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ABSTRACT 

The purpose of the study is to simulate the combustion of coal dust in real combustion using artificial neural 

networks. The article discusses optical methods of flame diagnostics. The focus is on the secondary air supply. For 

unknown reasons, the pulverized coal in the boiler is not completely combusted. Incomplete combustion of coal impairs 

the efficiency of the boiler, that is, it worsens the combustion efficiency and leads to significant costs. The scientific 

novelty consists in the use of artificial neural networks in control algorithms, making it possible to simulate efficiently 

complex processes, in particular the process of burning coal dust. In the Matlab software environment, the results of the 

data collection with the separation output with different amplitudes are shown. The considered scheme takes into account 

the multi-input and multi-output nature of the combustion process. Using additional information, vector-based optical 

signals for the flame surface area and the loop length have proven the system tracking properties. As a result of the use of 

fast optical signals, the control speed of the object increases and stabilization of the output signals of the combustion 

process is achieved. 
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INTRODUCTION 

Combustion of fossil fuels is currently the most 

important source of energy used by humanity. Coal 

remains the key energy resource and is expected to 

continue dominating the horizon for about 50 years. 

Unfortunately, this method of generating electricity is 

associated with progressive environmental pollution, such 

as emission of large amounts of waste gases and dust into 

the atmosphere [1]. 

The coal dust combustion process takes place in 

power boilers. The combustion process is optimized for 

the entire boiler, with the desired temperature distribution 

and the correct air-fuel ratio. It is often impossible to 

control each burner individually. The mixture of dust and 

air between different burners is not evenly distributed and 

often changes over time, which leads to decreasing the 

efficiency of the combustion process and increasing 

emissions of harmful combustion products. Practical 

experience shows that if one burner does not work 

properly, it can lead to a significant increasing the NOx 

and CO emissions in several burner systems. 

Greenhouse gas emission standards call for 

changing the current control system that must be 

complemented with effective diagnostic systems. The need 

to meet these stringent requirements has led to the 

development of a number of research programs carried out 

mainly in the European Union. Currently, when 

developing an efficient method of the combustion process, 

one should take into account not only the cost of the 

process but also the costs associated with the emission of 

pollutants. This requires the use of modern technical 

solutions that would allow the combustion processes being 

maintained under optimal conditions. For this, in 

particular, artificial intelligence algorithms are used. 

Expert systems are mainly used not only for modeling but 

also for diagnostics [2]. Classical neural networks have 

been used to monitor emissions from small boilers as well 

as to predict the greenhouse gases of the grate boiler. The 

fuzzy network is used to evaluate the system of 

minimizing the NOx emissions in sprayed coal. All these 

systems have one significant drawback: the measurement 

processes are averaged over the entire boiler. In power 

boilers operating with several dozen burners, the 

measuring chemical compositions of gases are most often 

determined using gas analyzers located on the rotary air 

heater. Depending on the size of the boiler and the 

working conditions, the information can be delayed up to 

several minutes, which often makes diagnostics and 

monitoring not very effective. Even the most sophisticated 

systems do not allow one burner being controlled 

separately, redundant air control and the amount of NOx 

generated in the coal of the boiler. Diagnostics can detect a 

malfunction but the location of the damage cannot be 

determined. The fault analysis indicates that there are no 

methods available for direct measurement of parameters 

indicative of the combustion process quality occurring 

within a single burner. Therefore, it is necessary to use 

indirect methods, which could include primarily acoustic 

or optical methods. These methods are non-invasive and 

allow obtaining additional spatially selective information 

about the combustion process practically without delay. 

The flame is used as a source of information of the 

combustion process. Flame radiation that consists of the 

combustion chemicals emission and a continuous 

spectrum, the source of a particulate matter (soot, coal 

dust, ash, etc.), uses radiation in the ultraviolet to near 

infrared range of the spectrum. 

