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ABSTRACT 

In the recent digitalized world, Wireless Sensor Networks (WSNs) are highly deployed for data transfer between 

sensor nodes through wireless channels. Normally, these sensor nodes have limited power resources and so the use of these 

resources has become the most challenging process during Data Aggregation (DA). To avoid this condition, a Power-aware 

Clustering and Routing with Compressive sensing Protocol (PCRCP) has been recommended for balancing the power use 

during transferring and aggregating the data between Cluster Head (CH) and Base Station (BS). In this protocol, 

Compressed Sensing (CS) method is proposed for aggregating the data from CHs with the aid of Forwarder Node (FN). 

However, still DA process has high data transmission cost and number of measurements. Therefore in this article, a Power-

aware Clustering and Routing with Improved Compressive sensing Protocol (PCRICP) is suggested to ensure the energy 

efficiency of DA in WSNs. Primarily, a coalition formation-based CS solution is proposed that utilizes the signal’s sparsity 

distribution for assembling nodes into many coalitions and the CS is executed inside each coalition. Also, a 2-stage Belief 

Propagation (BP)-based restoration strategy is applied to achieve an acceptable data quality during DA process. This BP 

algorithm is an iterative data transfer method which determines the marginal distribution or discovers the Most Probable 

Assignment (MPA) in the Bayesian networks. On the other hand, it has a convergence problem and the design accuracy is 

differed with the graph cyclicity. So, an improved generalized BP-based algorithm is proposed that can guarantee better 

convergence in Markov Random Fields (MRFs). In this algorithm, a caching method and chessboard transitory policy are 

employed to speed-up the convergence. Also, the computational difficulty of group information from quadric to cubic is 

reduced. Finally, the simulation results exhibit that the PCRICP achieves superior effectiveness than the PCRCP in terms 

of different network metrics. 
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1. INTRODUCTION 

WSN is usually a network consisting of a huge 

amount of minimally efficient sensor nodes. Every node 

collects the sensory information and transfers it to the sink 

nodes through a multi-hop transfer protocol. This network 

is used in a number of applications such as monitoring, 

cyber warfare, etc. WSN is distributed evenly with system 

access in hostile conditions.  

It is thus required for WSN to operate with a 

desire to adhoc network implementation in a centrally 

controlled and systematic fashion [1-3]. A setup is 

required that allows for minimal transition to the BS and is 

chosen at the node level since the WSN has limited 

resources and the transfer of information requires 

additional energy. 

Clustering protocols are developed to divide the 

entire network into various clusters to avoid high energy 

usage. Clustering usually uses the coexistence between the 

data to reduce communication overhead and energy use by 

combining it [4-6]. Therefore, in any cluster, few nodes 

are chosen as the CH for diffusing control functions 

between nodes. The primary responsibility of CH is to 

collect and organize data for BS broadcast from other 

cluster members. The Low Energy Adaptive Clustering 

Hierarchy (LEACH) protocol rotates CH between all 

nodes to share resources across the network [7-9].  Many 

Power-Aware Clustering and Routing Protocols (PA-

CRPs) were proposed by various researchers in recent 

years in order to lessen energy usage and boost the system 

life [10-12]. 

Darabkh et al. [13] created a Balanced PA-CRP 

(BPA-CRP) that enhances the life of the network by 

allocating four separate transmission ranges for each node. 

The network was initially split up by the batch-based 

clustering approach as equal clusters with their CH. In 

addition, the FN selection algorithm was used to pick the 

FN either explicitly or implicitly for the data transfer from 

CH to BS. In order to keep the depleted nodes from 

selecting CHs or FNs, "only-normal" function mode has 

also been implemented. Both CH and FNs are used for 

DA and compression. Nevertheless, the FN was selected 

only based on its energy level whereas it requests the node 

density and its locality for further increasing the energy 

efficiency. Also, the computational complexity of DA was 

high because of more number of data in every node. 

As a result, a PCRCP [14] was proposed to 

balance the energy utilization in the network during data 

transfer between CH and BS. In this protocol, every CH in 

equal-sized clusters picks their FNs based on the node’s 

residual energy, its spatial locality and density for ensuring 

the balanced dissemination of power resources to the FNs. 

After that, the aggregated data from CHs was computed by 

the FNs and transmitted to the closest BS. Also, the 

dilemma of how to efficiently aggregate the data using 

FNs was solved by using CSDA approach. On the 

contrary, the data transmission cost and number of 

measurements during DA were high. 
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Hence in this article, a PCRICP is proposed for 

achieving energy-efficient DA in WSNs. At first, a 

coalition formation-based CS solution is introduced that 

uses signal’s sparsity distribution to combine nodes as 

multiple coalitions and the CS is implemented within the 

coalitions. Besides, a 2-stage BP-based restoration strategy 

is proposed for offering an acceptable data quality. BP is 

an iterative data transfer method which computes the 

marginal distribution or discovers the MPA in Bayesian 

networks. Conversely, this algorithm has a convergence 

problem and the design accuracy is varied with the graph 

cyclicity. 

To avoid these problems, an improved 

generalized BP-based algorithm is proposed that provides 

better convergence in MRFs. In this improvised algorithm, 

a caching and chessboard transitory strategies are applied 

for increasing the convergence speed. Also, the 

computational difficulty is decreased for group data from 

quadric to cubic.  

Thus, data transmission cost and number of 

measurements are minimized for enhancing the DA 

process in an effective way. The rest of the article is 

prepared as follows: Section 2 surveys the works related to 

this research work. Section 3 explains the proposed 

methodology and Section 4 portrays its efficiency. Section 

5 summarizes the research work. 

