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ABSTRACT 

The present paper discussed the transmission of convective heat from the condensed boundary layer flow over a 

vertical linear stretching board of viscous Nanofluids such as 𝐴𝑙2𝑜3in water and 𝑆𝑖𝑂2in water nanofluids. As mentioned 

above, various physical parameters are measured at various volume fractions for both nanofluids. By way of similarity 

transformations, the acceleration and power boundary layer solutions, non-linear Laplace transform equations, are reduced 

to ordinary differential equations that are non-linear. Using the Laplace adomian decomposition method, the underlying 

non-linear regular formulas of Variations were resolved by the highly efficient. This research analyses nanofluid heat 

transfer's efficacy in cooldown of plastic and rubber mats. 
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INTRODUCTION 
Balanced nanomaterials (1-100nm) embedded in 

traditional liquids such as water, oil or ethylene glycol are 

nanofluids. In large-scale industries such as in 

enormouschemical, food, oil, paper industries nanofluids 

are widely used, and also it is much helpful in many 

medical fields includes cancer treatment, targeted drug 

delivery systems, laser-based surgery, and cooling of the 

equipment etc. Silver and Titanium oxide, boundary layer 

flow Nanofluids are numerically analysed over vertical 

stretching sheet [1]. Investigation on 𝐴𝑙2𝑜3  nanoparticles 

for nanofluid Applications - A Review is studied [2]. The 

passage of a nanofluid boundary layer exponentially 

stretching sheet is studied [3]. In the presence of thermal 

emissions, a nanofluid's turbulent boundary layer flow is 

calculated across an extended sheet with unpredictable 

fluid properties. [4] In the applied magnetic field with 

convective heat transfer, Cu-water nanofluid movement 

induced by a vertical stretching layer is displayed. [5] The 

flow and heat transfer of boundary layers over a non-linear 

stretching sheet embedded in a porous medium with 

nanoparticles of partial fluid suspension are discussed [6]. 

Magnetohydrodynamics was numerically solved by the 

flow of a nanofluid's boundary layer and heat transfer 

across a sheet of non-isothermal stretching [7]. It 

investigates the motion of the MHD boundary layer of a 

nanofluid second-grade over convective boundary state 

stretching [8]. It addresses the presence of thermal 

radiation and partial slip over a non-linear stretching wall 

with section [9] of Heat exchange motion of MHD 

boundary layer nanofluid. With non-uniform producing or 

absorbing heat [10], it investigates the slipping stream and 

thermal transfer of nanofluids from the boundary layer of 

the MHD past a vertical stretching sheet. A nanofluid 

feature of MHD boundary layer flow and heat 

transmission across a sheet for stretching is discussed [11]. 

Flow and heat transfer to Sisko-nanofluid through a non-

linear stretching sheet is numerically solved [12]. A 

power-law nanofluid flow with convective boundary 

conditions past a vertical stretching layer is being studied 

[14]. Advanced research on nanofluid flow problems via 

the Adomian approach is discussed [15]. The motion of 

equilibrium points using the Laplace Adomian 

decomposition method over a stretching layer with 

Newtonian heating studied [16]. Using the modified 

Laplace decomposition method, analytical solutions to the 

fractional Navier-Stokes equation are discussed [17]. An 

innovative Laplace decomposition technique for non-

linear stretching sheet issues is investigated in the 

presence of MHD and slip situations in [18]. The Laplace 

Adomian decomposition method is numerically 

investigated for the multidimensional time-fractional 

model of the Navier-Stokes equation [19]. A comparative 

research on the stability in generalised pantograph 

equations of the Laplace-adomian algorithm and 

computational methods is experimentally resolved [20]. 

Movement and the release of energy with slip flow in a 

laminar boundary layer is addressed [21]. 