The main problem that arises in the course of the 

optical sensors operation is contamination of the optical 

system. It is necessary to adjust the design of the device 
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for receiving the optical signal originating from the flame 

in such a way as to minimize the possibility of 

contamination. 

In addition to the main problems, such as 

contamination of the optical system and decreasing the 

power, there are interference from neighboring burners 

and the hot state of the chamber walls. Most up-to-date 

solutions use the information related to the pulsation of the 

flame, which includes the analysis of the variable 

component of the output signal from the photodetector. 

For this, frequency and time-frequency methods of the 

signal analysis (Fourier transform), short-term Fourier 

transform, wavelet transform for forecasting time series 

and the analysis using artificial intelligence algorithms are 

used [3]. 

The advanced photodetector signal analysis 

allows flame scanners being used for combustion 

diagnostics. They are not limited only to the detection of 

insufficient flame but also allow detecting changes in the 

combustion process within a single burner, in particular 

due to NOX emissions. Thanks to the intelligent optical 

system, multi scanners allow measuring the parameters of 

the flame simultaneously in several of its zones. This 

expands the diagnostic capabilities of the device, for 

example, with the ability to track the movement of the 

burner flame. The flame is used for combustion 

diagnostics and image processing. Observation of the dust-

like flame in different spectral ranges is used to diagnose 

the state of the fuel being burned as an alternative to 

microwave radiometric methods [4]. 

Methods of diagnosing industrial processes, the 

task of which is to identify early signs of the emergency 
formation, acquire particular importance for processes of a 

complex and large scale. Such processes include the 

process of generating electricity. Energy production 

processes can be considered, on the one hand, in terms of 

economics, and on the other hand, in terms of 

environmental pollution. For requirements and constraints 

that meet various criteria (for example, economic, 

environmental and technological), it is important to obtain 

a compromise in implementing the process without the 

risk of damage or destruction of the process plant parts. 

In the industrial environment, the quality of the 

pulverized coal combustion process is subjectively 

assessed by the operator based on the visible image of the 

flame. Monitoring systems are designed to detect the 

condition of the flame that leads to an uncontrolled 

explosion of coal dust. It should be emphasized that the 

speed of the fuel mixture leaving the burner is high 

enough for combustion to take place in the turbulent 

flame. At the moment, there are no measures that allow 

assessing the turbulent flame occurring in the course of the 

coal dust combustion on the basis of which it would be 

possible to evaluate clearly and objectively the quality of 

the combustion process. Therefore, it seems necessary to 

determine diagnostic signals that would allow objective 

controlling the process. 

In almost all the countries, harmful emissions 

into the environment are of particular concern. The 

pulverized coal combustion technology effectively reduces 

NOX emissions into the environment. However, it reduces 

the efficiency of using coal dust for power generation by 

several percent. Therefore, it is necessary to use the 

information from the flame to control the combustion 

process. 

The combustion process of solid natural fuel is a 

complex of physical-and-chemical phenomena: heat 

exchange of particles with the medium, release and 

combustion of volatile substances, combustion of the coke 

residue. 

It is generally accepted that the combustion 

process can be divided into relatively independent stages: 

a) warming up the particle until the volatile substances 

release or ignition; 

b) combustion of volatile substances near the particle, 

which promotes rapid heating of the particle; 

c) burning the coke residue consisting almost 

exclusively of carbon and ash. 

Combustion of volatile substances, as well as 

heating particles, is a relatively fast process in comparison 

with combustion of the coke residue. Combustion of the 

coke residue takes up to 90 % of the total combustion time 

of the coal particle. 

Combustion of carbon is a heterogeneous process 

determined both by the kinetics of combustion of the 

carbon mass of a particle and by the diffusion transfer of 

oxygen and combustion products at the surface of the 

burning particle. 