 

2. LITERATURE SURVEY 

Use this document as a template by simply typing 

your text into it. Use this document as a template by 

simply typing your text into it. Hwang et al. [15] 

considered the Bayesian CS approach and proposed two 

efficient algorithms for reducing the amount of energetic 

nodes when sustaining great efficiency. The main intent 

was to lessen the computation fault through reducing the 

determinant of the fault covariance matrix which was 

comparative to the degree of the belief ellipsoid. The 

centralized greedy choice method was achieved for a 

directly optimized result according to the least belief 

ellipsoid. Additionally, equivalent degree of efficiency 

was achieved as the combinatorial choice approach. The 

decentralized choice method was modeled via the 

determinant of the fault covariance matrix. But, the 

performance was limited when considering the quality of 

transmission and sensing medium. 

Singh et al. [16] proposed CS-based acoustic 

event detection in wireless multimedia sensors. The main 

objective of this method was recognizing the tree cutting 

attempt in the forest region through finding the acoustic 

model created because of an axe striking a tree hole using 

sensors. A sequence of processes by the hamming 

window, wiener filter, Otsu thresholding and numerical 

morphology were applied to eliminate the redundant 

clutter from the spectrum acquired from those attempts. 

Also, a CS-based energy-efficient data collection method 

was applied by the sparse behavior of the audio signals for 

accurate event reporting. But, the network lifetime was 

less. 

Nguyen & Teague [17] proposed an integration 

of CS and Random Walk-based Routing (CSRWR) to 

lessen the power use in WSNs. In this method, every 

sensed detail was restored at the BS depending on few 

amounts of CS metrics than the overall amount of sensors. 

Every CS metric was gathered via a RW routing having a 

fixed duration. Every random CS metrics was transmitted 

to the BS for the CS healing task in either instantly or by 

forwarding via intermediary nodes. Then, a trade-off 

between the communication range and the RWs duration 

was analyzed for achieving the least power use. 

Additionally, the mean used power of every RW was 

formulated depending on the communication range. Also, 

the total power use in various scenarios was computed and 

the optimized scenario was suggested for prolonging the 

network lifetime. However, total number of hops was 

high. 

Singh et al. [18] proposed a MRF structure 

framework decomposing the network into various 

homogeneous regions using efficient back propagation-

based in-network inference for data collection. In this 

framework, sensor node’s local measure was updated on 

the basis of neighborhood information and its local 

observation. Also, a Decomposition Based CS (DBCS) 

approach was integrated with the MRF framework by 

considering the transmission constraints in WSN for 

globally estimating the state of target region and 

optimizing the transmission cost. But, the lower bound 

was not analyzed for the number of measurements needed 

to guarantee the approximate reconstruction. 

Zhang et al. [19] suggested a novel information 

aggregating method depending on CS using the clustering 

structure of WSN. The sink in the cluster can set the 

respected seed vector according to the network distribution 

and transmit it to every cluster head. The respected 

individual arbitrary spacing sparse matrix was created 

according to its accepted seed vector and information was 

gathered via CS approach. Then, these ranges were 

forwarded to the sink by clusters. However, the overall 

hops alteration was high and also the computational 

complexity was high. 

Xiao et al. [20] proposed a category of distributed 

CS approaches depending on interval relation. A linear 

regression method was used by means of interval relation 

for segmenting the test signals. So, the mutual sparse 

framework of distributed CS was enhanced and a 

compression matrix was created for extracting the signal’s 

linear fitting segment. After that, an adaptive CS was 

employed for compressing the signal. But, the 

effectiveness was not analyzed. 

Sun et al. [21] proposed a CS data collection 

algorithm depending on Packet Loss Matching (CS-PLM). 

A sparse scrutiny matrix was designed depending on PLM 

and satisfied the Restricted Isometry Property (RIP) with 

likelihood randomly nearby one. So, trustworthy 

compressed information transfer was guaranteed via using 

the multiple paths backup routing between CS nodes. 

However, the packet loss ratio was not reduced while the 

network flow was adequately large or small. 

Liu & Li [22] proposed an Improved Discrete 

Differential Evolution (IDDE) method depending on fuzzy 

clustering for CS reconstruction wherein signal with 
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unrecognized sparsity was taken as particle coding. Also, 

the sparse signal was precisely restored via an iterative 

growth of inhabitants. But, computational complexity was 

high. 

Lv et al. [23] proposed a CS-based sequential 

data collection method. In this method, the covariance 

matrix was used for generating the sparsifying source of 

sensed information. Afterwards, the statistical sparsity was 

introduced for estimating the sparsity performance. The 

sparse binary matrix was adopted by the measurement 

matrix and the amount of metrics was restricted by the 

statistical sparsity. For all analyses, sensed information 

was gathered by only few sensors and this information was 

transmitted to the sink node for data recovery. But, an 

overall power use was not minimized. 

Puneeth & Kulkarni [24] developed a routing 

protocol with tunable energy ranges and data aggregation 

using CS. In this protocol, the sensor nodes were adjusted 

to the acceptable transmit energy ranges for increasing the 

network lifespan under node-disjoint multi-path routing. 

But, it does not consider the data loss during transmission. 

Devi et al. [25] designed a Cluster-based Data 

Aggregation Scheme (CDAS) for latency and data loss 

minimization in WSN. It has 2 steps: aggregation tree 

formation and slot scheduling scheme. In the first step, CA 

was used by every cluster head to receive the data from its 

members. After, the aggregation tree was formed by the 

sink using minimum spanning tree. In the second step, the 

data loss ratio and latency were considered when 

prioritizing and allocating timeslots to the nodes with 

aggregated data. Still, the data loss rate and residual 

energy were not effective. 

