
 VOL. 16, NO. 22, N0VEMBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2445

DESIGN AND DEVELOPMENT OF A COLLISION RESISTANT
MODIFIED SHA1

Esmael V. Maliberan

Department of Information Technology, Surigao del Sur State University, Tandag City, Surigao del Sur, Philippines

E-Mail: malibs_28@yahoo.com

ABSTRACT

The Secure Hash Algorithm is best used in checking data integrity and authenticating digital media due to its fast

hash calculating power. However, the SHA1 hashes are highly vulnerable to different attacks most especially collision

attack because of the undersized hash length that compromises the integrity and confidentiality of data during transit.

Presented in the current study is a new design to extend the hash size of SHA1 to secure a client-server communication

through login authentication. Experimental results revealed that on five datasets that have collision in SHA1, none of them

collided using the enhanced SHA1. Furthermore, the enhanced SHA1 is more resistant to brute force attack over the

original SHA1 in terms of cracking time which is estimated to be sexagintillion years on a standard desktop PC. The results

also presented that the produced hash codes of the enhanced SHA1 were resistant against a rainbow table and dictionary

attack. By increasing the hash value of SHA1 from 160-bits to 1280-bits using AND and XOR operators, this paper has

shown that execution of the enhanced SHA1 in digesting the passwords in login authentication delivers a safe way in a web

transaction particularly in web-based environment.

Keywords: brute force attack, client-server communication, hashing, modified SHA1, rainbow table.

INTRODUCTION

Internet security is one of the interested topics in

the field of Information Technology, most especially in a

web-based environment [1], [2]. In the past few years,

encryption and decryption are developing into main

interest in data transmission [3]. One solution for

preserving the transmitted data is a hash function. It is a

portion of varied major Internet security claims [4]. It

maintains integrity and confidentiality of the message and

therefore these hashing algorithms are utilized mainly for

file verification and user authentication [5], [6]. Hashing

algorithms are additionally important elements in various

security applications and practices [7]. SHA1 generates a

160-bit hash message [8], [9] based on principles of those

utilized by Ronald L. Rivest who invented MD4 and MD5.

It is the most commonly used hash algorithm, with its

wide variety of applications [10], [11], [12] due to its

adaptability, power [13], and agility [14]. The algorithm

has been made as part of the capstone project of the

government of United States and is usually applied to

secure web transactions and other requests [15], [16].

While SHA1 is widely used, it does not seem to give

adequate distributional avalanche effect of the input

differences in the compression function [17], [10] by

which this will lead to the probability of producing the

same hash code of the two different input inside its

compression function [18], [19]. Therefore, an improved

diffusion needs to be configured to distribute the output at

every stage inside its compression function [18], [20],

[21]. The initial collision attack in SHA1 algorithm was

attained by researchers, which produced two distinct PDF

files. The study of [22] delivered another identical free-

start pair for SHA-1 in a collision within its compression

function. its undersize hash value would make it

vulnerable to numerous attacks including a rainbow table,

a dictionary, brute-force. Therefore, the SHA1 algorithm

for client-server communication and login authentication

is no longer safe. Some modifications and improvements

were developed to address these problems [23], [24]. [25]

Developed a new technique to improve the MD5

algorithm with the compression function of SHA1, which

formed 256-bit hash code. On the other hand, [26]

proposed a modification to the SHA-1 hash function.

Rather than logical functions, the authors used the typical

distributed pseudo-random function. These changes

produced absolute hash values for original messages and

contributed a hash value requirement to prevent brute

attack. A number of hash functions were made, many of

them were from the MD4 algorithm developed by Rivest

[27]. Meanwhile, [28] argued that the enhancement of the

SHA-1 was appropriate. According to the author, hackers

and cryptanalysts found attacks on SHA-1 in 2005 which

meant that the algorithm may not be safe enough to use.

