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ABSTRACT 

The pattern of change of conventional traffic lights does not consider the density of traffic in real time, thus 
hampering the efficient flow of traffic. Therefore, it is necessary to create and implement a more efficient control system 
that could maximize the flow of vehicular traffic. This paper proposes a method to enhance the regulation control of 
vehicles' density at an intersection by means of the dynamic estimation of the traffic light cycle using a deep convolutional 
based method. The proposed algorithm is oriented to estimate traffic lights' waiting time at simple intersections in real 
time. Once the video is processed, this approach can estimate a traffic light cycle based on an estimated traffic volume at a 
given time. All of the essential aspects of the methodology and materials used for the investigation are described. 
Algorithm improved the average queue length at intersections by 38% and improved the average waiting time by more 
than 60% compared with a traditional fixed-time cycle approach. Our proposal combines multiple ideas, image 
preprocessing, convolutional neural networks for object detection, and a traffic time estimation method based on Webster’s 
formulas. The proposed method, namely the dynamic estimation of the traffic signal cycle, showed a decrease in waiting 
times, the level of polluting emissions, and noise levels. 
 
Keywords: convolutional neural networks, object detection, lighting control, traffic control. 
 
INTRODUCTION 

The number of vehicles in cities worldwide is 
continuously rising due to the increase in the purchasing 
power of the middle-income socioeconomic classes in 
developing countries. This increase also stems from the 
greater availability of credit, a relative reduction in prices, 
and a greater supply of vehicles. This has led to many 
problems for society, such as traffic congestion, delays, 
accidents, and environmental problems [1]. This 
indiscriminate increase in vehicles in the streets affects 
mobility because traffic lights are not capable of 
efficiently regulating traffic flow, and this contributes to 
traffic congestion. 

The indiscriminate increase in vehicles has also 
caused problems with the quality of human life. An 
example of this is the large consumption of fossil fuels, 
which contaminate the environment. Furthermore, the 
noise generated in urban areas impacts human health, 
causing stress and anxiety, among other issues. 

Traffic congestion requires control efforts that 
have been implemented in cities. The most common 
method is the enforcement of measures that limit mobility 
during periods of time (such as pico y placa policy in 
Colombia). Nevertheless, although these measures 
decrease traffic congestion during peak hours, thus 
improving travel times and speed, they tend to distribute 
traffic congestion along the day. This increases travel 
times and decreases travel speed during off-peak hours [2]. 

Consequently, a different approach is needed to 
help to mitigate these effects. This research is aimed at 
proposing a different approach to these mobility-limiting 
measures supported by new technologies, such as deep 
learning. However, the literature reports traditional 
approaches to address the mobility problem through 
technology. Generally, technological proposals are framed 

within Intelligent Traffic Systems (ITS) that use the 
available surveillance cameras infrastructure to detect 
vehicles and make measurements of characteristics related 
to vehicular traffic. ITS applications have different steps 
ranging from low-level processes including pre-processing 
each video frame and object detection techniques, to high-
level processes such as traffic estimation or prediction 
scenarios.    

Image pre-processing techniques are required due 
to most camera surveillance videos have problems that 
affect image quality, such as illumination, flashes of lights, 
low image contrast, specular reflection on cars' surfaces, 
and low image resolution, among others. Therefore, it is 
necessary to implement computer vision techniques to 
improve image quality. In this way, the implementation of 
these techniques allows for improved deep learning model 
predictions [3].  

The image enhancement techniques applied in 
this study are mainly aimed at preparing the images sent to 
the convolutional neural network and thus improving the 
classification task. This stage consisted of two main steps: 
mean subtraction and image scaling. Mean subtraction is a 
technique that enhances image illumination, whereas 
image scaling is a normalization technique used for deep 
neural network performance [4]. Value normalization in 
images is important because it guarantees that each input 
parameter (pixel values) that goes into the neural network 
has a similar value distribution. It has several advantages, 
such as faster convergence and optimization. Presently, 
two techniques are widely used in mean subtraction. The 
first is per-pixel mean subtraction, whereas the other is 
per-image mean subtraction [4]. 