 

Mathematical Implementation 

The present study of the laminar boundary layer 

flow of nanofluids through the vertical structure board of 

an immiscible fluid velocity, in which it has been situated 

in the direction of constant velocity and is represented by 

U, and the temperature is represented by T. Usage of 

nanofluid mass, energy and momentum equation 

preservation theory-based Prandtl boundary layer 

equations 

 𝜕𝑢𝜕𝑥 + 𝜕𝑣𝜕𝑦 = 0                                                                      (1) 

 𝑢 𝜕𝑢𝜕𝑥 + 𝑣 𝜕𝑢𝜕𝑦 = 𝑣𝑁𝑓 𝜕2𝑢𝜕𝑦2                                                      (2) 

 𝑢 𝜕𝑇𝜕𝑥 + 𝑣 𝜕𝑇𝜕𝑦 =  𝐾𝑁𝑓⍴𝑁𝑓(𝐶𝑃)𝑁𝑓 (𝜕2𝑇𝜕𝑦2 )                                        (3) 
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 Here u and v are indeed the elements of velocity 

in the dimensions x and y, respectively. A kinematic 

viscosity is a v(Nf),(𝐶p)Nf is a basic thermal conductivity 

of heat 𝐾Nf, and 𝜌Nf is the nanofluid density, according to 

the boundary condition 

 𝑦 = 0, 𝑢 = 𝑢𝑤 = 0, 𝑣 = 0, 𝑇 =  𝑇𝑤 + 𝑎𝑥,                     (4) 𝑦 → ∞, 𝑢 → 𝑜, 𝑇 → 𝑇∞. 
 𝑨𝒍𝟐𝒐𝟑and 𝑺𝒊𝑶𝟐Nanofluids: 

The density, thermal power, and dynamic 

viscosity of the nanofluids are given by the volume 

fraction of the nanoparticles. 

 𝜌𝑁𝑓 = (1 − ∅)⍴𝑏 + ⍴𝑠                                                     (6) 

 

The nanofluid's heat capacitance is given by 

 (𝐶𝑃)𝑁𝑓 = (1 − ∅)(𝐶𝑃)𝑏 + ∅(𝐶𝑃)𝑠                                  (7) 

 

The nanofluid's dynamic viscosity is calculated 

by (Brinkman 1952) 

 𝜇𝑁𝑓 = 𝜇𝑏(1−∅)2.5                                                                   (8) 

 𝐾𝑁𝑓 = 𝐾𝑠+(𝑛−1)𝐾𝑏−(𝑛−1)(𝐾𝑏−𝐾𝑠)∅𝐾𝑠+(𝑛−1)𝐾𝑏+(𝐾𝑏−𝐾𝑠)∅ (𝐾𝑏)                              (9) 

 

The dimensionless factors are implemented 

 Ψ(x, y) = (avNf)1 2⁄ xf(η), η = y ( avNf)1 2⁄ , θ = T−T∞Tw−T∞ (10) 

 

Where 𝑢 = 𝜕Ѱ𝜕𝑦  , 𝑣 = − 𝜕Ѱ𝜕𝑥and 𝛹(𝑥, 𝑦) is stream function, 𝜂 

is similarity variable.                                                      (11) 

 

  The velocity components are  

 𝑢 = 𝑎𝑥𝑓′(𝜂), 𝑣 = −(𝑎𝑣𝑁𝑓)1 2⁄ 𝑓(𝜂)                             (12) 

 

By using the boundary conditions, the 

transformed momentum and energy equation equations is 

possible to write as 

 𝑓′′′ − (1 − ∅)2.5 (1 − ∅ + ∅ 𝜌𝑠𝜌𝑏) (𝑓′2 − 𝑓𝑓′′) +
𝜃(1 − ∅)2.5 (1 − ∅ + ∅ 𝜌𝛾𝑠𝜌𝛾𝑏) = 0                                (13) 

 1PrNf KNfKb θ′′ + (1 − ∅ + ∅ ρsρb) (1 − ∅ + ∅ (ρCp)s(ρCp)b) fθ′ = 0       (14) 

  𝜂 = 0, 𝑦 = 0, 𝑓 = 0, 𝑓′ = 1, 𝜃 = 1                               (16) 𝜂 → ∞, 𝑦 → ∞𝑓′ = 0, 𝜃 = 0. 
 