 

3. PROPOSED METHODOLOGY 

In this section, the PCRICP for achieving 

effective DA in WSNs is described in brief. The main aim 

of this protocol is to improve the CS theory for 

aggregating the data from CHs and transmitted to the BS. 

For this purpose, a distributed CS method with spatial 

relation between sensors is introduced for grouping them 

into coalitions. This coalition creation approach is 

characterized by the block diagonal metrics matrix where 

every diagonal element associates with any coalitions. By 

creating coalitions, the spatial-temporal relation-based CS 

method is executed within every coalition for scheduling 

sensors and encoding their observations. The temporal 

relation between sensor observations facilitates this 

PCRICP for adjusting the amount of metrics regarding 

temporally modifying sparsity degree. 

Once this improved CS solution is applied inside 

every coalition and the compressed data is forwarded, the 

BS uses a 2-stage mutual sparsity-based restoration 

strategy for reconstructing the actual signal. During 

primary stage, a mutual sparsity framework is used for 

finding the ordinary sparsity contour between coalitions. 

During second stage, the ordinary sparsity is computed in 

every coalition that permits it for realizing information 

restoration having great precision and less estimations. 

The entire process in this improved CS procedure is 

illustrated in Figure-1. 

 
 

Figure-1. Workflow of the proposed improved CS-based 

DA and recovery. 

 

3.1 Coalition Formation 

The spatial relation between sensors and a 

support factor distribution model are used for grouping 

sensor nodes into many coalitions. The utilization of 

coalitions provides to an energy-efficient CS theory which 

situates connected sensors near to another in equivalent 

coalition. Also, coalitions create this CS framework sparse 

which defines every metric is acquired via the linear 

mixture of data acquired through some sensors in the same 

coalition. Therefore, the communication cost is reduced 

and also the idleness between compressed metrics of 

various nodes within every coalition is discarded that 

reduces the amount of data packets. 

The sensors notice identical signal having various 

resolution. In contrast, the signal’s sparse illustration is 

expressed in a sparsity support factor. The support factor 

distribution is applied in the system for defining the cover 

factor which expresses the level of support factor enclosed 

via the sensors.  

This factor supports sensors within every 

coalition create useful metrics resulting in precise 

information healing through BS. A utility function U is 

defined depending on cover, communication and sensor 

relations for providing a concrete and perfect coalition. 

This factor is applied for evaluating the coalition’s 

efficacy. To achieve this, a trade-off between restoration 

precision and data communication cost are made by U. 

 

3.1.1 Metric matrix 

As the network is split into various coalitions, the 

information is collected via such coalitions. So, entire data 

is split into discrete blocks where every block is obtained 

through the regional metric function. Consider that the 

WSN is partitioned into N_C coalitions and the signal Z is 

split into N_C blocks i.e., i.e., 𝑍1, 𝑍2, … , 𝑍𝑁𝐶 ∈ 𝑅𝑁. Every 

block denotes coalition j is allocated with a regional metric 

sub-matrix 𝛷𝑗: 𝑅𝑁 → 𝑅𝑁𝑗. Every metric sub-matrix 𝛷𝑗 
indicates the estimation model in every 𝑗. Also, this is 
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allocated to certain coalition matrix 𝐶 which changes the 

elements of the actual signal allocated for the particular 𝑗. 
To allocate every 𝑗 via its metric matrix 𝛷𝑗 with the 

changed signal coefficients 𝑧𝑗𝐶 , 𝐶 is multiplied with 𝑍 

which creates 𝐶𝑍 = 𝑍𝐶 = [𝑧1𝐶 , 𝑧2𝐶 , … , 𝑧𝑁𝐶𝐶 ] and obtain: 

 𝛾 = 𝛷𝐶𝑍                     (1) 

 

Where 𝛷 = ( 
 𝛷1 𝛷2 .0 0. 𝛷𝑁𝐶) 

 
                  (2) 

 

The obtained matrix 𝛷𝐶 is the distribution of 

sensors within every coalition and 𝐶 is a coalition matrix. 

According to equation (2) and sparse illustration of 𝑍 = �̃�𝑎, get: 

 𝛾 = 𝛷𝐶𝑍 = 𝛾 = 𝛷(𝐶�̃�)𝑎 = 𝛷𝛹𝑎                                 (3) 

 

In Eq. (3), 𝛹 = 𝐶�̃� is a changed version of �̃�. It 

is observed that this coalition matrix changes the support 

factors. So, every row in 𝛹 is a changed row of �̃� as: 

    𝜓𝑖𝑇 = ∑ 𝑃(𝑖, 𝑗)�̃�𝑗𝑇𝑁𝑗=1                                   (4) 

 

In equation (4), 𝜓𝑖𝑇  and �̃�𝑗𝑇 are the row vectors of 𝛹 and�̃�, accordingly. If 𝑃(𝑖, 𝑗) = 1, then 𝑖𝑡ℎ row of 𝛹 is 

swapped with 𝑗𝑡ℎ row of�̃�. After this, an accurate pattern 

for every 𝛷𝑗 helps for measuring the information from 

sensors within every 𝑗. This coalition creation process 

provides to a block diagonal metric matrix with the 

suitable 𝐶 corresponds to the sensor’s position. 

 

3.1.2 Utility function 

 𝐶 is allocated to any coalition creation strategy. 

In this task, the optimized trade-off between power 

conservation and restoration precision is obtained by using 

the utility function depending on the power, relation and 

cover level factors. 