Experimental studies show that the interaction of 

oxygen with a carbon particle leads to the formation of 

both carbon oxide and carbon dioxide. The mechanism of 

the primary oxides formation is as follows: oxygen is 

adsorbed from the gas volume on the carbon surface. On 

the surface, oxygen atoms enter into the chemical 

compound with carbon forming complex carbon-oxygen 

compounds СхОу. The compounds decompose with the 

formation of СО2 and CO. The decay rate increases greatly 

with increasing the temperature. In addition to primary 

reactions, secondary reactions have a significant effect on 

the combustion rate: the interaction of carbon with carbon 

dioxide and the combustion reaction of carbon monoxide. 

In their pure form, heterogeneous reactions are manifested 

in extremely limited temperature ranges, when the rates of 

these reactions are low. Distortion of the reaction law is 

caused by the appearance of diffusion inhibition: diffusion 

of oxygen and combustion products in the volume 

surrounding the burning particle and diffusion inside the 

mass of coke. 

The physical picture is as follows: oxygen is 

supplied to the outer surface of the piece, in the areas of 

this surface where there are no cracks, a part of the oxygen 

enters into the combination with carbon and a certain 

amount of carbon oxide and carbon dioxide is released. 

During the combustion of a carbon particle, two 

main processes can be distinguished that determine the 

rate of burnout: the diffusion of oxygen to the surface of 
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the carbon particle and the actual rate of chemical reaction 

of oxygen with carbon. 

When burning a solid fuel in a dense or fluidized 

bed, combustion of large particles usually takes place in 

the diffusion region. In pulverized combustion, the relative 

velocity between the gas and the fuel particle is small, 

while the Sherwood number tends to two: 

 2 Sh D == D . In this expression, the coefficient of 

molecular diffusion is calculated as the coefficient of 

interdiffusion of oxygen in nitrogen [4]: 

 

( ) 9,14 2731016,0 TD −= .                                          (1) 

 

In this region the flow is almost proportional to 

the temperature: 
9,019,1

00D ~~~ TTTDccj −= . 

With decreasing the particle diameter there decreases the 

diffusion resistance: D21 D  = , i.e. decreasing the 

dust particles diameters allow increasing their combustion 

rate. 

For many problems in the practice of combustion, 

the most interesting quantity is the duration of combustion 

of a fuel particle. In particular, in the case of pulverized 

coal combustion, when a solid fuel moves with air, it is the 

combustion time of the fuel that is important for 

calculating the dimensions of the furnace. 

The total burning time of a particle is described 

by the dependence representing the sum of the "kinetic" 

and "diffusion" burning times. In pulverized coal 

combustion, Sh → 2, and then the total combustion time of 

a single carbon particle can be calculated as [4]: 
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The studies have shown that combustion of 

particles that are larger than 100 microns occurs in the 

diffusion region. In the kinetic region, combustion of 

anthracite particles that are smaller than 100 microns in 

size takes place. The burnout time for particles from 100 

μm to 1 mm can be calculated using the empirical formula 

[4]: 
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where kг.к is the coefficient accounting for the coal 

properties; ρ is the fuel density, kg/m3 ; δ is the diameter of 

the fuel particles, µm; T is the temperature, К; О2 is the 

oxygen concentration, %.  

Let’s compare the empirical formula with 

analytical expression (4.12) for the diffusion mode of a 

single particle burnout: 
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The required bed height should be proportional to 

the diameter of the fuel particles. Increasing the velocity 

does not change the excess air at the exit from the layer of 

a given height. This is explained by the fact that increasing 

the velocity leads to decreasing the residence time of the 

gas in the layer, but at this, the mass transfer is intensified. 

Thus, changing the velocity does not lead to deterioration 

in the combustion conditions, which makes it easy to 

adjust the furnace load. 

The pulverized method of burning solid fuels in a 

torch has certain advantages over other combustion 

methods: it allows burning high-ash and high-moisture 

fuels, increasing the heat flux density, complete 

mechanizing and automating the supply and combustion of 

fuel, removing slag and ash. 

The torch burns particles which sizes differ by 

one or two orders of magnitude, i.e. they burn multi-

fraction dust. Grinding ensures a good contact of the fuel 

and oxidizer and fast fuel burnout. 