Object detection is a computer vision field that is 
oriented to identifying and locating objects in an image. 
Various object detection algorithms have been developed 
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because detectors are more efficient with a specific object 
detection purpose defined. The history of object detection 
algorithms can be divided into two time periods. The first 
time period is before 2014, where traditional object 
detection algorithms-such as Viola-Jones (VJ) detector [5], 
the Histogram of Oriented Gradients (HOG) detector [6], 
and the Deformable Part-based Model (DPM) detector [7], 
were widely used. The second time period is after 2014, 
when deep learning object detection models based on 
convolutional neural network (CNN) architectures began 
to perform better than traditional methods have done [8]. 

Traffic time estimation techniques have received 
heavy attention from many researchers over the years. The 
main goal has been to optimize the flow of traffic, reduce 
pollution, and enhance the user’s experience on the roads. 
A large variety of methods and techniques have been 
tested to solve this problem, each with its own strengths 
and weaknesses. However, they all include at least two 
principal characteristics: the number of cars present in a 
line, and the traffic light cycle. 

The researchers in [8] developed a traffic control 
system based on wireless sensor networks and queue 
theory. They deployed two sensors per line and adopted a 
scheme with a simple scheduling algorithm that minimizes 
the time needed for collecting data from the components. 
They suggested two algorithms: one for a single traffic 
intersection, and the other for multiple intersections. 
Indeed, the second algorithm is an extension of the first 
one due to the indeterministic traffic flow they found in 
multiple intersections. 

The use of fuzzy logic for traffic signal control 
has also been widely used given the uncertainty of a car 
reaching a street intersection. In [9] and [10], some fuzzy 
logic approaches are presented. The main objective is to 
determine the traffic light’s green light time according to 
the number of vehicles present in the line. In some fuzzy 
logic approaches, the use of rules, queue theory, and 
genetic algorithms are common. It is important to clarify 
that these works are not just for simple intersections. They 
are also oriented to more complex scenarios.  

Additionally, many traffic light control systems 
have been developed using artificial intelligence 
algorithms. Foy et al. [11] proposed a traffic signal timing 
estimation method using genetic algorithms. Their 
approach was geared toward finding an optimal traffic 
signal timing configuration for each intersection using the 
number of cars at each line of the intersection and the 
external arrival volumes that the researchers set. In 
addition, [12] proposed an artificial neural network to 
predict vehicle flow at signalized intersections. They did 
this to contribute to future studies related to traffic 
optimization and the impact of traffic flow on arterial 
networks (arterial roads). 

This work was aimed at designing and 
developing a model based on computer vision techniques, 
digital image processing, and deep learning models that 
manage traffic signal timings at simple urban intersections 
based on measuring the volume of traffic flow during a 
certain period of time. 

The article is organized as follows: section II 
describes the employed methodology. Section III describes 
computational experiments and obtained results. Finally, 
section IV discusses the conclusions and suggestions for 
future research. 
Methodology 

The employed methodology for developing this 
article was divided into three main phases. The first phase 
was focused on frame preparation (pre-processing) from a 
video supplied by stoplight cameras at intersections. The 
second phase targeted vehicle categorization and the 
vehicle count. The vehicle classes defined in this study are 
cars, trucks, and buses. The last phase was oriented toward 
the dynamic estimation of the traffic light cycle based on 
the previous phase data. 
Image pre-processing 

We used per-pixel mean subtraction, which 
performed better given the number of images we worked 
with. This method involves calculating the average pixel 
intensity of each channel and later subtracting it from its 
respective pixel channel across the image(s). Based on 
this, an RGB image can be modeled as the composition of 
three-color channels: red (R), green (G), and blue (B). 
This can be denoted as: 
 𝐼 =  𝑅 × 𝐺 × 𝐵                                                               (1) 
 

Where I is the RGB image, R is the red channel, 
G is the green channel, and B is the blue channel. Let r, g, 
and b be the average pixel intensity of the channels of 
RGB, respectively. Then, the average pixel intensities are 
subtracted from each channel. In other words, for every 
pixel in each channel, we subtract its corresponding 
average pixel intensity. This can be defined as:  
 𝑅̅  =  𝑅 −  𝑟; 𝐺̅  =  𝐺 –  𝑔; 𝐵̅  =  𝐵 −  𝑏                        (2) 
 