 

Energy 

The energy factor for coalition creation cases is 

defined on the basis of transfer, processing and estimation 

costs. Energy use is defined as: 

 𝐸𝑖 = 𝐸𝑡𝑟𝑎𝑛𝑠 + 𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒                              (5) 

 

In Eq. (5), 𝐸𝑡𝑟𝑎𝑛𝑠 , 𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠 and 𝐸𝑚𝑒𝑎𝑠𝑢𝑟𝑒 are 

transfer, processing and estimation energy factors, 

accordingly. The data transfer and estimation costs are 

focused.  

Such costs are normalized and the energy 

demands are replaced for processing and analyzing the 

estimation costs. The transfer cost relies explicitly to the 

remoteness when the estimation cost is affected via the 

amount of metrics. The energy factor is replaced with the 

regularized factors of remoteness between any sensors 

within the coalition and the amount of metrics is expressed 

as: 

 𝐸𝐶𝑜𝑠𝑡(𝑖, 𝑗) = 𝐷(𝑖,𝑗)𝐷𝑚𝑎𝑥 + 𝑀𝑖𝑀𝑚𝑎𝑥                   (6) 

 

In equation (6), 𝐸𝐶𝑜𝑠𝑡(𝑖, 𝑗) denotes the energy 

cost based on the regularized remoteness 𝐷(𝑖, 𝑗) between 

nodes 𝑖, 𝑗 and the regularized amount of metrics 

considered by node 𝑖(𝑀𝑖). 
 

Correlation Level 

As sensors are situated nearby every other and 

observe similar signal having various resolutions, spatial 

relation ranges between them can be found. This improved 

CS method attempts to discard the idleness between 

compressed information and so leveraging this spatial 

relation. To achieve this, the algorithm is introduced in the 

coalition-formation step for considering this correlation 

including other factors. While the connected nodes are in 

similar coalitions, the idleness in the compressed 

information is eliminated.  

The correlation matrix (𝐶𝑜𝑟𝑟) between sensors is 

described as: 

 𝐶𝑜𝑟𝑟(𝑖, 𝑗) = 𝐶𝑜𝑣(𝑦𝑖,𝑦𝑗)𝜎(𝑦𝑖)𝜎(𝑦𝑗)                    (7) 

 

Based on this, a binary variable 𝐶𝑅 is defined 

which represents whether 2 sensors are adequately 

connected. As a result, a user-defined correlation threshold (𝑇𝐻) is used. 

 𝐶𝑅(𝑖, 𝑗) = {1, 𝑖𝑓 𝐶𝑜𝑟𝑟(𝑖, 𝑗) > 𝑇𝐻0, 𝑖𝑓 𝐶𝑜𝑟𝑟(𝑖, 𝑗) ≤ 𝑇𝐻                  (8) 

 

Cover Level 

Estimated signals are denoted via a sparsity factor 

distribution over WSN. Such factors are combined into 

single or multiple coalitions. The efficiency of this 

coalition process based on restored information precision 

highly concerns on the characteristics of the sparsity 

support factors. For efficiency analysis, a Sparsity base 

Cover Degree (SCD) factor is used to estimate the overlap 

level among every coalition with support factors 𝛹. 

Basically, it indicates the energy overlap between the 

support factors and coalitions. The SCD factor between 

every support factor 𝑖 and coalition 𝐶𝑜𝑎𝑙𝑗  is defined as: 

 𝑆𝐶𝐷(𝑗, 𝑖) = ∑ 𝜓2(𝑖,𝑚)𝑚∈𝐶𝑜𝑎𝑙𝑗                    (9) 

 

In Eq. (9), 𝑚 represents the sensor positioned in 𝑗. 𝑆𝐶𝐷(𝑗, 𝑖) shows that measurements gathered from 

coalition 𝑗 have data regarding the metrics of another 

coalition which enclose similar 𝑖. Considering this 

exposure level between various coalitions, a joint sparse 

signal healing method is used for recovering the actual 
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signal. But, these are conditions where 𝛹 is enclosed just 

via single coalition.  

This refers that, the sparsity supports are 

comprised in single coalition for a K-sparse signal. As it is 

not recognized prior, it has to collect information from 

every coalition having less energy effective. But, the 

surplus metrics from another coalition which doesn’t 
overlap with the support don’t add to increase the 

information precision. If 𝛹 has overlap between various 

coalitions, the information healing precision is maximized. 

The maximum SCD is defined for quantifying the 

coverage degree of 𝛹 over coalitions as: 

 𝑆𝐶𝐷𝑚𝑎𝑥(𝛹) = 𝑆𝐶𝐷𝑚𝑎𝑥(𝐶�̃�) =𝑚𝑎𝑥𝑗,𝑢 ∑ 𝛹𝑗2(𝜔, 𝑢)𝜔 , 𝑆𝐶𝐷(𝛹) ∈ [0,1]                (10) 

 

In Eq. (10), 𝑆𝐶𝐷𝑚𝑎𝑥 is the highest coverage 

degree of every coalition with the sparsity support when 𝛹𝑗 denotes the support sub-matrix allocated to 𝑗. 
Creating coalitions such that the sparsity factor is 

restored using various coalitions enhances the recovered 

data accuracy. But, the amount of connected coalitions and 

the amount of metrics should be reduced for minimizing 

the energy usage. 