Due to their small size, the dust grains move 

practically together with the gas flow, the velocities of 

their flow around them are small. And even for large 

particles (200-300 microns), we can assume that the 

Sherwood criterion tends to the minimum value equal to 

two. 

The presence of a volatile part fundamentally 

distinguishes the process of burning out a natural fuel from 

the process of burning out pure carbon. Volatile 

substances make ignition much easier. Volatiles released 

by small particles (up to 200 microns) saturate the gas 

volume forming a combustible gas-air mixture, which 

begins to burn. For large particles (larger than 500 

microns), the ignition of volatiles begins at the surface of 

the particle. 

At the beginning of the combustion process, 

volatiles and coke can be burned out simultaneously. 

However, combustion of the coke residue is the longest 

stage (up to 90 % of the total combustion time of a 

particle). 

It should be borne in mind that the particles do 

not burn separately from each other but in interaction. Co-

combustion of particles determines changing the oxygen 

concentration along the length of the flame. At the 

beginning of the torch, in the zone of high oxygen 

concentrations, a large number of small dust grains will 

burn out, and combustion of medium and large dust grains 

will occur in the zone with a low oxygen concentration. 

Therefore, for complete burnout, it is necessary to either 

stretch the torch or to reduce the particle size. With the 

help of sieves, it is possible to disperse only dust with the 

grain size of larger than 40 microns. The analysis of the 

fractional composition of finer dust is carried out by the 

air classification method. 

For clarity and ease of use, the sieving results are 

shown graphically in the form of the grain characteristic, 

where the sieve size is plotted on the abscissa, and the 



                                VOL. 16, NO. 22, N0VEMBER 2021                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                              2398 

total residue on the sieve of a given size is plotted on the 

ordinate. The analysis of numerous grain characteristics of 

grinding various types of fuels shows that all the curves 

are described by the Rosin-Rammler equation (Figure-1). 

 

 
 

Figure-1. Full grain characteristics of the brown coal dust 

obtained in two types of mills: 1 - grinding in a hammer 

mill; 2 - grinding in a ball drum mill; 3 - region of the fine 

dust fractions; 4 - region of the coarse dust fractions [4]. 

 

( )n

x bR −−= exp1 ,                                                   (5) 

 

where δ is the current coal dust size; b and n are constants 

for the given fuel and the given method of grinding, b 

characterizes the fineness of grinding, the larger b, the 

finer dust. The numerical values are as follows: b=410-3 

for coarse dust, b=4010-3 for fine dust; n is the coefficient 

of the dust polydispersion that characterizes the dust 

structure from the point of view of the grinding 

homogeneity. The higher n, the less are distinguished the 

particle sizes. For the industrial conditions the coefficient 

n is equal to 0.75-1.5. 

Tthe Rosin-Rammler equation can be presented 

in the following form:  
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where 0 is the characteristic particle size in the weight 

equal to n  /10 = .  

At =0 the sieve residue Rδ=100 %, at → 

R=0, i.e. there little large particles. In physical meaning, 

0 is the size at which the average specific surface area of 

particles with the size 0  is equal to the average specific 

surface area of the considered polydisperse particles. 

In the presence of experimental data of the sieve 

residues, the coefficients in the Rosin-Rammler equation 

are found by doubling the logarithm of expression (6): 

 

  00δ lnln)/ln()100/ln(ln  nnR n −==−
  (7) 

 

and by processing the data in the )lnln(δln R−=

coordinates, in which equation (7) presents an equation of 

a straight line with the unknown values n and 0. 

Flame radiation reflects the combustion process 

that occurs in chemical reactions and physical processes. 

