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ABSTRACT 

As the exact solution of lateral torsional buckling of elastic prismatic beams is practically limited to the simple 

case of simply supported beam under equal end moments, other loading conditions and boundary conditions require more 

practical solutions of the problem. Finite element analysis using linear elements (beam elements) is formulated for lateral 

torsional buckling of beams bent about their symmetric major axis. Finite element development shows that the 

characteristic equation is function of the square of the critical moment which indicates that for symmetric beams, the 

critical moment is independent of the sign of the applied moment. This development indicates that lateral torsional 

buckling of beams is analogous to the frequency analysis of beams which is also independent of the vibration direction as 

the frequency also appears squared in the characteristic equations. Using the classical polynomial shape functions for 

beams, finite element method proves to be extremely accurate, efficient, and simple to apply for analysis of lateral torsional 

buckling of beams. Comparison with code approximate methods, finite element method, FEM, proves to offer more 

uniform factor of safety (reliability index) across various cases of loading schemes and boundary conditions.  

 
Keywords: finite element method, lateral torsional buckling, symmetric beams. 

 

INTRODUCTION 

Lateral torsional buckling of beams is one of the 

cumbersome problems that faces engineers. In general, 

lateral torsional buckling can be classified into two 

categories, first, beams with sections symmetric about 

their major axis and at the same time bent about this major 

axis, and second, asymmetric beams or monosymmetic 

beams about their minor axis and bent about their major 

axis; the other axis of symmetry (Timoshenko, 1961, 

Galambus, 1968). 

Many analytical and experimental studies have 

been conducted to tackle the problem of lateral torsional 

buckling, LTB. LTB of beams is considered a 3D 

problem, and is usually treated with 3D finite element 

method, FEM, using shell elements. For examples, 3D 

shell elements are used to study the collapse of LTB of 

stepped I-sections (Kweenisky et al. 2020), 3D shell 

elements are used to study LTB of T-beams with opening 

(Ahmad, 2021), 3D elements are used to study LTB of 

eccentrically loaded Channel (Dahmani et al. 2015), and 

3D elements are used to study LTB of a frame (Sabat, 

2009). In addition, experimental and numerical analysis 

are used to study LTB of cantilevered I-section (Demirhan 

et al. 2020), experimental and numerical analysis are used 

to study LTB of steel beams under impact loading (Zhang 

et al. 2018), and experiments are used to study LTB of 

partially restrained high strength steel beams (Wang et al. 

2021). 

In this paper, FEM with linear elements will be 

developed as it offers accuracy, efficiency, and simplicity 

of application over the cumbersome modeling of shell 

elements. 

The exact solution of lateral torsional buckling 

problem exists for the simple case of simply supported 

beam under equal end moment. Other support conditions 

and loading schemes are treated mainly by empirical 

method. Over the years, the American Institute of Steel 

Construction, AISC, (AISC, 2017) provides empirical 

equations with some coefficient of moment to treat such 

cases. Recent issues of AISC steel manual dropped such 

crude approximation for asymmetric beams and called for 

more practical and realistic methods to treat the general 

case of lateral torsional buckling of beams. Within this 

context, finite element method offers an attractive and 

practical solution to this problem. 

Due to the length of treatment of both categories, 

symmetric and asymmetric, this paper will address the first 

class of beams, i.e. symmetric beams, leaving the second 

class to future papers. The differential equation of lateral 

torsional buckling for symmetric beams is obtained by 

second order analysis (Galambus, 1968, Chen and Lui, 

1987), which is given in the following form 

 

iv

wEC  -  GJ  '' - o

y

M

EI



  = 0 

where 

E  = Young modulus. 

G  = Shear modulus. 

Cw  = warping constant, also known as warping 

moment of inertia, I, (m
6
). 

J  = Saint Venant torsional constant, (m
4
). 

Iy   = moment of inertial of the cross section about its 

weak axis, y, (m
4
) as shown in Figure-1. 

Mo   = externally applied moment as shown in Figure-1.  

  = twisting angle of the cross section about z-axis 

as shown in Figure-1, (rad) 

'', 
iv

  = second and four derivative of, , with respect to 

the axis, z. 
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Within this context, bracing conditions will be 

identified as follows: 

*  Simple brace: a brace that provides restriction of 

the rotation angle, but permits warping at the 

section under consideration, i.e.  = 0, ' ≠ 0. 
*  Fixed brace: a brace that provides restriction for 

both rotation and warping of the section under 

consideration, i.e.  = 0, ' = 0. 

