can make true the expression? CNF is a logical

expression with elements named clauses joined with the

and-logical operator. The clauses contain several logical

variables named literals grouped by means the or-logical

operator. The maximum number of literals that a clause

contains determine the name of the SAT problem, e.g., if

this amount is 2 then the SAT problem is named 2-SAT.

Additionally, if a literal represents a proposition, then the

SAT problem will belong to the propositional satisfiability.

SAT was the first problem declared NP-Complete [11], its

computational complexity increases exponentially when

new literals are added within the clauses. There are 2-SAT

instances that can be solved in polynomial time, but

problems with more literals are still difficult to solve.

There are 2 types of algorithms to solve SAT

instances whose based on the Davis-Putnam algorithm,

and other on stochastic methods. The former group carries

out a deterministic search; among those well recognized

are Chaff [12] and GRASP [13]. The stochastic algorithms

are non-deterministic; Hence, the answer may not find it;

WalkSAT [14] [15] is an example of them. Modern

solvers have been substantially improved due to the

integration with techniques such as conflict analysis,

learning, and non-chronological backtracking.

3. AN ALGORITHM BASED ON CLAUSES

The unit-propagation technique simulates a unit-

clause by making that its unique literal takes a logic value

(true/false). The backtracking procedure is the process that

made to the literal chosen takes the opposite logic value

when the formula become inconsistent. These two

procedures are the basis of the DPLL algorithms [3] [4]

[5] [12] [13] [14] [15], and their aim is to prune the tree of

possibilities at each step in an efficient manner. Although

this type of algorithm uses a clause as its main component,

it contains a sole literal which is the pivot of the process;

mailto:hmontanaq@udistrital.edu.co

 VOL. 16, NO. 20, OCTOBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2151

therefore, the literals are the foundation of these

algorithms.

This paper proposes a type of algorithm based on

groups of literals and suggests to the clause, as well,

shows that this strategy can be equally effective and

efficient as the typical algorithms. The process starts by

selecting the best clause and making it the node-root of the

search tree for generating a good balancing. In addition,

modal techniques in the middle of the operation make the

prune of the tree.

The following are some definitions about

concepts under supposing that exist a problem given and

structured as a formula CNF. In this proposal, CNF and

literal maintain their definitions, but the definition of

clause changes a little.

Definition 1 (Set of literals 𝓛). Let us define a

set of literals which will be named 𝓛 and will contain all

literals.

Definition 2 (Clause). Let us define a clause as

a subset of literals which will be named . Every element

belonging to is a literal that belongs to .

Definition 2 (Set 𝚱). Let us define the set of all

clauses which will be named 𝚱.

Definition 3 (Formula 𝑪𝑵𝑭). Let us define a

subset of clauses which will be named 𝐂𝐍𝐅 and is

contained in 𝛫.

Note: There is a function that maps a subset of

clauses to the set of all CNF possible that will not be

defined because of this is not relevant for the algorithm.

3.1 Weights

The selection procedure of a clause requires to

compare them; Hence, every clause must have a value that

stands for its weight in the CNF. The algorithm computes

the weight of the clauses at begin and when any clause

loses a literal. The computation must be simple because of

the algorithm repeats this method several times. The next

paragraphs expose an adequate technique to these

requirements.

Definition 4 (Function 𝓛𝒘). Let us define an

injective function which will be named 𝓛𝒘 and informally

the weight of respect to a 𝐶𝑁𝐹. The function maps each

literal that belongs to a 𝐶𝑁𝐹 to a natural number (). The

function works as follows, given a literal belong to a

𝐶𝑁𝐹:

a. To choose the contrary literal ℓ̅.

b. To calculate the number of clauses inside 𝐶𝑁𝐹 that

contain ℓ̅. The number obtained will be named ℓ𝑤.

The pair resulting will be (ℓ, ℓ𝑤). The target of

this function is to determine the number of clauses that are

affected if the literal is assigned with the value “true”.