Where 𝑅̅, 𝐺̅, and 𝐵̅are the channels after 
subtracting the average pixel intensities. Then, the final 
RGB image of I ̅ after the mean subtraction is the 
composition of 𝑅̅, 𝐺̅, and 𝐵̅. 
 𝐼 ̅ =  𝑅̅ × 𝐺̅ × 𝐵̅                                                                (3) 
 
Image Scaling Normalization 

Image scaling is an extra step that consists of 
dividing each channel pixel by the standard deviation 
calculated across the training set. Nevertheless, we can 
also scale an image into the desired range of values using a 
given value. Scaling factor k was set to 1/256 (each pixel 
has 256 values [0, 255] for RGB images). This can be 
defined as: 
 𝑅̅  =  (𝑅 −  𝑟) / 𝑘  𝐺̅  =  (𝐺 −  𝑔) / 𝑘                                                           (4) 𝐵̅  =  (𝐵 −  𝑏) / 𝑘 
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Object Detection and Vehicle Numeration 
Selecting the correct CNN is crucial to this study 

due to three relevant factors in this problem, such as object 
detection accuracy, processing speed, and computational 
cost. Because the proposed system is oriented to work in 
real time, the selected architecture must be paired with 
low-cost hardware located at each traffic light camera at 
simple intersections. 
 
Traffic Time Estimation Method 

Our proposed traffic time estimation method is 
based on the rational Webster’s method approach [13]. 
This method is oriented to estimating the optimal times of 
fixed-time traffic lights at isolated intersections. It was 
based on the study of 100 intersections located in London, 
and that led to the development of various formulas to 
determine the minimum functioning cycle for the traffic 
lights. 

It is worth noting that this method has been 
modified depending on the country in which it is applied 
as mentioned in [13]. For example, Colombia and Cuba 
add an extra yellow time between red and green phases to 
decrease the amount of green light time that drivers waste, 
unlike other countries.  

Accordingly, the yellow time is defined by 
Webster’s method as follows: 
 
YT = RT + 

𝑣2𝑑 + [2𝑔𝑖]                                                         (5) 

 
Where RT is the driver's reaction time set to 1 

second, v is the vehicle’s flow speed without the traffic 
light’s influence, g is the gravity acceleration (9.8 𝑚/𝑠2), 
d is the deceleration rate set to 2.5 𝑚/𝑠2 for all generated 
vehicles at each road, and i is the longitudinal pending’s 
percentage of the road, where if the pending is negative, it 
is descendent, and otherwise, it is ascendent. 

On the other side, Webster’s method defines the 
green light time distribution in the traffic light cycle as 
follows: 
 𝑔𝑖= 

𝑦𝑖𝑌 (𝐶0 − 𝐿)                                                                  (6) 

 
Where 𝑦𝑖  refers to the charge factor for that 

specific traffic light. The charge factor is nothing else than 
the flow rate that exists at that moment on the road. Hence, 
it can be calculated as follows: 
 𝑦𝑖 = 𝑞𝑖𝑠𝑖                                                                               (7) 

 
Where 𝑞𝑖 represents the arrival flow rate per time 

unit (usually seen as vehicles per hour), and where 𝑠𝑖 
represents the saturation flow related to the number of 
vehicles per green light unit time for the traffic light. The 
saturation flow is a crucial element that tells us the ideal 
flow for the road if the traffic light were always green so 
as to allow for a constant flow of vehicles. 

The saturation flow used was 1650 v / g. h, 
which was the representative value [13] given in 1993 for 

Medelling roads featuring lane widths between 3 and 5 
meters. 

On the other hand, Y can be calculated as 
follows: 
 𝑌 = ∑ 𝑦𝑖𝑛𝑖=1                                                                      (8) 
 

Where n is the number of movements existing at 
the intersection. 

Equally important is the optimal cycle length for 
the traffic signal light. This value is considered because it 
provides a duration cycle time that minimizes the delay 
time for all vehicles using the intersection. It could be 
calculated as follows: 
 𝐶𝑜=

 𝑘𝐿 + 51 − 𝑦 ; 0.75 ≤ 𝑘 ≤ 1.5                                               (9) 

 
Here, we use 𝑘 equal to 1.5 as recommended in 

the literature, but it could be modified depending on the 
intersection. 