[29] the CPSO (Canonical Particle Swarm Optimization)

method was used to boost the Stable Hash Algorithm-1.

The idea was to forecast the block of control, which

apprehend the password and provided the password stream

with the same size of a log-list. [30] modified the method

and formula to digest or decode the last SHA1 message by

XORing, refining and expanding the mathematical

formulation. The enhanced SHA-1 conserved its unique

rounds covering of 80 rounds and an output of 160-bit

hash value. [31] tested many collision attacks on the initial

80-step of the algorithm and proven a thorough adapted

form of the procedure that weakened the probability of

collision and elevated the time-complexity required to

recognize an exponential factor of 2 in the collision.

Presented in this paper is the modification of the algorithm

by expanding its hash value from its original 160-bit to

1280-bit using the combined XOR and AND operator to

prevent known attacks such as collision, dictionary, brute-

force and rainbow table.

mailto:malibs_28@yahoo.com

 VOL. 16, NO. 22, N0VEMBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2446

RESEARCH METHOD

Research Design

Simulations were done using Delphi

programming language which was directly linked to

MYSQL as database. XAMPP server 2.5 and MSQL

server was used for storing the hash value of user

passwords. All processes in this study were conducted on

a personal computer running on a Celeron processor with

4Gb of memory and Windows 8, 64-bit operating system.

Five pairs of files that generated identical hash

value in the original SHA1 were used for testing and

verification. These file pairs are man.jpg and woman.jpg,

text1.bin and text2.bin, set.bin and set1.bin, try.exe, and

hi.exe, and f1.bak and f2.bak. The SHA1 hashing

algorithm follows a Merkle-Damgard Construction. To

address the flaws of SHA1, modification to the SHA1

output was made as shown in Figure-1.

Figure-1. Architecture of the Modified SHA1.

Modification Process

The modification process of the study is shown in

Figure-1. When a password is hashed using SHA1, its

output will then be converted into a hex value

encompassing 40 characters. There will be a function

initiated to change this hex value into decimal and assign

an array of 20 blocks containing 1 byte for each block.

Two (2) characters will be assigned and allowed for every

block. Additional function is made to assign an array of

160 blocks with a size of 1 Byte. It is designed to expand

the hash size to 1280 bit as its proposed hash value. The

message will be digested or hashed during this stage using

XOR and AND operators and automatically stored it in an

array of 20 blocks. In designing for modification, XOR

was carefully considered due to its best bit shuffling

properties [32], [33] which is proposed by many cyphers

[34]. This operator is used in most of the cryptographic

algorithms which has proven to be highly effective [35].

Moreover, the AND operator was added to 255 decimals

since it is a required value of 1 byte to be stored in an

array. The process will include up to eight rounds with 16

operations per round. Finally, a function is executed to

convert the decimal value to hexadecimal and outputs the

320 hex hash value or 1280-bit hash.

Against Collision Attack

Five datasets that collided in SHA1 were used as

input to the program to test whether it still collided in the

enhanced SHA1. Every pair of files was uploaded into the

simulation program that generates hash value using SHA1

and the enhanced SHA1 as shown in Figure-2.

Figure-2. Testing the enhanced SHA1 against

collision attack.

Brute Force Attack

To measure the resilience of the modified against

brute force attack, a password cracking tool

(https://thycotic.force.com/support/s/article/Calculating-

Password-Complexity) was used and the time needed to

crack passwords were recorded. The possible combination

based on character set is given by Equation 1. The

cracking time, on the other hand, was computed using

Equation 2.