Definition 5 (Function ∁𝒘). Let us define an

injective function which will be named ∁𝒘 and informally

the weight of 𝑐 respect to a 𝐶𝑁𝐹. The function maps each

clause that belongs to a 𝐶𝑁𝐹 to a natural number (). The

function works as follows, given a clause

𝑐 belongs to a 𝐶𝑁𝐹:

▪ To compute the minimum ℓ𝑤 calculated for each

literal inside of 𝑐. The number obtained will be named

𝑐𝑤.

The pair resulting will be (𝑐, 𝑐𝑤). This result will

be analyzed later.

3.2 Selecting the Best Clause

The search tree has clauses as their nodes; these

contain two or more literals that generate the possibilities

of truth for the clause. The selection of the clauses that

conform the tree is dynamic; hence, it is necessary to

compare their weights continuously.

Definition 5 (Maximal set 𝓗𝐜). Let us define a

set named ℋ𝐜 ⊆ 𝛫 such that ℋ𝑐 is the maximal set of 𝛫

respect to the range of ∁𝒘. The set contains all clauses

with the largest 𝑐𝑤.

Algorithm 1 (Selecting the clause).

1. To Read the CNF.

2. To Apply the function 𝓛𝒘 to all literals.

3. To Apply the function ∁𝒘 to all clauses.

4. To find the maximal set 𝓗𝐜

5. Select whatever clause of 𝓗𝐜

It is important to note that in each step of the

SAT evaluation process, the CNF changes and the

functions 𝓛𝒘 and ∁𝒘 must be calculated dynamically

generating a new maximal set, hence, the implementation

of this algorithm and its data structures must be efficient.

Figure-1. Tree of clauses by E. Source: Authors

Figure-1 presents the resulting tree when

Algorithm 1 is executed. The exploration of the truth

values through the literals in each node creates a new node

dynamically.

3.3 Node Preprocessing

The clauses chosen contains literals evaluated

such as a search tree by following the Algorithm 2.

 VOL. 16, NO. 20, OCTOBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2152

Algorithm 2

1. To apply the Algorithm 1

2. Node preprocessing: To transform the node-clause

selected in a chain of expressions.

3. To assign the value “true” to the first/next expression

in the clause selected.

4. If SAT then stop.

5. Else Go to step 1

The step 2 shows a preprocessing inside of the

clause which transforms its contents. The idea underlying

in this routine is to acknowledge and learn that the logical

assignment made in the previous literal or expression

failed and this is not desirable that occurs again. The

clauses with two literals have a specific attention; the

following theorems explain it.

Theorem 1. The expression in a clause-node with

two literals (Α ∨ Β) can be replaced by ((Β̅ ∧ Α) ∨ Β).

Proof

If Β generates inconsistency with the assignation

"true", then the literal A is the sole possibility to reach

successful from this node. The expression Β̅ → Α

represents this reasoning which is equivalent to (B ∨ A);

The same way for A. Therefore, if added a clause such as

(Α ∨ A̅) or (B ∨ B̅) to the current CNF, the outcomes of

the evaluation hold:

(B ∨ B̅) ∧ (Α ∨ Β)

(B ∧ A) ∨ (B ∧ B) ∨ (B̅ ∧ A) ∨ (B̅ ∧ B) by contradiction

and simplification

(B̅ ∧ A) ∨ [(B ∧ A) ∨ B] by reordering and simplification

(B̅ ∧ A) ∨ B

Q.E.D.

Theorem 2. The expression of a clause-node with

more than two literals (𝐴0, 𝐴1, … , 𝐴𝑘) can be replaced by

(𝐴0, [�̅�0 ∙ 𝐴1], … , [�̅�0 ∙ �̅�1 … . . �̅�𝑘−1 ∙ 𝐴𝑘]). The symbol “,”

represents the logical operator OR and “ ” the logical

operator AND.