Optical diagnostic methods, in addition to acoustic ones, 

are some of the most important methods that provide the 

additional information of the current combustion process 

in a non-invasive way. In the spectrum of the flame, it is 

possible to determine the content of the air-fuel ratio, the 

amount of heat release and the temperature. Among the 

optical methods, the image processing method is 

especially important. The flame is the result of a dynamic 

balance between the local velocity of flame propagation 

and the velocity of the incoming fuel mixture. Changes in 

the position of the flame front in the chamber are regarded 

as fluctuations in the flame and interfere with the balance 

results. This suggests that the shape of the flame can be an 

indicator of combustion occurring under certain conditions 

[5]. 

The analysis shows the relationship between the 

parameters that describe changing the flame and the 

temperature in the chamber or the volume of air flow in 

the secondary refrigerant. Thus, if the temperature changes 

slowly, then synthesis can be used to control the velocity 

(the ratio of an actual parameter or a group of image 

parameters). 

The primary air is mainly used to provide carbide 

powder to the burner nozzle, while the secondary air is 

used for control purposes. The input parameters, such as 

the coal mixture, the biomass and the air flows were 

changed several times during testing and under different 

combustion conditions. 

Due to the incomplete study of the control object, 

the use of adaptive control is required. In turn, the study of 

the object is achieved by artificial modeling of the neuron 

network. 

Conditions and methods of the study. The 

complexity of the combustion and co-combustion process 

requires unconventional control methods. This is dictated 

by non-linearity and the possibility of rapid changes in the 

number of quality and safety requirements. In such 

systems, it is better to use neuron adaptive control, which 

is an interesting approach in present day complex 

industrial systems. Compared with conventional methods 

in the field of control theory and automatic control, these 

systems have the advantage of being applied to 

multidimensional systems. The problem statement plays 

an important role because each controller is optimally 

designed. 

The efficiency of pulverized fuels depends on 

several parameters. Commonly applied low-emission 

methods of burning pulverized coal use recirculating 

vortices that lengthen the path of the coal grains passing 

through the flame to minimize the formation of thermal 

nitrogen oxides (NOx). To make the combustion of 
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pulverized coal more efficient and cleaner, it is necessary 

to measure its basic parameters. The information received 

at the output (exhaust manifold) is delayed and averaged. 

Although in [5] some direct methods of combustion 

diagnostics are given, most of them cannot be used in 

industrial conditions due to their high cost. Fast and 

minimally invasive optical techniques make it possible to 

use the image-based information in the process control 

system. 

Nonlinear autoregression of external input 

networks (NARX) is a recurrent networked dynamic 

feedback connection involving multiple network layers. 

The NARX model is based on the linear ARX model, 

which is widely used in time series modeling. The 

definition of the NARX equation for the model is as 

follows: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ),t-n,...,ut-, ut-, ut-n,...,yt-, yt-y=fty uy 2121
   (8) 

 

The NARX model can be implemented using a 

neuron network to approximate the function. The resulting 

network diagram is shown in Figure 5.3a, where two-layer 

networks are used. This implementation also allows for the 

ARX the vector model characterized in that the input and 

output can be multidimensional. 

The NARX output networks can be thought of as 

a model for evaluating the output of a nonlinear dynamic 

system. The output is fed back to the input of the neuron 

network as a part of the standard NARX architecture. With 

regard to the fact that the real output is available during 

the training network, it is possible to create a serial-

parallel architecture [6]), which is used to evaluate the real 

output. 

We used the neuron NOx estimation using the 

NNFIR (Neural Network Finite Impulse Response) model, 

which is described by the following expression: 

 

( ) ( )  ( )tetgty +=  ,
                                               (9) 

 

where t is the time; y(t) is the output of the model, a vector 

that contains  of the mat weight; g is the nonlinear 

function that is realized by the neuron network;  e(t) is 

white noise. The regression vector (t) of the NNFIR 

model is described by the relationship: 

 

( ) ( ) ( ) 1,, +−−−= kbk nntuntut 
                 (10) 

 

where u is the input model; nb and nk are its parameters. 

This model was implemented as a perceptron of a 

three-layer network (Figure-2). 

 

 
 

Figure-2. Comparison of the NOx emission measurement 

(solid line) with the estimate based on measuring of the 

optical probe (dash line). 