 

Utility Function Formulation 

A utility function 𝑈 is calculated for evaluating 

the candidate coalition model. In the coalition creation 

step, the main goal is to construct 𝑁𝐶  coalitions for 

achieving the minimum energy use when meeting data-

quality demands. Reducing the transmission and 

measurement costs depends on 𝑆𝐶𝐷𝑚𝑎𝑥 , 𝑀𝑖 and 𝐷(𝑖, 𝑗). 
The utility factor 𝑈 for every mixture of (𝑛𝑖 , 𝑐𝑜𝑎𝑙𝑟) is 

defined as: 

 U(ni, coalr) = CR(ni) × (ECost(ni, coalr) +αSCDmax(ni, coalr)), α > 0                               (11) 

 

In Eq. (11), 𝐶𝑅(𝑛𝑖) is the relation degree of node 𝑖 with another node in 𝑐𝑜𝑎𝑙𝑟 . Concerning 𝑆𝐶𝐷𝑚𝑎𝑥(𝑛𝑖, 𝑐𝑜𝑎𝑙𝑟) factor, including the node to various 

coalitions can modify 𝑆𝐶𝐷𝑚𝑎𝑥 range. 

 

3.1.3 Coalition creation strategy 

In this framework, the network consists of 𝑁 

sensor nodes 𝑆𝑁 = {𝑛1, … , 𝑛𝑁} and 𝐿 = {𝑙𝑛𝑖,𝑛𝑗} is the 

group of every probable link among sensors. Any 2 

sensors are assumed to be linked if they are located in 

transmission region of every other. Consider that 𝛹 is 

recognized and each sparsity support is regularized to one 

hence that 𝑆𝐶𝐷 ∈ [0,1]. The main goal is to reduce energy 

use given that the information accuracy demand is 

satisfied. Inclusion of a fresh sensor to the coalition is a 

choice process which analyzes the optimized candidate to 

add a node. To achieve a better choice, an optimization 

method is executed on 𝑈 and the SCD factor should be 

refined. 

In the coalition creation, while including a fresh 

node to the coalition, 𝑆𝐶𝐷 analyzes the impact of 

including this node through allocating a weight for a 

connection between previous node in the coalition and the 

fresh node. For analyzing the impact of including the node 

to every coalition, 𝑆𝐶𝐷 is represented as 𝑆𝐶𝐷𝑚𝑎𝑥 (𝑙𝑛𝑖,𝑛𝑗 , 𝑐𝑜𝑎𝑙𝑟) through taking the connection 𝑙𝑛𝑖,𝑛𝑗 ∈ 𝐿 and a considered coalition 𝑐𝑜𝑎𝑙𝑟 . This 

connection doesn’t interact 2 sensors in similar coalition 

which refers 𝑛𝑖 ∈ 𝑐𝑜𝑎𝑙𝑟  and 𝑛𝑗 ∋ 𝑐𝑜𝑎𝑙𝑟 .  

The utility function 𝑈 for every combination of (𝑙𝑛𝑖,𝑛𝑗 , 𝑐𝑜𝑎𝑙𝑟) is redefined as: 

 𝑈(𝑛𝑖, 𝑐𝑜𝑎𝑙𝑟) = 𝐶𝑅(𝑛𝑖 , 𝑛𝑗) × (𝐸𝐶𝑜𝑠𝑡 (𝑙𝑛𝑖,𝑛𝑗) +𝛼𝑆𝐶𝐷𝑚𝑎𝑥 (𝑙𝑛𝑖,𝑛𝑗 , 𝑐𝑜𝑎𝑙𝑟)) , 𝛼 > 0                               (12) 

 

In Eq. (12), 𝑆𝐶𝐷𝑚𝑎𝑥 (𝑙𝑛𝑖,𝑛𝑗 , 𝑐𝑜𝑎𝑙𝑟) is the highest 

coverage degree while a fresh node is included to coalition 𝑐𝑜𝑎𝑙𝑟  by 𝑙𝑛𝑖,𝑛𝑗 . 
While choosing a suitable coalition for a fresh 

node, the optimization method analyzes the utility of 

including the fresh node to every coalition. For every 

coalition, it is represented on the basis of connection 

linking the fresh node to a previous node in the coalition. 

Executing this method can discover the coalitions 

which lessen utility factor’s connection cost. This 

optimization is formulated as: 

 (𝑛𝑖 , 𝑙𝑚𝑖𝑛 , 𝑐𝑜𝑎𝑙𝑟𝑚𝑖𝑛) = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑈(𝑛𝑖, 𝑐𝑜𝑎𝑙𝑟) =𝑎𝑟𝑔𝑚𝑖𝑛 [𝐶𝑅(𝑛𝑖 , 𝑛𝑗) ×(𝐸𝐶𝑜𝑠𝑡 (𝑙𝑛𝑖,𝑛𝑗) + 𝛼𝑆𝐶𝐷𝑚𝑎𝑥 (𝑙𝑛𝑖,𝑛𝑗 , 𝑐𝑜𝑎𝑙𝑟))]  (13) 

 

Subject to 𝑛𝑖 ∈ 𝑆𝑁, 𝑛𝑗 ∈ 𝑐𝑜𝑎𝑙𝑟 , 𝐶𝑅(𝑛𝑖, 𝑛𝑗) ∈ {0,1}  
 

This Eq. (13) helps to discover the group of 

connections such that the overall 𝑈 of the connections is 

reduced. In this primary phase, consider the group of 

candidate nodes and connections to be included to the 

coalitions represented via the group of 𝑆𝑁 and 𝐿. Then, it 

allocates every coalition coordinator node 𝐶𝐶 to any 𝑁𝐶  

coalitions. Also, it represents 𝑆𝑁𝑐𝑜𝑎𝑙𝑟  and 𝐿𝑐𝑜𝑎𝑙𝑟  as a group 

of nodes and links of coalition 𝑟, accordingly.  

Additionally, an iterative process is implemented 

in which it assigns specific node to specific coalitions. To 

achieve this, initially it discovers the utility factor for 

every probable links represented in 𝐿. Then it operates the 

optimization factor represented in Eq. (13) and obtains the 

least utility. The output is a link with the least utility 𝑙𝑚𝑖𝑛. 