Proof

If the literals of a node-clause have an order

instituted by its weighs, then the literals must be evaluated

in this specific order (chain). Hence, if the clause is a

chain, then it can apply the Theorem 1 as follow:

Step 0 (𝐴0,�̅�0) ∧ (𝐴0, 𝐴1, … , 𝐴𝑘) ≡ (𝐴0, [�̅�0 ∙
𝐴1], … , [�̅�0 ∙ 𝐴𝑘])

Step 1.

If 𝐴0 is successful then finish

Else (Theorem 1 over 𝐴1)

(𝐴1, �̅�1) ∧ ([�̅�0 ∙ 𝐴1], [�̅�0 ∙ 𝐴2], … , [�̅�0 ∙ 𝐴𝑘])

≡ ([�̅�0 ∙ 𝐴1], [�̅�0 ∙ �̅�1 ∙ 𝐴1], … , [�̅�0 ∙ �̅�1 ∙ 𝐴𝑘])

Step k-1.

If 𝐴𝑘−2 is successful then finish

Else (Theorem 1 over 𝐴𝑘−1)

(𝐴𝑘−1, �̅�𝑘−1) ∧ ([�̅�0 ∙ �̅�1 ∙∙∙ 𝐴𝑘−1], [�̅�0 ∙ �̅�1 ∙∙∙ �̅�𝑘−2 ∙ 𝐴𝑘])

≡ ([�̅�0 ∙ �̅�1 ∙∙∙ 𝐴𝑘−1], [�̅�0 ∙ �̅�1 ∙∙∙ �̅�𝑘−2 ∙ �̅�𝑘−1 ∙ 𝐴𝑘])

Step k.

If 𝐴𝑘−1 is successful then finish

Else

([�̅�0 ∙ �̅�1 ∙∙∙ �̅�𝑘−2 ∙ �̅�𝑘−1 ∙ 𝐴𝑘])

Because of the node-clause is a chain, all results

generated at each step can be linked in a sole node, as

follow:

(𝐴0, [�̅�0 ∙ 𝐴1], … , [�̅�0 ∙ �̅�1 … . . �̅�𝑘−1 ∙ 𝐴𝑘])

Q.E.D.

For better understanding, the following Tables 1

and 2, and Figures 2 and 3 exhibit the procedures

described in the las section with a 3-CNF SAT. The

Algorithm 2 is a loop that dynamically creates the

branches of the tree. The first step is to apply the

Algorithm 1 (see Table-1).

 VOL. 16, NO. 20, OCTOBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2153

Table-1. Algorithm 1 applied to a CNF. Source: Authors

Clause Variables

Weight

Select

Literals Clause

C1 (~p, ~t, ~s) ~p=1, ~t=2, ~s=2 1

C2 (~p, q, s) ~p=1, q=2, s=1 1

C3 (p, ~t, r) p=2, ~t=2, r=1 1

C4 (~q, t, ~r) ~q=2, t=3, ~r=2 2 *

C5 (~q, ~t, s) ~q=2, ~t=2, s=1 1

C6 (q, t, r) q=2, t=3, r=1 1

The clause C4 is the clause selected as the node-

root, then, its literals conform a chain according to the

Theorem 2 (see Figure-2).

Figure-2. To create the node-clause according to the

Theorem 2. Source: Authors

The following step is to evaluate the CNF with

the current expression in the node-clause, this modifies the

original CNF and the Algorithm 2 returns to the begin. If

there are clause with two literals, then, the Algorithm 1

applies as in Table-2.

Table-2. Algorithm 1 applied to the new CNF.

Source: Authors

Clause Variables

Weight

Select

Literals Clause

C1 (~p,~t, ~s)

~p=1,

~t=1,

~s=1

1

C2 (~p, s)
~p=1,

s=1
1 *

C3 (p, ~t, r)

p=2,

~t=1,

r=0

0

C6 (t, r) t=2, r=0 0

The tree expansion is shown in Figure-3, here is

applied the Theorem 1. This process continues such as a

search tree with an undo procedure as part of it.