 

The exact solution of the case of simply 

supported beam under equal end moments, bent about 

their symmetric major axis, free to warp, and laterally 

braced against rotation at the supports, as shown in Figure-

1, is given by the following form (Galambus, 1968) 

 

Mocr  =  ±  2

y y w

π
L

π
  EI  GJ + (  )  EI  EC  

L
 

 

It is worth mentioning that this case is considered 

a reference case for lateral torsional buckling in beams 

analogous to Euler buckling load in columns. The general 

solution to lateral torsional buckling considers this basic 

moment, Mocr, as part of the solution as will be presented 

later. Note also that the above expression includes two 

equal solution which indicates that the critical moment is 

independent of the direction of the moment, which is not 

the case in asymmetric cross sections. 

 

FINITE ELEMENT FORMULATION 

To obtain the finite element solution of this 

problem, Galerkin method of finite element formulation, 

which operates directly on the differential equation, offers 

an attractive approach to accomplish this task. Quick 

review of Galerkin Method (Huebner and Thornton, 1981) 

reveals that an approximate function of the solution (shape 

functions) can be assumed, and then minimization of the 

error by weighted residuals yields the required results. It is 

well documented that the weighted residuals in Galerkin 

method are taken as the shape functions themselves. 

Accordingly, for the differential equation 

presented earlier, the twisting angle, (z), may be 

approximated as,  (z), which can be expressed in terms 

of shape functions as follows: 

 

 (z)  =  j j (z) j 

where 

  (z)  = approximate continuous function of field 

twisting angle. 

j (z)  = continuous shape function of field twisting 

angle, . 

j  = nodal twisting angle. 

 

If the function, f (z), is defined such as  

  f (z)  = iv

wEC  -  GJ  '' - o

y

M

EI



  = 0 

And if the approximate function,  (z), is used 

instead of the exact function, (z), then, f(z), becomes 

approximate function, f(z) , which does not vanish but 

yields a residual value, or an error due to the 

approximation, i.e. 

 

f(z) =  
iv

wEC  - GJ  '' - o

y

M

EI



  ≠ 0 = residual value 

Consequently, there will be an error in the 

solution equals to the difference between the approximate 

and exact solution, i.e. 

 

error =  f(z)  - f(z)  = f(z)  - 0 = f(z)  

 

The weighted residuals method states that the 

summation of the error components multiplied by their 

weights is set to zero. Galerkin contribution to this method 

was to consider the weights to be the shape functions 

Figure-1. Simply supported beam under equal end moments, 

free to warp, and braced against rotation at supports. 
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themselves, hence, the integrated weighted residuals 

become  

  error . weight .dz = 0 

 

or,    ( iv

wEC  -  GJ  '' - o

y

M

EI



  ) . i dz = 0       

Substitution of   (z) =  j j (z) j 

then, 
j
Σ    ( 

wEC j 
iv
 j - GJ j '' j - 

o

y

M

EI



j j  ) . i dz 

= 0        

or, 

 j
Σ    (

wEC j 
iv
 ij - GJ j '' ij - 

o

y

M

EI



j ij ) . 

dz = 0       

By integration by parts, the above integrals can 

be converted into symmetric integrals which yields the 

following expression 

j
Σ    (

wEC i'' j''j + GJ i' j' j - 
o

y

M

EI



i jj ) . dz = 

0      …  i = 1, 2, 3, 4 

Note that the highest derivative in the integrals 

above is a second derivative, and hence, the shape 

functions must maintain continuity at the nodes up to the 

first derivative, i.e. '. Consequently, the beam needs four 

Degrees of Freedoms (DOFs) to satisfy this continuity 

requirements, namely, twisting angle and its first 

derivative at each node of the beam. Note also that these 

four DOFs require four shape functions. For beams, the 

popular four polynomial shape function shown in Figure-

2, are ideal for this development. 