Finally, at every intersection, we usually have 
wasted time that should be calculated to better determine 
the optimal green light time at the intersection to allow the 
largest number of vehicles to pass. This time can be 
calculated as follows: 
 𝐿 = ∑ (𝐼 +  𝜆1 + 𝜆2)𝑛𝜑 = 1                                               (10) 
 

Where L is the total delay time lost per cycle at 
the intersection. 𝜆1 refers to the lost time required for the 
vehicle to start, and 𝜆2 is the time saved in the yellow 
phase between red and green. This last value is used in 
countries such as Colombia and Cuba, where this policy 
was applied. 

Where  𝐼 = 𝑌𝑇 + 𝐴𝑅 + (𝑅/𝐴). We avoided the 
use of 𝑅/𝐴 considering that we do not use the yellow time 
between red and green phases. 𝑌𝑇 refers to the yellow 
time mentioned before, and 𝐴𝑅 (all red) is an instant 
where all traffic lights are red. Indeed, all red is an 
important measure because it is the time required for a 
vehicle to stop before it collides with the vehicle that gains 
the right of way. This last one can be calculated as: 
 𝑅𝑅 = 𝑑𝑖 + 𝑙𝑖𝑣𝑖  − 𝑑𝑖+1𝑣𝑖+1                                                        (11) 

 
Where 𝑑𝑖 is the distance in meters from the stop 

line of the movement that loses the right of way to the 
conflict point of the movement that gains the right of way. 𝑙𝑖 is the vehicle length, and 𝑣𝑖 is the speed of the vehicle 

that loses the right of way in meters per second (𝑚𝑠 ), 𝑣𝑖+1  
is the speed of the vehicle that gains the right of way. 
Finally, 𝑑i+1 is the distance from the stop line of the 
movement that gains the right of way to the conflict point 
of the movement that loses the right of way. 

Based on the formulas mentioned above, our 
objective was directed toward the dynamic estimation of 
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the optimal cycle length using arrival flow traffic q at the 
intersection for each time interval using a CNN. 
 
RESULTS 

Presently, many databases provide videos and 
images with vehicular traffic information. Unfortunately, 
these videos and images do not obey the necessary camera 
configuration to implement this kind of software correctly. 
Hence, faced with the difficulty of acquiring these types of 
videos, it was necessary to utilize graphic video data 
whose quality and configuration were comparable to the 
desired quality and configuration. These videos can be 
found on the internet for public use.  
 
Image Preprocessing and Selection of a CNN 

Architecture 

After the image preprocessing step, we can notice 
an improvement in the image illumination, which helps the 
CNN to achieve better results. Figure-1 shows an example 
of the preprocessed image after per-pixel mean subtraction 
and image scaling. 

To select a CNN architecture, we conducted a 
literature review to select the most suitable CNN 
architecture. The CNN that best suits our three relevant 
factors-object detection accuracy, processing speed, and 
computational cost-is “You Only Look Once V3” 
(YOLOv3) due to its unique characteristics (see Table-1).  

It is also important to mention that this CNN has 
a smaller variation called Mixed YOLOv3-LITE, which 
allows us to use it in embedded devices [14]. However, the 
use of this variation has one disadvantage due to its 
smaller representation. It loses accuracy but increases its 
speed and achieves fewer floating-point operations per 
second (FLOPS). 

For the object detection purpose, we used a pre-
trained YOLOv3 model with the Microsoft COCO dataset 
[15]. This dataset contains 80 object categories where our 
targeted objects were included. The YOLOv3 model has 
problems with directly aligning the box with the detected 
object as shown in Figure-2. We were concerned only with 
detecting the vehicles passing in front of the traffic light 
for our study, rather than identifying the entire object 
perfectly. 

To detect our targeted objects, we used a 
minimum confidence value set to 0.7 by default. Then, 
once YOLOv3 detected a possible object, we ensured that 
the classification accuracy was above 70%. Afterward, we 
counted the number of cars, trucks, and buses visible in 
our video. As we can see in Figure-2, the YOLOv3 model 
can detect our targeted objects in our example image with 
high accuracy (>90%), even if they are far away from the 
installed camera. However, this accuracy highly depends 
on image camera quality, weather conditions, and the right 
camera angle. 
 