 

The control system for stabilizing nitrogen oxide 

emissions from one burner, where neural estimation is 

used, is shown in Figure-3. 

 

 
 

Figure-3. Control system of the vortex burner. 
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To estimate the control quality there is accepted 

the square control coefficient that take the following form: 
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where U(t) is the control vector; r is the set control value; 

N1 and N2 are respectively the start and the end of the 

forecast horizon; Nu is the horizon length control; ŷ  is the 

model output value;  is the change of the weight of the 

damping controls depending on the deviation; u is the 

control signal increment. 

The output of the NARX network can be viewed 

as an estimate of the simulated nonlinear dynamic system 
output. The output is returned to the input of the feed-

forward neuron network as a part of the standard NARX 

architecture. This has two advantages: firstly, the feed-

forward network entry is more accurate; secondly, the 

resulting network has a purely forward-looking 

architecture and static back propagation can be used. 

The custom architecture used for further analyzes 

presents the Model Reference Adaptive Control (MRAC). 

This reference control model has two subnets. One subnet 

is a controlled installation model. The other subnet is the 

controller. By purchasing a prepared NARX installation 

model, it is possible to develop a generic MRAC system 

and to insert the NARX model inside, and then to add 

feedback loops to the feed-forward network. 

For the closed loop MRAC system to react in the 

same way as the reference model (used to generate the 

data), the model installation networks must be inserted at 

the appropriate place in the MRAC system. The controller 

outputs must then be set to zero to achieve the initial input 

of zero. The final MRAC network is shown in Figure-4, 

where level 3 and level 4 (output) are a subnet of the 

installation model. Levels 1 and 2 make up the controller. 

 

 
 

Figure-4. The MRAC network. 

 

Training the MRAC system took much longer 

than training the NARX object model, due to the fact that 

the network uses periodic and dynamic back propagation. 

After the network was trained, it was tested with the test 

input to the MRAC network. 

Two MRAC systems were developed and 

compared. In the first of them, a non-optical measurement-

based set of input vectors is used, the secondary air flow, 

fuel consumption and vectors describing, the temperature 

of the exhaust gases in the chamber, recorded at the first 

measurement point, respectively, are quantitatively 

described. The second scheme uses the secondary airflow 

control signal and selected flame image descriptors. 

Figure-5 shows the response of the system to the 

system reference input in both cases: with classical 

measurements (a) and in the case of the vector of the 

contour length of the flame image descriptor (b). 
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Figure-5. The MRAC system response to the input signal: (a) without additional information 

from the optical signals; (b) with the vector of the loop of the flame image descriptor. 

 

Figure-5 shows that the output of the station 

model corresponds to the reference input with the correct 

critically damped response, although the input sequence is 

not the same as the input sequence in the training data. 

The steady state response is not ideal for every step, but 

this can be improved with more training and possibly more 

hidden neurons. From the obtained results of the proposed 

neural adaptive control, it can be concluded that control 

signals are limited, abrupt changes in the system 

parameters are associated with sudden changes in the 

amplitudes of command laws and outputs of the controlled 

system. 

Testing for the combustion of a mixture of coal 

and biomass was carried out in the laboratory facility of 

0.5 MW. This unit simulates the reduced (10:1) 

combustion conditions of a full scale vortex burner that 

operates on biomass pulverized coal. The laboratory unit 

contains a horizontal arrangement consisting of a 

cylindrical combustion chamber with the diameter of 0.7 

m and the length of 2.5 m, as shown in Figure 6. 

The model of a low NOx vortex burner with the 

diameter of about 0.1 m is mounted on the front wall. The 

laboratory unit is equipped with all the needed power 

systems; primary and secondary air, coal and oil. The 

mixture of pulverized coal and biomass is prepared in 

advance and discharged into the hopper of the coal 

distributor. 

The combustion test consisted of the following steps. 