 

 
 

The integration of the expression given above 

yields the corresponding 4x4 element matrices which may 

be identified and given within this context as follows: 

 

1. Element warping stiffness matrix, [Cwe], where 

Cwe ij =  
wEC i'' j'' dz 

 

or, 

2 2

w

we 3

2 2

12 6L -12 6L

6L 4L -6L 2LEC
[C ] =

-12 -6L 12 -6LL

6L 2L -6L 4L

 
 
 
 
 
 

 

 

2. Element Saint Venant stiffness matrix, [Je], 

where Je ij =   GJ i' j' dz 

 

or, 

2 2

e

2 2

36 3L -36 3L

3L 4L -3L -LGJ
[J ] =  

-36 -3L 36 -3L30L

3L -L -3L 4L

 
 
 
 
 
 

 

 

3. Element lateral stiffness matrix, [Iye], where Iye 

ij =   
y

1  

EI
i jdz 

 

or, 

2 2

ye

y

2 2

156 22L 54 -13L

22L 4L 13L -3LL
[I ] =  

54 13L 156 -22L420 EI

-13L -3L -22L 4L

 
 
 
 
 
 

 

 

As pointed out earlier, continuity requirements 

results in four nodal DOFs with 2DOFs at each end. 

Figure-3 shows the resulting arrangement of these local 

(element) DOFs as related to the above element matrices. 

In this paper, the rotation angle will be represented by a 

curve with single arrow head whereas the twisting 

curvature is represented by a curve with double arrow 

heads as shown in Figure-3. Using the vector {U} to 

represent the local (element) DOFs, the {U} vector 

appears as follows: 

 

Figure-2. Popular polynomial shape functions used for beam formulation. 
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1

2

3

4

u

u
{U =  

u

u

 
 
   
 
  

,  which is correspondent to, 

i

i

element

j

j

'
{ =  

'

 
     
  

, as shown in Figure-3. 

 

Accordingly, the element local matrices take the 

form 

 

[Cwe] {U},    [Je] {U},     [Iye] {U} 

 

Recall that curvature is defined as the rate of 

change of rotation with respect to length, and hence, ', 

may be viewed as a twisting curvature which is resulting 

from the effect of warping integral in this case. Note that 

this twisting curvature appears in this formulation as a new 

and additional DOF to the beam which becomes the so-

called the seventh DOF of the beam modeling including 

the effect of warping in the section. 

In view of the above, and after constructing the 

counterpart global matrices by the standard assembly 

process, the finite element formulation may be 

symbolically presented in matrix form. Using the vector 

{D} to represent the global DOFs, and for a number of 

DOFs equals to, N, the final matrix formulation is given as 

follows 

 

[Cw] {D} + [J] {D} - Mo 
2
 [ Iy ] {D} = {0} 

or, { [Cw] + [J ] - Mo 
2
 [ Iy] } {D} = {0} 

or, { [ [Cw] + [J ] ] - Mo 
2
 [ Iy] } {D} = {0} 

 

where 

 [Cw]  = Global warping stiffness matrix size NxN. 

 [J]  = Global Saint Venant stiffness matrix size NxN. 

 [ Iy]  = Global lateral stiffness matrix size NxN. 

Mo   = Lateral torsional moments with numbers equal 

to N. 

{D}  = Global nodal vector size Nx1 as defined 

previously. 

= { d1 d2 d3 … dN}
T
  

 

Recall that a standard eigenvalue problem for the 

two matrices, [A] and [B], is given in the following form 

 

{ [A] -  [B] } {} = {0} 

 

where,  and , are the resulting eigenvalues and 

eigenvectors.  

 

Therefore, the above lateral torsional buckling 

matrices represent a set of homogeneous linear algebraic 

equations with a size equals to, N, and hence represent the 

characteristic equation of the lateral torsional buckling 

moments. The solution is a standard eigenvalue problem 

of the square of the lateral torsional buckling moment 

which yields an, N, lateral torsional buckling moments and 

an, N, corresponding mode shapes. 

The above development is implemented by 

programming and coding these procedures using Visual 

Basic language for application as will be illustrated in the 

next sections. 

 

FINITE ELEMENT APPLICATION AND 

VERIFICATION 
The application procedures and verification of 

this method will be demonstrated by considering the beam 

shown in Figure-4. Using middle line dimensions, the 

relevant section properties are calculated as shown in 

Table-1. 

 

Figure-3. Definition of element Degrees of Freedom 

 of beams in terms of twisting angle,  

u1 =  i 

L 

node i node j 

field twisting angle, 

 (z) 
u2 =  i' 

u3 =  j 

u4 =  j' 
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Table-1. Section property calculations. 
 