Computational Experiments 

The mathematical equations above were 
evaluated with a traffic simulator program called SUMO 
(Simulation of Urban MObility) [16], which is widely 
used to facilitate the evaluation of infrastructure, policies, 
control algorithms, and other parameters before they are 
implemented in the real world. This software is an open-
source, continuous road traffic simulator coded in C++ to 
model travel systems. This simulator was chosen due to 
the many applications it offers, as well as its 
compenetration with the Python programming language. 
This allows us to control the ongoing simulation 
depending on what is happening on the simulated roads. 

 

 
(a) 

 
(b) 

 

Figure-1. Image after mean subtraction and scaling. (Source: Author). 
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Table-1. Performance of YOLOv3 models on the  
COCO Dataset. 

 

Models for 

YOLOv3 
mAP FLOPS FPS 

YOLOv3-320 51.5 38.97 Bn 45 

YOLOv3-416 55.3 65.86 Bn 35 

YOLOv3-608 57.9 140.69 Bn 20 

YOLOv3-
tiny 

33.1 5.56 Bn 220 

YOLOv3-spp 60.6 141.45 Bn 20 

mAP: Mean Average Precision 
FLOPS: Floating-Point Operations Per Second 

FPS: Frames Per Second 
 

 
 

Figure-2. Detecting objects with YOLOv3 model. 
(Source: Author). 

 
For our experiment, we created a simple 

intersection with four stoplights and 750-meter roads with 
four lanes each, where we randomly generated cars. In this 
work, we are using only standard cars. However, SUMO 
allows for other types of vehicles, such as bicycles, trucks, 
taxis, and trailers. 

The modeled intersection has four directions and 
eight possible movements where all vehicles can go 
straight. It is important to mention that SUMO uses steps 
as the time counter, where one step represents one second 
but provides us with the possibility of speeding up the 
simulation steps to achieve faster results. For the generated 
cars, we set a maximum speed of 12 m/s (meters per 
second), a maximum acceleration of 1 𝑚/𝑠2, a maximum 
deceleration of 2.5 𝑚/𝑠2, and a minimum gap between 
cars of 2.5 meters (see Table-2). 

To simulate a real traffic flow environment in the 
modeled intersection, traffic generation is essential [17]. 
We set a bundle of 24 episodes, which refers to the 24 
hours in a day. In each episode, we used a specific 
distribution function based on that specific hour's desired 
behavior. 

Accordingly, we used the Weibull distribution 
function to simulate incremental traffic flow in our peak 
hours for our modeled intersection and a constant 
distribution for most of the other hours. Also, we used a 
Laplace function to simulate a sudden traffic jam to 

evaluate our proposed traffic time estimation method in 
this type of situation. The last distribution function should 
be considered due to the traffic flow present when a flow 
of cars is released from a previous traffic jam. It was 
implemented just for hour number 20. 

Similarly, we simulated the CNN task on the 
simulator by gathering information about the cars within a 
range of vision set to 100 meters, starting from each traffic 
light. 

Inside this range of vision, we get the road’s 
actual arrival vehicle volume q during a t time interval, 
which we refer to as the analysis time. We set 𝑡 to 300 
seconds (five minutes) for our experiments. This means 
our optimal cycle length will change each 300 seconds 
depending on the arrival volume for the time interval used 
in the formulas above to estimate the new optimal cycle 
length. 

It should be pointed out that the analysis time can 
be changed depending on the behavior we want for the 
traffic light. Indeed, the analysis time is crucial because it 
determines how many changes per hour the cycle length 
will have. Therefore, it will affect the average waiting time 
per vehicle at the intersection, the average queue length, 
and the CO2 emissions on the road, among others factors. 
Consequently, if this value is too high, almost no change 
will occur regarding a fixed-time estimation approach due 
to an extended period of time. This happens because the 
shorter the analysis time is, the greater the chances that the 
arrival flow rate will remain with the previously estimated 
cycle length or at least change slightly. On the other hand, 
if this value is too small, the intersection's cycle length 
would be highly dynamic, thus leading to an undesired 
behavior due to the lack of information. For instance, this 
value should be in the middle of the two sides. 