Possible combinations =
possible number of charactersPassword length (1)

Cracking time =

(
hash calculation per millisecond∗possible password combination

2
) (2)

From the output
of SHA1 160 bit

Function to display
320 Hex value

Allocate bytes from
array [0] to array [159]
to expand hash length

Hash message from converted 40 hex and store
in the first 16 blocks of array. processing will be
up to 8 rounds, 16 operations per round using
XOR and And operator

Function to convert
Decimal to Hex

Output 320 Hex value
(1280-bit)

https://thycotic.force.com/support/s/article/Calculating-Password-Complexity
https://thycotic.force.com/support/s/article/Calculating-Password-Complexity

 VOL. 16, NO. 22, N0VEMBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2447

Dictionary Attack

To determine resilience against a dictionary

attack, an online cracking tool called CrackStation

(https://crackstation.net) that contains 1,493,677,782

words of possible passwords with equivalent hashes was

used. The tool utilizes huge pre-computed lookup tables to

break password hashes and these tables store a plot for that

particular hash between the password hash and the right

password. The hash codes are listed and indexed for

searching the database immediately for a given confusion.

If the message is found, the password can be obtained in a

split second. It is applied only to messes without salt and

supports current hash algorithms such as MD4, MD5,

sha256, sha512, and others. Ten trials were done using the

tool with different hash values generated from the

enhanced SHA1 to guarantee precise resilience to a

dictionary attack.

Rainbow Table Attack

To test the reliability of the modified SHA1

algorithm against a rainbow table attack, a pre-computed

rainbow table was used. The table is made up of a

database with a large number of hash function inputs and

outputs. The aim of this test was to look for and compare a

password with its hash value within the table. The

Rainbow Crack tool was used to test a rainbow table

attack (www.rainbowcrack.com).

Application of the ENHANCED SHA1

A registration form and a login form were built

for a user to register and communicate with the application

server using Delphi Language. To use the system, a user

was required to register a name, email address, and

password which were then submitted to a server. The

method is processed by a Delphi script, which then saves it

to the database. Each time a user entered his email address

and password, the modified SHA1 algorithm hashed the

password into a 1280-bit hash length and compared its

value to the stored hash value of the user's original

password. The user's password was hashed into a 1280-bit

length during registration, and stored in one password

table in the server database. If the two passwords had the

same hash values, the login authentication was verified

and the user is given access to the server.

RESULTS AND ANALYSIS

Resistance to a Collision Attack

Five pairs of files were run and tested in a

simulated program using the Delphi language. Shown in

Figure-3 is the first pair of files run and tested using the

program. Based on the experiment conducted, results show

that on the first pair of images namely “man.jpg” and

“woman.jpg”, the said files which collided using SHA1

produced different hash values when hashed by the

modified SHA thus preventing collision attack. Shown in

Figure-4 is the second pair of files run and tested using the

simulation program.

Figure-3. Result for testing a collision attack.

Figure-4. Result in testing collision resistance on

text1.bin and text2.bin.

On the second pair of binary files namely

“text1.bin” and “text2.bin,” results indicate that the said

files generated different hash code using enhanced SHA1

to prevent collision attack. Unlike SHA1, the modified

SHA1 is collision-resistant. Shown in Figure-5 is the result

of the simulation on the third pair of files. It can be

observed that the results showed that on the third pair of

binary files namely “set.bin” and “set1.bin”, the system

produced different hash values using the modified SHA1.

Another test was done on the two different executable files

namely the “try.exe” and “hi.exe.” as shown in Figure-6.

https://crackstation.net/
http://www.rainbowcrack.com/

 VOL. 16, NO. 22, N0VEMBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2448

Figure-5. Result on collision attack on set.bin

and set1.bin.

Figure-6. Result on collision attack on try.exe

and hi.exe.

It can be noted that the results showed that the

two executable files collided in SHA1 while it did not

collide using the modified SHA1. The last test was done

on two different backup files namely “f1.bak” and

“f2.bak”. The results are shown in Figure-7. Consistent

with the previous results, the system for modified SHA1

produced different hash values for the two files. Shown in

Table-1 is the summary of the test results for the collision

attack for the five pairs of files that were used during the

experimentation.

Figure-7. Result in testing collision attack.

Table-1. Experimentation result for collision attack.