 Equation 

expression 
Arithmetic detail 

Section property 

value 

Stiffness 

value 

Warping 

constant, Cw IF 

2
oh

2 
 

3  2 20 (180)  380

12 2

   
   
   

 
Cw = 

701.784 x10
9
 

mm
6
 

ECw = 

140.3568 

kN.m
4
 

Torsional 

Constant, J 

3 b t

3
  

3 3 180 (20)  360 (10)
(2) +

3 3

   
   
   

 
J = 1.08 x10

6
 

mm
4
 

GJ = 86.4 

kN.m
2
 

Lateral 

moment of 

inertia, Iy 

3
f ft  b

(2)
12

 

320 (180)
(2)

12

 
 
 

 
Iy = 19.44 x10

6
 

mm
4
 

EIy = 3,888 

kN.m
2
 

 

This beam is simply supported, simply braced, 

and subjected to equal end moments which has an exact 

solution as presented in the introduction, therefore, the 

exact lateral torsional moment, Mocr, is given as follows: 

 

Mocr  =  ±  2

y y w

π
L

π
  EI  GJ + (  )  EI  EC  

L
 

Mocr  =  ±  2π
10

π
  3,888 (86.4) + (  )  (3,888) (140.3568) 

10

= 196.138 kN.m 

The FEM solution is obtained by standard 

procedures. In this section, demonstration of the 

procedures will be presented using two identical elements 

as shown in Figure-5. Since the supports provide simple 

brace, i.e.  = 0,  ' ≠ 0, the beam will have four global 
DOFs, namely, two twisting curvatures at the supports, i.e. 

at Nodes 1 and 3, and one rotation, one twisting curvature 

at midspan, i.e. at Node 2 as shown in Figure-5. 

Young modulus, E = 200 GPa 

Shear modulus, G = 80 GPa 

Yield stress,  y = 350 MPa 

10 m 

Mo Mo 

Figure-4. Beam layout and boundary conditions, 

 simple supports with simple braces, i.e. = 0, ' ≠ 0  
  

ho = 

380 

mm 

bf = 180 

tf = 20 

tw  = 10 

Cross section 

d = 

400 

mm 
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Element Matrices 

Note that since the two elements are identical, the 

element matrices will be the same for both of them. Using 

(kN, m) units, the matrices are calculated as follows 

 

 [Cwe1] = [Cwe2] = 

2 2

w

we 3

2 2

12 6L -12 6L

6L 4L -6L 2LEC
[C ] =

-12 -6L 12 -6LL

6L 2L -6L 4L

 
 
 
 
 
 

 = 

13.474 33.686 -13.474 33.686

33.686 112.285 -33.686 56.143

-13.474 -33.686 13.474 -33.686

33.686 56.143 -33.686 112.285

 
 
 
 
 
 

 

 

 [Je1] = [Je2] = 

2 2

e

2 2

36 3L -36 3L

3L 4L -3L -LGJ
[J ] =  

-36 -3L 36 -3L30L

3L -L -3L 4L

 
 
 
 
 
 

 = 

20.736 8.640 -20.736 8.640

8.640 57.600 -8.640 -14.400

-20.736 -8.640 20.736 -8.640

8.640 -14.400 -8.640 57.600

 
 
 
 
 
 

 

 

 [Iye1] = [Yye2] = 

2 2

ye

y

2 2

156 22L 54 -13L

22L 4L 13L -3LL
[I ] =  

54 13L 156 -22L420 EI

-13L -3L -22L 4L

 
 
 
 
 
 

 = 

6

478 337 165 -199

337 306 199 -230
10

165 199 478 -337

-199 -230 -337 306



 
 
 
 
 
 

 

 

Assembly of the global matrices, [KG], in terms 

of the global 4DOFs, d1, d2, d3, d4, can be carried out from 

the element matrices, [ke], using the following expression 

(Chen and Lui, 1987) 

[KG] =  [T]
T
 [ke] [T]     … summation is carried 

out over all elements 

where, [T], is known as the kinematic (compatibility) 

matrix which relates the global nodal deformations {D} to 

element nodal deformations {U}. Accordingly, the [T] 

matrices for elements, 1 and 2, are constructed as follows 

 

[T1]
T
 =  

1 2 3 4

1

2

3

4

 1

 

     

0   0  0

0  0  0
 

0  0   0

0  0   0  0

 u u u u

d

d

d

d

 1

 1

 
 