The kinematic viscosity 𝑣𝑁𝑓, Prandtl number (𝑃𝑟), and thermal diffusivity 𝛼𝑁𝑓 of the nanofluid are 

given by,  

𝑣𝑁𝑓 = 𝜇𝑁𝑓𝛼𝑁𝑓                                                                       (17) 

 (𝑃𝑟)𝑁𝑓 = 𝜇𝑁𝑓(𝐶𝑝)𝑁𝑓𝐾𝑁𝑓                                                         (18) 

 𝛼𝑁𝑓 = 𝐾𝑁𝑓𝜌𝑁𝑓(𝐶𝑝)𝑁𝑓                                                             (19) 

 

Where =
𝑔𝜌𝛾𝑏𝜌𝑓𝛼2, Pr=

𝜗𝑏𝛼𝑏. 
Solution Procedure: 

By using laplace adomian decomposition method. 

 𝑓′′′ − 𝐴(𝑓′2 − 𝑓𝑓′′) + 𝜃(1 − ∅)2.5 + 𝐵 = 0(20) 𝐶𝜃′′ + 𝐷𝑓𝜃′ = 0(21) 

Where A=(1 − ∅)2.5 (1 − ∅ + ∅ 𝜌𝑠𝜌𝑏), B=𝜃(1 −∅)2.5 (1 − ∅ + ∅ 𝜌𝛾𝑠𝜌𝛾𝑏) 

C=
1𝑃𝑟𝑁𝑓 𝐾𝑁𝑓𝐾𝑏 ,   D=(1 − ∅ + ∅ 𝜌𝑠𝜌𝑏) (1 − ∅ + ∅ (𝜌𝐶𝑝)𝑠(𝜌𝐶𝑝)𝑏). 

 

Taking laplace transformation on the above 

equation 

 𝐿[𝑓′′′] − 𝐴𝐿[𝑓′2 − 𝑓𝑓′′] + 𝐵𝐿[1] = 0                          (22) 

 

By using boundary conditions 

 𝐿[𝑓] = 1𝑠2 + 𝛼𝑠3 + 𝐴𝑠3 𝐿[𝑓′2 − 𝑓𝑓′′] − 𝐵𝑠4                          (23) 

 

Taking inverse laplace on both sides, 

 𝑓 =  + 𝛼22 − 𝐵 33! + 𝐿−1 [ 𝐴𝑠3 𝐿[𝑓′2 − 𝑓𝑓′′]]                (24) 

Assume 𝑓0 =  + 𝛼22  , 𝑓1 =  𝐵 33! . 
 

The general term is given by 

 𝑓𝑛+1() = 𝐿−1 [ 𝐴𝑠3 𝐿[𝑓′2 − 𝑓𝑓′′]] 𝑓𝑛+1() = 𝐿−1 [ 𝐴𝑠3 𝐿[𝐴𝑛 − 𝐵𝑛]]                                      (25) 

 

Where 𝐴𝑛 and 𝐵𝑛 are the adomian polynomials 

given by 𝐴0 = 𝑓0′2
 ,  𝐵0=𝑓0𝑓0′′ 𝐴1 = 2𝑓0′𝑓1′,𝐵1=𝑓0𝑓1′′+𝑓1𝑓0′′ 𝐴2 = 2𝑓0′𝑓2′ + 𝑓0′2

              ,𝐵2=𝑓0𝑓2′′ + 𝑓1𝑓1′′ + 𝑓2𝑓0′′…… 

And 𝑓()=𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + … … … … … … 𝑓0 =  + 𝛼22! . 𝑓1=(𝐴 − 𝐵)33! + 𝐴𝛼44! + 𝐴𝛼255! . 𝑓2 = (𝐴2 − 2𝐴𝐵) 𝛼66! − 𝐴2𝛼277! − 𝐴2𝛼388! .…………….. 
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𝑓() ==  + 𝛼22! + (𝐴 − 𝐵) 33! + 𝐴𝛼44! + 𝐴𝛼255! +(𝐴2 − 2𝐴𝐵) 𝛼66! − 𝐴2𝛼277! − 𝐴2𝛼388!                                 (26) 

 

By using equation (2) 