This connection linking (𝑛𝑖 , 𝑛𝑗) includes node 𝑛𝑖 to the 

coalition of 𝑛𝑗. Based on the inclusion of fresh node, the 

SCD of every connection interacted to the coalitions varies 

so that the node’s connection utility can alter. After that, it 

eliminates this connection and 𝑛𝑖 from the record of 
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candidate connections and nodes. It is continued until 

every node is allocated to the coalitions. 

 

Algorithm: 𝑆𝑁 = 𝑛1, … , 𝑛𝑁; 

Define 𝐿 = 𝑙𝑖𝑗  as the group of every probable connection; 

Describe 𝑁𝐶  coalitions with any 𝐶𝐶; 

Describe group of nodes 𝑁𝑐𝑜𝑎𝑙𝑘  and connections for every 

coalitions 𝐿𝑐𝑜𝑎𝑙𝑘; 𝑓𝑜𝑟(𝑃 = 1; 𝑃 ≤ (𝑁 − 𝑁𝐶); 𝑃 + +) 𝑓𝑜𝑟(𝑄 = 1; 𝑄 ≤ |𝐿|; 𝑄 + +) 
Find𝐿𝑝𝑟𝑜𝑏 = 𝑙𝑖𝑗; 𝑖 ∈ 𝑁𝑐𝑜𝑎𝑙𝑘 ; 𝑗 ∈ 𝑆𝑁; 𝑒𝑛𝑑 𝑓𝑜𝑟 

 

Compute 𝑈(𝑙𝑖𝑖 , 𝑐𝑜𝑎𝑙𝑘); 
Insert 𝑛𝑗to𝑐𝑜𝑎𝑙𝑘𝑚𝑖𝑛; 

Insert 𝑙𝑚𝑖𝑛  to𝐿𝑐𝑜𝑎𝑙𝑚𝑖𝑛; 

Find(𝑛𝑗 , 𝑙𝑚𝑖𝑛 , 𝑐𝑜𝑎𝑙𝑘𝑚𝑖𝑛); 
Eliminate 𝑛𝑗 from 𝑆𝑁; 

Eliminate 𝑙𝑚𝑖𝑛  from 𝐿; end for 
 

3.2 Data Collection Inside Coalitions 

A distributed CS method is used for the nodes 

within every coalition to get metrics and restore the actual 

signal. The energetic nodes within the coalition transmit 

their observation by using the multi-hop network 

framework to the 𝐶𝐶. 

 

3.2.1 Amount of alive nodes 

The amount of nodes needed to be energetic is 

identified for every coalition. It supports to execute 

scheduling between nodes and set few nodes into inactive 

state. Initially, the minimum threshold is defined by the 

following formula to determine the least information 

restoration accuracy: 

 𝜇(𝛷,𝛹) = max1≤𝑘,𝑗≤𝑁|〈𝛷𝑘 , 𝜓𝑗〉|                 (14) 

    

If every 𝛷𝑗 are orthogonal and the sparsifying �̃� 

and 𝐶 are recognized as earlier, then 𝜇(𝜃) is enclosed as: 

 𝒫 [𝜇(𝜃) ≤ 𝑂√𝑆𝐶𝐷𝑚𝑎𝑥 𝑁𝐶𝑁 log𝑁] = 1 − 𝑂 (1𝑁) (15) 

 

The maximum amount of sensor nodes needed to 

offer high data quality is defined as: 

 𝑁𝐴𝑁𝑜𝑑𝑒𝑠 = 𝑂(𝑆𝐶𝐷𝑚𝑎𝑥𝐾𝑁𝐶𝑙𝑜𝑔2𝑁)                               (16) 

 

Adjusting 𝐶 provides lesser 𝑆𝐶𝐷𝑚𝑎𝑥 which 

creates a smaller amount of nodes when guaranteeing the 

accuracy of data. The amount of alive nodes related with 

every coalition is rely on its 𝑆𝐶𝐷𝑚𝑎𝑥 . Coalitions which 

enclose number of sparsity factors are highly useful. Thus, 

more data should be collected from those coalitions. The 

amount of alive nodes for every coalition is denoted as: 

𝑃𝑗 = 𝑁𝑐𝑜𝑎𝑙𝑗 = 𝑆𝐶𝐷𝑐𝑜𝑎𝑙𝑗𝑆𝐶𝐷𝑚𝑎𝑥 𝑁𝐴𝑁𝑜𝑑𝑒𝑠                 (17) 

 

3.2.2 Improved CSDA method 
A block diagonal metric matrix is constructed by 

the spatial-temporal relation between nodes. Consider 𝑆𝑁𝑐𝑜𝑎𝑙𝑗 = {1,… , 𝑁𝑗} is the group of nodes for 𝑗𝑡ℎ coalition 

where 𝑃𝑗 of such nodes are allocated to be alive in a 

random manner. A novel structure is defined for the metric 

matrix which is well-suited with this coalition creation 

algorithm. A temporal block diagonal metric matrix 𝛷𝑘 is 

used for collecting the information. In every sampling 

data, spatial analysis of every node is collected at time 𝑡 
and a discrete spatial signal 𝑍𝑡 is generated at 𝑡. The 

combination of temporal analysis of each alive node is a 

spatial-temporal signal [𝑍1𝑡𝑟 , … , 𝑍𝑆𝑇𝑡𝑟 ] where 𝑆𝑇 is a factor 

denoting the amount of data in every sampling cycle 𝑇. 

Every sampling time has 𝑇 sampling data identical to the 

Shannon-Nyquist rate. The amount of sampling periods is 

adjusted by the BS for minimizing the amount of sampling 

periods depending on the signal sparsity range. 