 
 
 
  

, [T2]
T
 =  

1 2 3 4

1

2

3

4

     

0   0   0  0

 0   0  0
 

0   0   0

0  0  

1 

  1

 

 u u u u

d

d

d

d  0 1

 
 
 
 
 
  

 

Carrying out the above summation leads to 

 

 [Cw]global =  [Ti]
T
 [Cwe,i] [Ti] = 

112.285 -33.686 56.143 0

-33.686 26.949 0 33.686

56.143 0 224.571 56.143

0 33.686 56.143 112.285

 
 
 
 
 
 

 

5 m 

Mo Mo 1 2 

5 m 

1  2  3  

d 1 
d 2 

d 3 

d 4 

node 
element element 

Figure-5. Beam discretization into two equal elements. 

d 1  
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1 

d 4  

u 1 
u 2 

u 3 

u 4 

d 3 

d 2 

2  3  

2 



                                  VOL. 17, NO. 3, FEBRUARY 2022                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2022 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                        350 

 [J]global =  [Ti]
T
 [J,i] [Ti] = 

57.600 -8.640 -14.400 0

-8.640 41.472 0 8.640

-14.400 0 115.200 -14.400

0 8.640 -14.400 57.600

 
 
 
 
 
 

 

 

[Iy]global =  [Ti]
T
 [Iy,i] [Ti] =  

6

306.192 199.025 -229.644 0

199.025 955.320 0 -199.025
10

-229.644 0 612.385 -229.644

0 -199.025 -229.644 306.192



 
 
 
 
 
 

 

 

Characteristic equation:  

 

{ [ [Cw] + [J ] ] - Mo 
2
 [ Iy] } {D} = {0} 

 

169.885 -42.326 41.743 0

-42.326 68.421 0 42.326

41.743 0 339.771 41.743

0 42.326 41.743 169.885

 
 
 
 
 
 








- Mo 
2
 

 6

306.192 199.025 -229.644 0

199.025 955.320 0 -199.025
10

-229.644 0 612.385 -229.644

0 -199.025 -229.644 306.192



 
 
 







 
 




1

2

3

4

d

d

d

d

 
 
 
 
 
  

= 

0

0

0

0

 
 
 
 
 
  

 

Standard solution of the above eigenvalue 

equation yields four moments, {Mo}, and four mode 

shapes, [], as follows 

 

{Mo} = 

196.274

489

989

1,663

 
 
 
 
 
  

, [  ]  = 1 2 3 4       = 

1 1 1 1

3.162 0 0.547 0

0 1 0 1

1 1 1 1

 
  
 
 
  

 

 

Graphical presentation of the mode shapes are 

also shown in Figure-6. The critical lateral torsional 

buckling moment is, of course, the smallest of the four 

moments which is given as follows: 

 

Mocr = 196.274 kN.m     … vs … exact = 196.138 kN.m 

 

 
 

As well-known and documented, the accuracy of 

the FEM solution depends on the size of the mesh (number 

of elements) in this case. In order to examine the effect of 

the mesh size on the accuracy of this solution, the above 

procedures are repeated for, 1, 2, 3, 5, and 10 elements. 

The results are summarized in Table-2. 

 

 

 

 

Figure-6. Buckling moments and their mode shapes. 
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Table-2. Critical lateral torsional buckling moment for various FEM mesh sizes. 
 

 Exact solution 
Number of elements 

1 2 3 5 10 

Critical moment, Mocr 

(kN.m) 
196.138 200.352 196.274 196.163 196.141 196.138 

%  error 0 % 2.15 % 0.07 % 0.01 % 0.0015 %  0 % 

 

Table-2 shows that the accuracy of the solution is 

excellent and becomes almost exact if, 10, elements are 

used. It can also be seen that using one element which is 

considered very crude mesh, the error is still around 2%. 

For all practical purposes, it can be seen that two elements 

are more than enough to get very accurate results (.07% 

error). However, in the general case where moment 

gradient or even cross section are not constant but rather 

varies along the axis of the beam, a number of elements 

should be selected to capture the effect of such variations 

in what is known as sensitivity analysis in FEM. 