Pair of Files
SHA1 Algorithm

Original Modified

man.jpg and woman.jpg Successful Failed

text1.bin and text2.bin Successful Failed

set.bin and set1.bin Successful Failed

try.exe and hi.exe Successful Failed

f1.bak and f2,bak Successful Failed

It should be interpreted from Table-1 that when

testing each pair of files for collision resistance, the same

hash values were produced by the original SHA1 while

this was not the case for the enhanced SHA1 algorithm.

The enhanced SHA1 has thus been able to resolve the

collision attack.

Resistance to a Bruteforce Attack

Resistance to brute force attack was done using

the password checker online tool. The UI for this tool is

shown in Figure-8 which also gives details of the program.

Figure-8. UI for password checker online to crack the

hash code.

The output hash value of the modified SHA1

algorithm was tested; it was revealed that it would take

about 62 sexagintillion years to crack. This length of time

renders the modified SHA1 virtually impossible to crack

using currently-available cracking tools, unlike the

original SHA1.

 VOL. 16, NO. 22, N0VEMBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2449

Resistance to Dictionary Attack

To assess how robust, the enhanced SHA1 is

against a dictionary attack, CrackStation was used. The UI

for the system, which also shows a result for the dictionary

attack, is shown in Figure-9.

Figure-9. Crack Station UI.

For the input of the plaintext “admin”, results

showed that the tool was unable to generate a plaintext

hash code generated by the enhanced SHA1 in its

database. The tool was unable to recognize the hash

format, and its type was either unknown or unidentified in

its database. This is due to the fact that the method only

works with well-known hashing algorithms like MD5,

SHA256, SHA512, and MD160.

Resistance to Rainbow Table Attack

As shown in Figure-10, another attack was used

to check the reliability of the modified SHA1 algorithm

using a rainbow table attack.

Figure-10. Cracking the hash code using a rainbow table

attack.

Results indicated that the tool failed to crack the

"admin" hash value that is 1280-bit created from the

enhanced SHA1. This can be due to the fact that only

hashes for known hash algorithms such as MD5, SHA2,

SHA256, and SHA512 are in the database. Moreover, the

same hash codes are used during a dictionary attack to

verify that the modified SHA1 is resilient to a rainbow

table attack.

Comparison of the Results of SHA Family on Collision

Attack

A comparison of the different SHA family along

with the proposed enhancement is significant because it

allows other readers and researches to appreciate the

features of the proposed study that is not present in the

existing SHA family. Table-2 compares improved SHA1

to SHA1, SHA256, SHA384, and SHA512 in terms of

computing pre-images attack, second pre-image attack,

and heavy collision attack.

Table-2. Comparison Results of different SHA algorithms and the enhanced

SHA1 on Collision Attack.

Name of the attack SHA1 SHA256 SHA384
SHA

512

This

study

Pre-image attack 2160 2256 2384 2512 21280

Second Pre-image attack 2160 2256 2384 2512 21280

Strong Collision attack 280 2128 2192 2256 2640

The pre-image for an n-bit hash code is

determined by formula 2n, where n is the number of bits

generated, according to [36]. Strong collision is also

measured by the formula 2n/2, where n is the number of

bits generated by a hash algorithm. This implies that the

longer the hash value, the more operations and

permutations the attacker would have to run in order to

carry out such attacks.

CONCLUSIONS

Based on the results of the study, the following

conclusions are drawn, 1. The modified SHA1 algorithm

was evaluated to be 100% resistant to the collision attack.

2. The modified SHA1 algorithm exhibits a very high

level of resilience against brute-force attack based on the

approximately 1.6907x10471years it would take to crack

generated hash values. 3 The modified SHA1 algorithm

exhibits 100% resilience against a dictionary attack and

100% resilience against a rainbow table attack. The

conclusions above show that modification of SHA1

through the expansion of its hash value from 160 bits to

1280 bits is effective in addressing the collision problem

of SHA1. Furthermore, the modification was able to

generate hash values that were resilient against the

common forms of security attacks. Having produced a

more secured and modified SHA1, it can be said that this

study has successfully achieved its objectives.