 𝐶𝜃′′ + 𝐷𝑓𝜃′ = 0 𝜃′′ = − 𝐷𝐶 𝑓𝜃′                                                                 (27) 

 

Taking laplace transform on both sides 

 𝐿[𝜃′′] = − 𝐷𝐶 𝐿[𝑓𝜃′]                                                       (28) 

 𝐿[𝜃] = 1𝑠 + 𝛽𝑠2 − 𝐷𝑐𝑠2 𝐿[𝑓𝜃′]                                             (29) 

 

Taking inverse laplace transform 𝜃 = 1 + 𝛽 − 𝐷𝑐 𝐿−1 [ 1𝑠2 𝐿[𝑓𝜃′]]                                     (30) 

 

Assume 𝜃0 = 1 + 𝛽 

𝜃𝑛+1 = − 𝐷𝑐 𝐿−1 [ 1𝑠2 𝐿[𝑓𝜃′]]                                            (31) 

 𝜃𝑛+1 = − 𝐷𝑐 𝐿−1 [ 1𝑠2 𝐿[𝐴𝑛]]                                             (32) 

 𝜃1 = − 𝐷𝑐 [𝛽33! + 𝛼𝛽44! ] 𝜃2 = − 𝐷𝑐 [𝛽22! + 𝛼33! ] ………….. 𝜃() = 1 + 𝛽 − 𝐷𝑐 [𝛽22! + (𝛼 + 𝛽) 33! + 𝛼𝛽44! ]             (33) 

 

Table-1. Density, particular thermal permittivity, values of 

water heat conductivity,𝐴𝑙2𝑜3and 𝑆𝑖𝑂2. 
 

 ⍴(Kg/𝒎𝟑) 
𝑪𝒑(𝑱/𝑲𝒈. 𝑲) 

K(W/m.K) 

Water 1000.52 4181.8 0.597 𝐴𝑙2𝑜3 3970 765 40 𝑆𝑖𝑂2 2200 703 1.2 

 

Table-2. Nanofluids' thermal physical characteristics𝐴𝑙2𝑜3water. 
 

Φ 𝝆𝑵𝒇 (𝑪𝑷)𝑵𝒇 𝝁𝑵𝒇 𝑲𝑵𝒇 (𝑷𝒓)𝑵𝒇 𝒗𝑵𝒇 × 𝟏𝟎𝟔 𝜶𝑵𝒇 × 𝟏𝟎𝟔 

0.00 1000.52 4181.8 0.001002 0.613 7.02 1.0015 0.1427 

0.01  4142.33 0.001027 0.6150 6.92 0.9375 0.1355 

0.02 1190.51 4102.86 0.001053 0.6334 6.82 0.8845 0.1297 

0.03 1285.50 4063.40 0.001081 0.6520 6.74 0.8409 0.1248 

0.04 1380.50 4023.93 0.001109 0.6713 6.65 0.8033 0.1208 

0.05 1475.49 3984.46 0.001139 0.6908 6.57 0.7719 0.1175 

0.06 1570.49 3944.99 0.001169 0.7108 6.49 0.7443 0.1147 

0.07 1665.48 3905.52 0.001201 0.7312 6.41 0.7211 0.1124 

0.08 1760.48 3866.06 0.001234 0.7520 6.34 0.7009 0.1105 

0.09 1855.47 3826.59 0.001268 0.7733 6.27 0.6834 0.1089 

 

As the volume fraction grows, the capacitance, 

Prandtl, 𝑣𝑁𝑓, 𝛼𝑁𝑓decreases, but the reverse trend is 

obtained from the above table for density, dynamic 

viscosity, thermal conductivity. 
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Table-3. 𝑆𝑖𝑂2Water nanofluids' thermal physical properties. 
 