 

THE GENERAL CASE AND COMPARISON WITH 

AISC PROVISIONS 
AISC treats the general case of lateral torsional 

buckling by the help of the well-known concept of 

equivalent moment coefficient, Cb. In this approach, the 

critical moment of the basic case of simply supported 

beam under equal end moment, Mocr, is calculated and 

then multiplied by the coefficient, Cb, to account for the 

difference in the end moments, and later revised to 

account for the moment gradient between the bracing 

points. Accordingly, the critical moment, Mcr, is calculated 

as 

 

Mcr = Cb Mocr 

 

As can be interpreted from the above expression, 

the coefficient, Cb = Mcr /Mocr, may be viewed as an 

indicator for the critical moment in the beam which will be 

used later for comparison between various cases. 

For many years, AISC used Salvadori (Salvadori, 

1955) expression for, Cb, which is a function of the values 

of the end moments at the bracing points without 

consideration of the moment gradients due to transverse 

loads. Salvadori expression for, Cb, is given as follows  

 
2

A A
b

B Bd d

M M
C  = 1.75 + 1.05 + 0.3   2.3

M M

   
   

   
 

where 

MA  = smaller of the two end moments at the bracing 

points. 

MB  = larger of the two end moments at the bracing 

points. 

MA/MB  = is the ratio of end moments taken positive when 

bent is double curvature. 

 

In the past decade, AISC replaced Salvadodri 

expression by another empirical expression that takes 

moment gradient into consideration which was developed 

by Kirby and Nethercot (Kirby and Nethercot, 1979). 

ASIC used a slightly modified, and more conservative 

form of Kirby and Nethercot expression which is given in 

its modified form as follows: 

 

max
b

max A B C

12.5 M
C         3

 2.5 M + 3 M + 4 M  + 3 M
   

where 

M max  = absolute maximum moment between bracing 

points. 

MA  = absolute moment at one quarter point between 

bracing points. 

MB  = absolute moment at midpoint between bracing 

points. 

MC  = absolute moment at three quarter point between 

bracing points. 

 

As is expected, the FEM is a general solution that 

has no limits of including boundary conditions, cross 

section variation, and loading conditions in the analysis. 

As this method is rather accurate, it will be used to 

examine the accuracy, or the conservatism, embedded in 

the empirical expressions of the equivalent moment 

coefficient, Cb, for some popular cases.  

For discussion and comparison purposes, eight 

cases which are broken into three groups will be 

examined.  Group I examines three beams subject to end 

moments only, Group II examines three beams subject to 

transverse loads with various boundary conditions, 

whereas Group III examines two beams with continuous 

spans. 

 

Group I: Beams Subject to End Moments Only 

In this group of beams, which are the origin of 

the development of, Cb, the internal moment in the beam 

will be linear and function of the moments at the ends as 

shown in Figure-7. Figure-7 shows three popular cases 

with externally applied moments to simply supported 

beams. The results of buckling moments for these three 

cases are as shown in Table-3. 
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Table-3. Comparison between empirical expressions and FEM solution Group I: Beams subject 

to end moments only. 
 

Method of Analysis 
Coefficient of Moment, Cb 

Case 1 Case 2 Case 3 

 Cb Cb / Cb,FEM Cb Cb / Cb,FEM Cb Cb / Cb,FEM 

Salvadori 1 1 1.75 0.97 2.30 0.87 

Modified Kirby and 

Nethercot (AISC) 
1 1 1.67 0.95 2.27 0.86 

FEM 1 1 1.80 1 2.64 1 

 

It can be noted from Table-3 that even though 

Salvadori, and Modified Kirby and Nethercot expressions 

are conservative, they do not offer consistent level of 

reliability among the different cases. For example, Case 3 

shows larger conservative levels of the buckling moment 

than Cases 1 and 2. 

 

Group II: Beams Subject to Transverse Loads 

Figure-8 shows three cases with externally 

applied transverse loading with or without externally 

applied end moments for various boundary conditions. 

The results of buckling moments for these three cases are 

shown in Table-4. 

 

 
 

 

 

 

 

M-diag 

Figure-7. Group I: Beams subject to end moments only 

Moment diagrams and mode shapes, -angle 
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Figure-8. Group II: Beams subject to transverse loading 

Moment diagrams and mode shapes, -angle 
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Table-4. Comparison between empirical expressions and FEM solution 

Group II: Beams subject to transverse loads. 
 