 VOL. 16, NO. 22, N0VEMBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2450

ACKNOWLEDGEMENT

The author acknowledges the support of the

Research and Development office of Surigao del Sur State

University.

REFERENCES

[1] G. Raj, R. Kesireddi and S. Gupta. 2015.

Enhancement of Security Mechanism for Confidential

Data using AES-128, 192 and 256bit Encryption in

Cloud, 1st International Conference on Next

Generation Computing Technologies (NGCT-2015),

374-378.

[2] A. Arora, A. Rastogi, A. Khanna and A. Agarwal.

2017. Cloud Security Ecosystem for Data Security

and Privacy, 7th International Conference on Cloud

Computing, Data Science & Engineering -

Confluence. 288-292.

[3] M. Ramesha, S.B. Sridhara, A.B. Gowda, N.

Anughna and G. Bharathi. 2020. Design and

Development of Low Power BTED Cryptography

Algorithm on FPGA, International Journal of

Advanced Trends in Computer Science and

Engineering. 9(4): 4359-4362.

[4] D. Morres. 2015. SHA-3 Standard: Permutation-

Based Hash and Extendable-Output Functions,

Federal Information Processing Standards

Publication.

[5] L. Zhong, W. Wan and D. Kong. 2016. Java web

login authentication based on improved md5

algorithm. 131-135.

[6] X. Zheng and J. Jin. 2012. Research for the

Application and Safety of MD5 Algorithm in

Password Authentication, 9th International Conference

on Fuzzy Systems and Knowledge Discovery (FSKD

2012). 2216-2219.

[7] P. Walia and V. Thapar. 2015. Implementation of

New Modified MD5-512 bit Algorithm for

Cryptography, International Journal of Innovative

Research in Advanced Engineering (IJIRAE). 1(6):

87-97.

[8] NIST. FIPS. 1995. Secure Hash Standard, FIPS PUB.

180-1, 17.

[9] Q. Dang. 2015. Secure Hash Standard, Gaithersburg.

1-36.

[10] N. Kishore and B. Kapoor. 2016. Attacks on and

advances in secure hash algorithms, IAENG Int. J.

Comput. Sci. 43(3): 326-335.

[11] S. Rao. 2015. Advanced SHA-1 Algorithm Ensuring

Stronger Data Integrity, Int. J. Comput. Appl. 130(8):

25-27.

[12] R. Karthik and A.K. Parvathy. 2017. Non-convex

Economic Load Dispatch using Cuckoo Search

Algorithm, IndonesJ Electr. Eng. ComSci. 5(1): 48-

57.

[13] K. Saravanan and A. Senthilkumar. 2013. Theoretical

Survey on Secure Hash Functions and issues, Int. J.

Eng. Res. Technol. 2(10): 1150-1153.

[14] P. Garg and N. Tiwari. 2012. Performance Analysis of

SHA Algorithms (SHA-1 and SHA-192): A Review

2(3): 130-132.

[15] S. Song. 2012. A Study on Area-Efficient Design of

Unified MD5 and HAS-160 Hash Algorithms, The

Journal of the Korean Institute of Information and

Communication Engineering. 5(16): 1015-1022.

[16] M. Chouhan and V. Kapoor. 2015. A new security

system using ECC AND MD5, International Journal

of Engineering Research & Technology. 1798-1801.

[17] X. Wang, Y. Yin and H. Yu. 2005. Finding Collisions

in the Full SHA-1, Adv. Cryptol. - CRYPTO 2005.

17-36.

[18] A. Kumarkasgar, J. Agrawal and S. Shahu. 2012. New

modified 256-bit MD5 Algorithm with SHA

Compression Function, Int. J. Comput. Appl, 42(12):

47-51.