Firstly, the combustion chamber was heated by burning 

oil. When the temperature rose enough, the feeder was 

started and the air/fuel mixture was delivered to the burner 

at the same time as the oil. After reaching the correct 

temperature level, the oil supply was cut off [5]. 

Radiation emitted by the flame is a reflection of 

the combustion process that occurs in chemical reactions 

and physical processes. Optical diagnostic methods, in 

addition to acoustics, are among the most important 

methods that make it possible to obtain non-delayed and 

spatially selective additional information of the ongoing 

combustion process in a non-invasive way. With regard to 

the spectrum of the flame in visible light, determining the 

content of the air-fuel ratio, the amount of heat generation 

and the temperature can be included. Among optical 

methods, the image processing approach seems to be 

especially important. The flame of a stationary and visible 

position is the result of the dynamic equilibrium between 

the local speed of flame propagation and the speed of the 

incoming fuel mixture. Changes in the position of the 

flame front in space are seen as fluctuations in the shape of 

the flame upset these balance results. This suggests that 

the shape of the flame can be an indicator of the 

combustion process occurring under certain conditions [5]. 
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Figure-6. The laboratory combustion set with a 

mounted camera. 

 

The potential problem for complex control 

systems, such as the combustion process, is difficult (and 

therefore not complete) for measuring physical-and-

chemical quantities. In the proposed solution, the classical 

approach is supplemented by the information of the flame 

parameters recorded by a fast CCD camera. 

As a result of the experiment, the relationship 

was revealed between the parameters describing the 

change in the flame and the temperature of the exhaust gas 

in the chamber, or the amount of air flow in the secondary 

factor. Thus, if the temperature changes slowly having an 

inert nature, then the synthesis of the controller can be 

used by a parameter or a group of image parameters. 

The primary air is mainly used to supply 

pulverized coal to the burner nozzle, while the secondary 

air is used for regulation. Input parameters such as the 

coal/biomass mixture and air flows were changed several 

times during the tests for developing different combustion 

states. 

 

 
 

Figure-7. The neuron network structure that is used at the stage of the equipment identification 

(a), the MRAC network structure (b) and the MRAC control scheme (c). 

 

Due to insufficient studies of the control object, 

the performance of the system with fixed parameters is 

insufficient and requires the use of adaptive control. In 

turn, the required knowledge of the object is achieved by 

modeling an artificial neural network. 

 

 

 

 

 

RESULTS 

An artificial neuron network is modeled as a 

computer program. Most programs are limited only by the 

ability to build Takagi-Sugeno models. An example of this 

is the ANFIS (Adaptive Neuro Fuzzy Inferencje System) 

module attached to the Fuzzy Logic Toolbox in the Matlab 

software. 

Figure-8 shows an example data from the 

Simulink Toll Chart program. 
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Figure-8. The window of the diagram with the application of registering the data in the Simulink software. 

 

To communicate with devices and with analog 

and digital inputs there are used the nidaq dev1 and nidaq 

dev1 blocks. 

All the signals are saved to the dt_ack.mat file 

and a variable table in the data_ack workspace in the form 

of a structure with time. 

Figure-9 shows the production of files of the 

Matlab program with the developed artificial neural 

network model. 

 

 
 

Figure-9. Producing files in the Matlab software with the developed artificial model of the neuron network. 

 

The illustration is dealt with by oscilloscopes showing the 

individual values of analog and digital signals. In order to 

simplify selecting certain signals in the analog circuit, a 

block selector is used. A digital output block is used to 

control the actuators. 

Figure 10 shows the results of data collection with 

separation yields at different amplitudes. 

In the main window of Simulink diagrams, there can be set 

the sampling range, and depending on the use of the block, 

they are saved in the workspace or written to a .mat file. 

Collecting is done using the start button (), the key 

combination is Ctrl + T. By the stop button () the data 

collection ends. 
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The development of smart energy networks opens 

up new opportunities for innovative approaches to control 

based on up-to-date diagnostic and control methods. 