Method of Analysis 
Coefficient of Moment, Cb 

Case 4 Case 5 Case 6 

 Cb Cb / Cb,FEM Cb Cb / Cb,FEM Cb Cb / Cb,FEM 

Salvadori 1 0.45 1 0.57 1 0.73 

Modified Kirby and 

Nethercot (AISC) 
1.92 0.87 1.92 1.10 1.32 0.96 

FEM 2.20 1 1.75 1 1.37 1 

 

Table-4 shows that both Salvadori, and Modified 

Kirby and Nethercot expressions do not recognize warping 

DOF, ', which affects the buckling moments. Figure-8 

shows that Case 4, which has fixed supports (restricted 

warping), and Case 5, which has simple support 

(unrestricted warping) have identical moment diagram. 

Consequently, Salvadori, and Modified Kirby and 

Nethercot expressions yield the same value of, Cb, for 

Case 4 and for Case 5. However, FEM results indicates 

that restricting warping, i.e. ' = 0, strengthens the beam, 

as would be expected, and increases the buckling moment 

even for the same moment diagram. Table-4 indicates that 

FEM yields higher buckling moment for Case 4 than for 

Case 5 due to their different boundary conditions even 

with identical moment diagram.  

 

Group III: Continuous Beams 

Figure-9 shows two cases with continuous beams 

subject to transvers loading, Case 7 take warping constant 

into consideration whereas Case 8 ignores warping 

constant in the analysis. The results of buckling moments 

for these two cases are shown in Table-5. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure-9. Group III: Continuous beams 

Moment diagrams and mode shapes, -angle 
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Table-5. Comparison between empirical expressions and FEM solution Group III: Continuous beams. 
 

Method of Analysis 

Coefficient of Moment, Cb 

Case 7  (Cw ≠ 0) Case 8 (Cw = 0) 

Right span 

ignored 

Continuous 

beam 

Right span 

ignored 

Continuous 

beam 

Cb 
Cb / 

Cb,FEM 
Cb 

Cb / 

Cb,FEM 
Cb 

Cb / 

Cb,FEM 
Cb 

Cb / 

Cb,FEM 

Salvadori 1.75 1.17 1.75 1.11 1.75 1.27 1.75 1.27 

Modified Kirby and 

Nethercot (AISC) 
1.49 0.99 1.49 0.94 1.49 1.08 1.49 1.08 

FEM 1.50 1 1.58 1 1.37 1 1.37 1 

 

It can be observed from Table-5 that the values 

of, Cb, obtained from both Salvadori (Cb = 1.75) and 

Modified Kirby and Nethercot (Cb = 1.49) expressions are 

the same regardless of the consideration of warping or 

continuity of the beam (multiple spans). These results 

indicate again that these expressions do not recognize the 

warping or continuity of the beam. These limitations can 

clearly be overcome and inherently covered by FEM 

formulation. 

 

CONCLUSIONS 
As recent versions of some reputable steel codes 

reveal that they are uneasy with their current procedures of 

treatment of lateral torsional buckling of beams, and hence 

call for more practical and realistic methods in treatment 

of this problem, it has been shown that Finite Element 

Method offers the ideal solution for this problem. In this 

paper, FEM with linear elements (beam elements) is 

developed which offers simplicity, efficiency, and 

accuracy to evaluate the lateral torsional buckling 

moments for various cases of various loading schemes and 

boundary conditions.  

This approach offers its simplicity over using 

three dimensional shell elements to deal with this problem 

which is apparently a cumbersome task. In this method, 

the modeling of beams as linear elements will be simple, 

in addition, it allows the direct and simple application of 

moments at different locations along the axis of the beam 

as required.  

The developed FEM procedures are then used to 

examine various cases of loading schemes and boundary 

conditions which shows that the currently used code 

procedures in some steel codes do not always offer 

conservative solution nor offers consistent factor of safety 

(reliability index). Therefore, using FEM overcomes this 

inconsistency by offering a more uniform reliability level 

among the various cases of loading schemes and boundary 

conditions. 

It is also shown that the current code methods of 

treatment and the expressions used accordingly do not 

recognize many situations of boundary conditions, 

continuity of the beam, geometry, and warping properties. 

FEM can further overcome these inconsistency in the 

analysis and offer natural incorporation of these variations 

along the axis of the beam. 

It is worth reminding the reader that this paper 

treats symmetric beams only, which are characterized by 

having their shear center lying on the major axis of 

bending. The general case will be totally different which is 

intended to be treated separately in the near future. 
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