For every sampling time 𝑡, consider 𝛷𝑡 as a 

measurement matrix i.e.,𝑃𝑗 × 𝑆𝑁𝑐𝑜𝑎𝑙𝑗  matrix. The 

measurement vector 𝛾𝑐𝑜𝑎𝑙𝑗  has 𝑆𝑇𝑗 sub-vector of 𝑆𝑇 

sampling periods such that 𝛾𝑐𝑜𝑎𝑙𝑗 = [𝛾1𝑡𝑟 , … , 𝛾𝑆𝑇𝐽𝑡𝑟 ] where 

every 𝛾𝑖 is a𝑃𝑗 × 1 vector. 

In every coalition, a block diagram metric matrix 

is used that efficiently denotes many temporal metric sub-

matrices. By fusing such spatial-temporal metrics, obtain: 

 𝛾𝑗 = 𝛾𝑐𝑜𝑎𝑙𝑗 = 𝛷𝑗𝑍𝑗                  (18) 

 

𝛾𝑗 = [ 𝛾1⋮𝛾𝑆𝑇𝐽] = ( 
 𝛷1 𝛷2 .0 0. 𝛷𝑁𝐶) 

 [ 𝑍1⋮𝑍𝑆𝑇𝐽]  (19) 

 

Where for every 1 ≤ 𝑡 ≤ 𝑆𝑇, 𝛷𝑗 consists of 𝑃𝑗 rows and 𝑆𝑁𝑐𝑜𝑎𝑙𝑗  columns. At last, each sensor node’s measurement 

vector 𝛾𝑗 is transferred to its adjacent node. This data is 

received by the adjacent node and transmitted it to 𝐶𝐶. 

This temporal block diagonal metric in every coalition can 

achieve the energy-balanced DA in the coalitions. 

 

3.3 Joint Sparse Signal Recovery Using Improved 

Generalized Back-Propagation Algorithm 
The BS has the responsibility of restoring the 

actual signals from the metrics accepted from the 

coalitions. Assuming many coalitions, signals collected by 𝐶𝐶 are connected in spatial and temporal domains. 

Consider two kinds of correlations such as spatial-

temporal relation within every coalition and spatial 

relation between coalitions. In this joint sparse signal 

healing, this relation is represented depending on position 

and amplitude of signal’s non-zero coefficients. The 

relation between various coalitions or nodes is represented 
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as a similarity level (𝑆𝑖𝑚𝐿) and described according to the 

position of non-zero coefficients as: 

 𝑆𝑖𝑚𝐿 = 𝑐𝑜𝑚𝑚𝑋                                  (20) 

 

In equation (20), 𝑐𝑜𝑚𝑚 is the total amount of 

ordinary non-zero coefficient positions between various 

coalitions or nodes and 𝑋 is the overall amount of signal’s 

non-zero coefficients. At last, the common sparsity profile 𝐶𝑆𝑃𝑐𝑜𝑎𝑙  among various coalitions is computed by the BS. 

Coalitions that fulfill the least resemblance demands are 

taken in the joint sparse signal healing; or else, its healing 

proceeds independently. 

By defining 𝑆𝑖𝑚𝐿, a 2-stage mutual sparse signal 

healing is developed which utilizes the spatial-temporal 

previous data for reconstructing the actual signal. Based 

on this process, the amount of measurements is reduced 

when maximizing the accuracy. This signal recovery 

process is carried out both within and between the 

coalitions. In the primary phase, this algorithm is executed 

by the BS among coalitions and their 𝐶𝑆𝑃𝑐𝑜𝑎𝑙  are obtained. 

In the secondary phase, a joint sparse recovery is executed 

in every coalition by using 𝐶𝑆𝑃𝑐𝑜𝑎𝑙  as an input for 

completing the 𝐶𝑆𝑃𝑐𝑜𝑎𝑙  of every coalition (𝐶𝑆𝑃𝑐𝑜𝑎𝑙𝑗). As 

the nodes in every coalition are greatly connected, 

executing the second cycle provides other factors of 𝐶𝑆𝑃𝑐𝑜𝑎𝑙 . 
Based on obtaining 𝐶𝑆𝑃𝑐𝑜𝑎𝑙𝑗 , the BS executes the 

individual recovery algorithm for finding the independent 

elements. For entire healing, the BS introduces the two-

level BP-based recovery algorithm which is an iterative 

data transitory strategy which computes the marginal 

distribution or the MPA in Bayesian networks. But, it has 

convergence problem and design accuracy is varied with 

the graph cyclicity. 

Therefore, an improved generalized BP-based 

recovery algorithm is introduced that provides better 

convergence in MRFs and achieves acceptable data 

quality. The main aim of this algorithm is computing 

highly informative data among areas other than nodes. It 

facilitates a random amount of nodes for DA as a clique 

and encompasses the clique data to the entire transmission 

which provides enhanced approximation to the posterior 

likelihood. Since the clique data encompassed in the 

transmission, the search ability for the least of an energy 

factor is modified. The modification criteria of the 

canonical generalized BP are: 

 mrs ← k ∑ φr\s(zr\s)zr\s ∏ mr′′s′′mr′′s′′∈M(r)\M(s)∏ mr′s′mr′s′∈M(r,s)                 (21) 

 br ← kφr(zr)∏ mr′s′mr′s′∈M(r)     (22) 

 

In Eqns. (21) & (22), 𝑟 is the areas and 𝑠 is their 

respective sub-region, 𝑚𝑟𝑠 refers to the data transmitting 

from 𝑟 to its sub-region 𝑠, 𝜑(𝑧) denotes the local evidence 

of node 𝑧, 𝑀(𝑟)and 𝑀(𝑠) are the group of data 

transmitting from outside of 𝑟 or 𝑠 to few nodes inside 𝑟 or 𝑠, respectively, 𝑀(𝑟, 𝑠) is the group of data transmitting 

from few nodes in 𝑟 but not in 𝑠 to few nodes in 𝑠 and 𝑏𝑟 
is the belief of 𝑟. 
 