The flame is a reflection of the combustion 

process that occurs in chemical reactions and physical 

processes. Optical diagnostic methods allow obtaining 

fast, spatially selective additional information of the 

current combustion process in a non-invasive way. It is 

quite possible to determine the content of the air-fuel ratio, 

the amount of heat release and the temperature in relation 

to the spectrum of the flame in the visible range of 

radiation. The flame means the result of dynamic 

equilibrium between the local speed of flame propagation 

and the speed of the incoming fuel mixture [6]. Changes in 

the flame position of the front in space are considered as 

fluctuations in the shape of the flame and provide an 

imbalance in the results. This suggests that the shape of 

the flame can be an indicator of the combustion process 

occurring under certain conditions. 

Discussing the scientific results. Real combustion 

test results from the coal dust and biomass were used to 

simulate the development of the model. Thus, the 

stoichiometric combustion conditions were corrected 

during the tests, to the secondary adjustment of the air 

flow. This caused changing the dust-air mixture rate of the 

fuel yield resulting in the near extinction flame state. 

The flame area was isolated from the grayscale 

images in terms of the amplitude of each pixel. It was 

assumed that the corresponding pixel of the image belongs 

to the flame if its amplitude is greater than or equal to 64. 

The surface area of the flame was considered as the sum of 

all pixels belonging to the flame region and the length of 

the designated area outline. 

For the purposes of modeling, an easy case of the 

MPC algorithm based on the CAC scheme is selected. The 

control algorithm is based on the state space model with 

the structure: 

 

( ) ( ) ( ) ( ) ( )

( ) ( )k= C xky
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where x is the state vector; y is the output vector; um is the 

input (or control) vector, the matrix of the A states; B is 

the input matrix; C is the output matrix. 

The optimal controller is a solution to the 

optimization problem with the following minimization of 

the cost function: 
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where r (k) is the control value; y'(k+ i | k) is the predictor 

based on the y(k) and v(k) observations. 

The cost function is the weighted sum of the error 

between the reference and predicted output values up to n 

steps (forecast horizon) and the control effort with a step 

forward (control horizon) expressed in terms of the control 

increment Δum. The controller tuning was developed by 

selecting the forecast horizons n and c and weights μy and 

μu. 

The control system was evaluated by simulating a 

sudden change in the load request step. This experiment 

replicates the critical situation that occurs with the 

unexpected change in NOx radicals and power occurs 

(Figure-11). 

Conclusion. The ability of artificial neural 

networks to scale a function using a one-way network with 

one hidden layer has produced accurate results on the 

approximation of certain classes of functions [6]. 

The interest in this area is growing for solving 

problems of the nonlinear system [7]. They possess the 

property of nonlinear approximations of any given 

accuracy of representation using a suitable structure and 

weighted network. A feature of artificial neural networks 

is the ability to adapt, that is, this means that it is possible 

to make the system features a priori. 

The correction signals introduced into the 

optimization algorithm are really small. The introduced 

simulation of the MIMO controller results in higher 

performance. Evaluation of the control signals indicates a 

slight change in the magnitude of the input signals. 

The application of multiparameter optimal 

control methods for coal-fired power plants was 

considered. In operation, the multi-SISO configuration is 

replaced by the optimal MIMO approach. In the performed 

simulation experiment, the following results were 

achieved: 

-  increasing the forecast horizon n allows 

increasing the productivity, since a more accurate 

prediction of the future error is possible; 
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Figure-10. Examples of input and output signals in the course of the data collection. 

 

 

-  when using the temperature values, the error 

weight should be high due to the fact that the 

classic temperature control is slow and is 

responsible for the overall performance; 

-  the μu value should not be too large to avoid a 

radical change of the control action; 

-  the values of the upper control horizon return 

unwanted fluctuations. 
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Figure-11. Controller response to a sudden change of the power load relative to the interaction 

between the NOx, CO concentrations, the fume gases temperature in the combustion chamber. 
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