After the analysis time ends and we correctly 
gather the arrival flow rate, we proceed to change the 
cycle length to the new optimal cycle length for that time 
interval. To do so, and considering that we have only 
straight movement on the roads, we compare the arrival 
flow rates between the traffic lights that share the same 
time circuit. This means we compare arrival flow rates 
between north and south, then west and east, to later select 
the highest in each comparison. 

With these two arrival flow rates, we then adjust 
the optimal cycle length for each road, assuming that north 
and south will have the same cycle length, and the same 
for west and east. It is important to clarify that a minimum 
and a maximum value limit the calculated green light time 
distribution within the traffic light cycle. They are set to 
10 and 60 seconds, respectively. 

In regards to the use of Webster’s formulas in our 
experiments, we used a longitudinal pending’s percentage 
of 0.00 (0%) for all roads to model the ideal traffic light 
intersection. However, this could be changed depending 
on the studied road. With our approach, the yellow time 
can easily be calculated given the fact that we need to 
know some of the specific characteristics of the road on 
which this method will be implemented. 

Also, we avoided the use of 𝜆1and 𝜆2, as they do 
not approach reality when these values are taken into a 
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traffic simulator. For the value of 𝜆1, we noticed that 
vehicles do not take much time to start because of their 
own simulators. We excluded 𝜆2, since we are not using 
the yellow phase between red and green. Accordingly, Eq. 
10 was reduced to: 
 𝐿 = ∑ 𝐼𝑛𝜙 = 1                                                                     (12) 
 

To test our approach, we created two scenarios: 
one for our approach and another for the traditional fixed-
time signal timing. For both scenarios, we gathered 
information from the simulations (10 simulations per 
scenario), such as the average waiting time per vehicle, the 
average queue length, the CO2 emissions, and the 

generated traffic distribution. In Figure-3, we can see the 
traffic distribution for both scenarios at hour 12. 
Average queue length at the intersection 

Figure-4(a) shows an average queue length 
comparison between the two aforementioned scenarios. 
This metric, which was measured for an interval of 300 
seconds, was calculated by identifying the largest queue 
length per traffic light when the light was red. Then, to 
graph the queue length behavior throughout the entire 
intersection, we took the average queue length value for 
that time interval. Finally, when all 10 simulations were 
completed, we calculated the average of all of the results 
per hour (this was done for all metrics) due to the 
simulations' stochastic behavior. 
 

Table-2. Modeled intersection’s configuration per road. 
 

Road M 
Car’s maximum 

speed (𝒎/𝒔) 

Car’s maximum 

acceleration (𝒎/𝒔𝟐) 

Car’s maximum 

deceleration (𝒎/𝒔𝟐) 

Car’s minimum 

gap (𝒎) 

North to 
South 

S 12 1 2.5 2.5 

South to 
North 

S 12 1 2.5 2.5 

West to 
East 

S 12 1 2.5 2.5 

East to 
West 

S 12 1 2.5 2.5 

Allowed movements for the road (turn left(L), turn right(R), go straight (S))  

 

 
 

Figure-3. Traffic distribution comparison between 
scenarios during hour 12. (Source: Author). 

 
The proposed time estimation method showed an 

improvement in the average queue length at the 
intersection directly related to the amount of time that 
vehicles needed to wait to cross the intersection. Many 
studies use queuing theory to decrease waiting times per 
vehicle as mentioned in Section 2.3. 
 
Average Waiting Time Per Vehicle 

Consequently, the average waiting time per 
vehicle decreased with our dynamic approach as expected 
from Figure-4 (a). In this graph, we note that our approach 
behaved similarly to the traditional one at the beginning of 
the episode, but after 300 seconds, the average waiting 
time decreased. 

This occurred because our analysis time was set 
to 300 seconds for this experiment, so the algorithm began 
gathering information from the road. After it captured the 
traffic flow for that time interval and determined that the 
traffic light cycle was too high (caused an increase in the 
waiting time), the algorithm proceeded to adjust the traffic 
light cycle with the formulas described in Section 2.3. 
Consequently, it is highly recommended to start the 
algorithm operation at a time period when traffic flow is 
not too heavy so that the traffic light cycle change will not 
be as drastic. 
 