[19] P. Karpman, T. Peyrin and M. Stevens. 2015.

Practical Free-Start Collision Attacks on 76-step

SHA-1, 2: 1-22.

[20] G. Gupta and S. Sharma. 2013. Enhanced SHA-192

algorithm with a larger bit difference, Proc. - 2013 Int.

Conf. Commun. Syst. Netw. Technol. CSNT. 152-

156.

[21] X. Xu, Q. Zhaoand C. Li. 2012. Advanced framework

for iterative hash functions, Proc. - 2012 Int. Conf.

Comput. Sci. Electron. Eng. ICCSEE. 2: 599-602.

[22] M. Stevens, P. Karpman and T. Peyrin. 2016.

Freestart Collision for Full SHA-1, Annual

International Conference on the Theory and

 VOL. 16, NO. 22, N0VEMBER 2021 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2021 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 2451

Applications of Cryptographic Techniques. 9665:

459-483.

[23] A. Bhandari. 2017. Enhancement of MD5 Algorithm

for Secured Web Development, Journal of Software,

12(4): 240-252.

[24] Y. Sasaki. 2015. Improved Single-Key Distinguisher

on HMAC-MD5 and Key Recovery Attacks on

Sandwich-MAC-MD5 and MD5-MAC, IEICE

Transactions on Fundamentals of Electronics,

Communications and Computer Sciences.1: 26-38.

[25] A. Kasgar, J. Agrawal and S. Sahu. 2012. New

Modified 256-bit MD5 Algorithm with SHA

Compression Function, International Journal of

Computer Applications. 42(12): 47-51.

[26] Asbduvaliyev, S. Lee and Y. Lee. 2016. Modified

SHA1 hash function (mSHA1).

[27] R. Rivest. 1991. The MD4 message-digest algorithm.

CRYPTO’90, LNCS. 303–311.

[28] H. Tiware and K. Asawa. 2013. Enhancing the

Security Level of SHA-1 by Replacing the MD

Paradigm, Journal of Computing and Information

Technology -CIT 21, 4: 223–233.

[29] M. Alam and S. Ray. 2013. Design of an Intelligent

SHA-1 Based Cryptographic System: A CPSO Based

Approach, International Journal of Network

Security.15(6): 465-470.

[30] San Jose, B. Gerardo and B. Tanguilig. 2015.

Enhanced SHA-1 on Parsing Method and Message

Digest Formula, Proceedings of the Second

International Conference on Electrical, Electronics,

Computer Engineering and their Applications

(EECEA2015), Manila, Philippines. 1-9.

[31] R. Siddhartha. 2015. Advanced SHA-1 Algorithm

Ensuring Stronger Data Integrity, International

Journal of Computer Applications, 8(130).

[32] Dobre. 2013. Hash Function XOR. Information

Security.

[33] Vandierndonck and K. De Bosschere. 2005. XOR-

based Hash Function, IEEE Transactions on

Computers, 54(7): 800-812.

[34] K. Kiran and R. Shantharama. 2020. FPGA

Implementation of Simple Encryption Scheme for

Resource-Constrained Devices, International Journal

of Advanced Trends in Computer Science and

Engineering. 9(4): 5631-5639.

[35] S. Nagesh, K. Anil Kumar, S. Suchitra and S.

Abhishek. 2020. Data Security in Cloud Environment

Based on Comparative Performance Evaluation of

Cryptographic Algorithms. International Journal of

Advanced Trends in Computer Science and

Engineering. 9(4): 4989-4997.

[36] Gordon. 2016. Properties of Hash Functions,

Sirindhorn International Institute of Technology,

Thailand: Thammasat University.

https://www.researchgate.net/scientific-contributions/2012409114_Abduvaliyev_Abror
https://www.researchgate.net/profile/Sungyoung_Lee
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=12