Figure-3. The new node-clause according to the

Theorem 1. Source: Authors

4. IMPLEMENTATION AND ANALYSIS

The algorithm implementation (ACSAT) used the

C/C++ language and the testing ran on a computer very

 VOL. 16, NO. 20, OCTOBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2154

simple with two cores. The benchmark compared ACSAT

against relevant algorithms [16] such as Zchaff [12],

Picosat [17], Minisat [18], Rsat [19], and March [20], in

UNSAT and SAT modalities. Figures 4 and 5 show the

results.

Figure-4. Comparison among Algorithms for SAT by E. Source: Authors

The benchmark for SAT (Figure-4) shows that

ACSAT has a response near to Picosat which is a good

algorithm to resolve this kind of problems. On the other

hand, Figure-5 shows the benchmark for UNSAT

problems, also, with good performance.

Figure-5. Comparison among Algorithms for UNSAT. Source: Authors

 VOL. 16, NO. 20, OCTOBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2155

5. CONCLUSIONS

The strategy proposed in this paper founds on

literals groups such as the clause; this allows visualize

properties and techniques more sophisticated addressed to

the relation between literals and clauses, and, of course, to

prune of the search tree.

Algorithms such as Zchaff founds their

performance in the unit-clause concept (unit propagation),

and hence, in the set of literals of the CNF without

establishing the relationship between them; this obligates

to the algorithm uses techniques such as the learning and

the non-chronological backtracking, among others.

To use weights for the literals and clauses and it’s

dynamically assessment is a powerful tool to select an

adequate candidate to be a node in the search tree as the

performance graphs shows. A good way to improve this

algorithm could be to find better heuristic functions that

establish closer relationships between literals and clauses.

Finally, it is significant to mention that the benchmark was

against mature algorithms which have been winners of

competition in several SAT modalities. Consequently, the

ACSAT algorithm, in this early implementation, takes in a

behavior that is near to these algorithms; this creates good

expectations about implementations more refined.

This paper introduces a strategy to resolve SAT

based on clusters. The implementation built showed a

good performance respect to others solvers. SAT problems

with a large amount of restrictions are the adequate

context for this strategy because of the algorithm founds

its performance in a heuristic function that makes

relationships between groups of literals.

REFERENCES

[1] M. Järvisalo, D. Le Berre, O. Roussel & L. Simon.

2012. The international SAT solver competitions. Ai

Magazine. 33(1): 89-92.

[2] M. Davis and H. Putnam. 1960. A Computing

Procedure for Quantification Theory. Journal of the

Association for Computing Machinery. 7: 201-215.

[3] M. Davis, G. Logemann and D. Loveland. 1962. A

Machine Program for Theorem Proving.

Communications of the ACM. 5(7): 394-397.

[4] M. R. Krom. 1967. The Decision Problem for a Class

of First-Order Formulas in which all Disjunctions are

Binary. Zeitschrift für Mathematische Logik und

Grundlagen der Mathematik. 13(1-2): 15-20.

[5] B. Aspvall, M. F. Plass and R. E. Tarjan. 1979. A

linear-time algorithm for testing the truth of certain

quantified boolean formulas. Information Processing

Letters. 8(3): 121-123.

[6] R. Brummayer, F. Lonsing and A. Biere. 2010.

Automated Testing and Debugging of SAT and QBF

Solvers. Theory and Applications of Satisfiability

Testing, Lecture Notes in Computer Science. Vol.

6175.

[7] A. Hidouri, S. Jabbour, B. Raddaoui & B. B.

Yaghlane. 2020. A SAT-Based Approach for Mining

High Utility Itemsets from Transaction Databases.

Proceeding of the International Conference on Big

Data Analytics and Knowledge Discovery, Bratislava,

Slovakia, Big Data Analytics and Knowledge

Discovery. pp. 91-106.