Algorithm 

Discover 𝑆𝐿 among various coalitions; 

Discover 𝑆𝐿𝑚𝑖𝑛; 

  

Execute spatial-temporal joint recovery in 

coalitions with 𝑆𝐿𝑚𝑖𝑛; 

 for(j = 1; j ≤ Ncoal; j + +) if (SLcoalj > 𝜃) 
Utilize 𝐶𝑆𝑃𝑐𝑜𝑎𝑙  from coalition with 𝑆𝐿𝑚𝑖𝑛 as 

input; end if 
Execute spatial-temporal joint recovery 

algorithm; end for 
 

Thus, this PCRICP can reduce the transmission 

cost and the amount of measurements for achieving 

energy-efficient DA in WSNs. 

 

4. SIMULATION RESULTS 
This part simulates the PCRICP using Network 

Simulator version 2.35 (NS2.35) and compares its 

efficiency with the existing protocols: CSRWR [7], CS-

PLM [11], CDAS [15] and PCRCP [4] in the aspect of 

network lifespan, energy consumption, packet loss and the 

number of nodes alive. In this simulation, 250 nodes are 

deployed over 1200m×1200m. The simulation parameters 

are given in Table-1. 
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Table-1. Simulation parameters. 
 

Parameters Range 

Network dimension 1200×1200m
2 

Network topology Flat grid 

Antenna category Omni antenna 

Channel category Wireless channel 

MAC layer 802.11 

Routing protocols PCRCP and PCRICP 

Number of nodes 250 

BS position (50,45) 
Data packet size 8500 bits 

Control packet size 60 bytes 

Traffic type Constant Bit Rate (CBR) 

Initial energy 2 J 𝑑𝑖𝑠𝜒 87.71 

Energy used for DA 5 nJ/bit 

Energy used in the transmitter 50 nJ/bit 

Energy used by the free space transmission 10 pJ/bit.m
2 

Energy used by the multipath transmission 0.0013 pJ/bit.m
4 

Transmission radius 100 m 

Simulation time 1000sec 

 

4.1 Network Lifespan 

It is the time taken to build the network up to the 

initial node dies. Figure-2 portrays the network lifespan (in 

No. of rounds) for different protocols with different 

amount of nodes. For 150 nodes in the network, the 

network lifespan of PCRICP is 8.59% increased than 

PCRCP, 24.66% increased than the CDAS, 45.55% 

increased than the CS-PLM and 63.53% increased than the 

CSRWR.  

This analysis indicates that the PCRICP achieves 

the highest network lifespan than all other protocols. 

 

 
 

Figure-2. Network lifespan vs. no. of nodes. 

 

 

4.2 Energy Consumption 

It is the sum amount of energy used by the 

network during the given time. Figure-3 illustrates the 

energy consumption (in Joules (J)) for different protocols 

with varying amount of nodes. 

 

 
 

Figure-3. Energy consumption vs. no. of nodes. 

 

When the amount of nodes is 150, the energy 

consumption of PCRICP is 5.85% reduced than the 

PCRCP, 13.24% reduced than the CDAS, 17.67% reduced 

than the CS-PLM and 20.98% reduced than the CSRWR 

protocols. This analysis indicates that the PCRICP 
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achieves the reduced energy consumption compared to the 

all other routing protocols.  

 

4.3 Packet Loss 

The number of packets missed during 

transmission between the BS and CHs or FNs is 

considered as Packet loss between the BS and CHs or FNs. 

Figure-4 demonstrates the packet loss (in %) for various 

protocols with different amount of nodes. 

 

 
 

Figure-4. Packet loss vs. no. of nodes. 

 

If the amount of nodes is 150, the packet loss of 

PCRICP is 10.38% less than the PCRCP, 13.64% less than 

the CDAS, 17.39% less than the CS-PLM and 22.55% less 

than the CSRWR. Through this analysis, it is noticed that 

the PCRICP has the minimum packet loss than the other 

protocols. 

 

4.4 Amount of Nodes Alive 

It provides the amount of nodes active in the 

network after data transmission. Figure-5 depicts the 

amount of nodes alive for different protocols with varying 

amount of rounds. 

 

 
 

Figure-5. No. of nodes alive vs. no. of rounds. 

 

If the amount of rounds is 2500, then the amount 

of nodes alive for PCRICP is 6.25% increased than the 

PCRCP, 16.44% increased than the CDAS, 39.34% 

increased than CS-PLM and 73.47% increased than the 

CSRWR. This analysis indicates that the PCRICP 

achieves the highest amount of alive nodes compared to 

the other protocols. 

 

5. CONCLUSIONS 

In this article, a PCRICP is proposed for 

achieving energy-efficient CSDA in WSNs. At first, a 

coalition formation-based CS solution is proposed that 

utilizes the signal’s sparsity distribution for assembling the 

sensors into many coalitions and the CS is executed inside 

each coalition. Also, an improved generalized BP-based 

algorithm is proposed that can guarantee better 

convergence in MRFs. In this algorithm, a caching and 

chessboard transitory strategies are applied for improving 

the convergence speed. Also, the computational difficulty 

of group information from quadric to cubic was 

minimized. At last, the investigational outcomes revealed 

that the PCRICP has enhanced efficiency compared to the 

PCRCP in terms of different network metrics.  
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