Φ 𝝆𝑵𝒇 (𝑪𝑷)𝑵𝒇 𝝁𝑵𝒇 𝑲𝑵𝒇 (𝑷𝒓)𝑵𝒇 𝒗𝑵𝒇 × 𝟏𝟎𝟔 𝜶𝑵𝒇 × 𝟏𝟎𝟔 

0.00 1000.52 4181.80 0.001002 0.597 7.02 1.0015 0.1427 

0.01 1183.71 4141.26 0.001027 0.6150 6.92 0.8676 0.1255 

0.02 1366.91 4100.72 0.001053 0.6333 6.82 0.7704 0.1130 

0.03 1550.10 4060.19 0.001081 0.6521 6.74 0.6974 0.1036 

0.04 1733.30 4019.65 0.001109 0.6712 6.64 0.6398 0.0963 

0.05 1916.49 3979.11 0.001139 0.6907 6.56 0.5943 0.0957 

0.06 2099.69 3938.57 0.001169 0.7106 6.48 0.5567 0.0859 

0.07 2282.88 3898.03 0.001201 0.7310 6.40 0.5261 0.0822 

0.08 2466.08 3857.50 0.001234 0.7518 6.33 0.5004 0.0790 

0.09 2649.27 3816.96 0.001268 0.7730 6.26 0.4786 0.0764 

 

As the volume fraction increases from the table 

above, the capacitance, prandtl, 𝑣𝑁𝑓, 𝛼𝑁𝑓 decreases, 

however, for density, dynamic viscosity and thermal 

conductivity, the reversed pattern is acquired. 

 .

 
 

Figure-1. The outcome of tnanofluids'velocity profile oith 

different α values. 
 

 
 

Figure-2. Results of the nanofluid velocity outline with 

various values of β. 

 
 

Figure-3. Products of the velocity profile of nanofluids 

with various D values. 

 

 
 

Figure-4. Velocity profile effects of nanofluids with 

various D values. 
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Figure-5. Temperature profile effects of nanofluids with 

different B values. 

 

 
 

Figure-6. Temperature profile results of nanofluids with 

different A values. 

 

RESULTS AND DISCUSSIONS 

The transmission over a Vertical Stretching Sheet 

of thermal downside linked to bedded physical 

phenomenon flow of 𝐴𝑙2𝑜3and 𝑆𝑖𝑂2nanofluids was 

studied. Table-2 shows The capacitance that, Prandtl, 𝑣𝑁𝑓 ,𝛼𝑁𝑓 decreases once the quantity fraction increases, 

but the density, coefficient, thermal conduction reverse 

pattern is obtained. It is seen from table 3 that once the 

quantity fraction increases, the capacitance, Prandtl, 𝑣𝑁𝑓, 𝛼𝑁𝑓decreases, but the reverse pattern for density, 

coefficient, thermal conduction is obtained. For the 

various alpha values, the speed pattern for the nanofluid 

could be seen in Figure-1; once it increases, the rate 

profile will increase. The nanofluid rate profile is shown 

for different β values from Figure-2; once it increases, the 

rate profiles will rise From Figure-3, the nanofluid speed 

profile is seen for various D values, once it rises, The rate 

profiles are expected to rise through Figure-4 The 

temperature profile for the nanofluid is seen to be constant 

for A, B and thus the totally different alpha values will rise 

o Once the heat profile increases, the nanofluid 

temperature profile is shown to be stable for an alpha, A 

and thus the completely different α values will increase. 
The nanofluid temperature profile is shown in 

Table-6 for an alpha, B is stable, and thus the entirely 

different values of A will increase the temperature profile 

before it increases. 

 

CONCLUSIONS 

 There are nanofluids than their base fluids with 

superior temperature physical phenomenon and 

coolant properties. 

 Via increasing the Prandtl spectrum, the temperature 

in each 𝐴𝑙2𝑜3 water and 𝑆𝑖𝑂2 water nanofluid 

decreases. 

 Like the changes in volume fraction, 𝐴𝑙2𝑜3 water and 𝑆𝑖𝑂2water nanofluids change thermal physical 

phenomena and density. However, with an 

improvement in volume fraction, as an alternative 

Prandtl variety and warmth capacity decreases. 

 In addition, volume fraction increases will elevate the 

constant of warmth transfer for each form of 

nanofluids. 

 Increased viscousness would increase for each form 

of nanofluid inside the volume. Viscousness is 

constant at constant times for several kinds of 

nanofluids. 
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