CO2 Emission and Fuel Consumption 

The congestion on the roads due to the incredible 
growth of traffic increases the amount of pollutants in our 
environment and the growing health problems associated 
with this [18]. Therefore, it is imperative to evaluate the 
environmental impact of our approach. For this purpose, 
the SUMO simulator provides us with several emission 
models as follows: 
 
 HBEFA (The Handbook Emission Factors for Road 

Transport) in versions v2.1 [19] and v3.1 [20]. 
 PHEMLight (derivation of Passenger Car and Heavy 

Duty Emission Model, or PHEM). 
 Electric vehicle model [21]. 

We used the HBEFA v3.1, which is the default 
emission model that SUMO provided. In Fig. 4(c), we can 
see an improvement in the CO2 emissions from cars. This 
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is possibly because during traffic congestion, vehicles 
spend more time on the road accelerating, decelerating, 
crawling, or even idling along the road (we can see this 
behavior in Figure-4 (b) in the static series), which 
increases harmful or CO2 emissions [22]. 

In Figure-4 (b) and Figure-4 (c), we show that we 
were able to reduce the amount of time that vehicles spend 
on the road. Figure-4 (d) shows the fuel consumption and 
how it is proportional to the CO2 emissions as expected. 
For the purpose of generating CO2 emissions, fuel 
consumption, and noise emission graphs, the SUMO 
simulator allowed us to gather all of the information per 
car for each second along all of the roads. It was not 
limited by our simulated CNN vision range on the 
simulator. We did this because we wanted to have a 
general overview of the intersection and how our approach 
worked. 
 
Noise Emission 

As we mentioned before, the increased number of 
vehicles on the roads is leading to an increase in the 
number of diseases and their exacerbation, with one of 
them being hearing problems, especially in people living 
near congested roads. This is known as noise pollution. 

In our experiments, we expected that noise 
emission would not drastically decrease during the 
simulations because we generated the same number of cars 

at the intersection using the same distribution function. 
However, after the maximum number of cars is generated, 
the noise emission from all of the roads starts to decrease. 
This may be because the number of cars that have already 
crossed the intersection is higher in our approach than in 
the traditional approach, and therefore, fewer vehicles 
would be at the intersection and generating noise 
pollution. 

Also, Figure-4(e) shows that noise emission 
reaches 300 decibels (db). We sum up the noise emission 
from all of the roads (north, south, east, and west). This 
would result in a maximum value of 75 db per road, which 
is high because this is during a peak-hour-traffic 
simulation. 

Thus, the proposed system is able to alleviate the 
congestion problem associated with fixed-time traffic 
signal light approaches focused on reducing 
contamination, fuel consumption, the average waiting time 
that users spend at traffic lights, and the average queue 
length, among others. Another contribution of this paper is 
the flexibility that this method provides by adapting this 
algorithm to the intersection infrastructure, which 
influences vehicular flow. After comprehensive 
consideration, this method proves to be capable of 
achieving better results compared with traditional 
approaches. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

 
(e) 

 

 

Figure-4. Results of comparison between scenarios during hour 12 a) Queue length, b) Waiting time, c) CO2 emission, d) 
Fuel consumption and e) Noise emission. (Source: Author) 

 
CONCLUSIONS 

In this study, we proposed a model for the 
dynamic estimation of the traffic signal timing at simple 
urban intersections. This model uses in its architectural 
design a CNN oriented to embedded devices. The 
adaptative traffic signal time is based on the traffic flow at 
the intersection for a period of time, which allows us to 
use Webster’s formulas to estimate the best traffic signal 
time cycle that allows as many vehicles as possible to pass 
without affecting other vehicle flows. 

To test our approach, we developed two scenarios 
in the simulator. The first scenario uses a traditional traffic 
signal light fixed-time cycle, whereas the other uses our 
dynamic method. Our approach was able to decrease the 
average queue length at intersections by 38% and 
improved the average waiting time by more than 60%. 

In the development of this study, we faced some 
limitations that should be further explored and improved 
upon. For example, the traffic time estimation depends 
highly on image quality because of the use of 
convolutional neural networks. Environmental conditions 
such as rain, snow, and dark environments will result in 
poor quality images leading the network to perform 
poorly. In this case, more advanced methods should be 
carried out to improve image quality. 

Also, additional studies should be done on this 
approach to ensure human safety on the roads, even 
though the SUMO simulator already applies safety-related 
measures for human safety (Surrogate Safety Measures 
SSM). 
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