[8] H. Hong, L. Khan, A. Gbadebo, Z. Shaohua & W.

Yong. 2018. A Complex Task Scheduling Scheme for

Big Data Platforms Based on Boolean Satisfiability

Problem. 2018 IEEE International Conference on

Information Reuse and Integration (IRI), Salt Lake

City, UT. pp. 170-177.

[9] H. Huang, L. Khan & S. Zhou. 2020. Classified

enhancement model for big data storage reliability

based on Boolean satisfiability problem. Cluster

Comput. 23: 483-492.

[10] V. G. Bogdanova & S. A. Gorsky. 2018. Scalable

parallel solver of Boolean satisfiability problems.

2018 41st International Convention on Information

and Communication Technology, Electronics and

Microelectronics (MIPRO). IEEE.

[11] S. Cook. 1971. The Complexity of Theorem Proving

Procedures. Proceeding of the 3rd Ann. ACM Symp.

On Theory of Computing, Association for Computing

Machinery. pp. 151-158.

[12] M. Moskewicz, C. Madigan, y. Zhao, L. Zhang and S.

Malik. 2001. Chaff: engineering an efficient SAT

solver. Proceeding of the 38th ACM/IEEE Design

Automation Conference, Las Vegas, Nevada. pp. 530-

535.

[13] J. Marques-Silva and K. Sakallah. 1999. Grasp: A

Search Algorithm for Propositional Satisfiability.

IEEE Transactions on Computers. 48(5): 506-521.

[14] S. Liu. 2015. An Efficient Implementation for

WalkSAT. https://arxiv.org/abs/1510.07217.

[15] R. H. Russel. 2019. A Probabilistic Approach to

Satisfiability of Propositional Logic Formulae.

https://arxiv.org/abs/1912.02150v1.

[16] D. Kroening & O. Strichman. 2016. Decision

procedures. An algorithmic point of view. Texts in

https://en.wikipedia.org/wiki/Robert_Tarjan
http://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2007WS/2SAT.pdf
http://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2007WS/2SAT.pdf
http://www.math.ucsd.edu/~sbuss/CourseWeb/Math268_2007WS/2SAT.pdf
https://en.wikipedia.org/wiki/Information_Processing_Letters
https://en.wikipedia.org/wiki/Information_Processing_Letters
https://zbmath.org/serials/?q=se%3A00009364

 VOL. 16, NO. 20, OCTOBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2156

Theoretical Computer Science, An EATCS Series,

Berlin, Springer, 2nd edition.

[17] A. Biere, PicoSAT. 2008. Essentials. Journal on

Satisfiability. Boolean Modeling and Computation

(JSAT), Delft University. 4: 75-97.

[18] N. Eén and N. Sörensson. 2003. An Extensible SAT-

solver. Proceeding of the International Conference on

Theory and Applications of Satisfiability Testing,

Lecture Notes in Computer Science. 2919: 502-518.

[19] K. Pipatsrisawat and A. Darwiche. 2006. RSat 1.03:

SAT Solver Description. Technical report D152

Automated Reasoning Group, Computer Science

Department, University of California, Los Angeles.

[20] M. Heule, M. Dufour, J. van Zwieten and H. van

Maaren. 2005. March_eq: Implementing Additional

Reasoning into an Efficient Look-Ahead SAT Solver.

Theory and Applications of Satisfiability Testing,

Lecture Notes in Computer Science. 3542: 345-359.

https://zbmath.org/serials/?q=se%3A00009364
http://fmv.jku.at/papers/Biere-JSAT08.pdf
https://link.springer.com/conference/sat
https://link.springer.com/conference/sat
http://reasoning.cs.ucla.edu/rsat/papers/rsat_1.03.pdf
http://reasoning.cs.ucla.edu/rsat/papers/rsat_1.03.pdf

