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ABSTRACT  

The global asymptotic stability is considered in the model of rice blast disease under the difference of rice cultivar 

susceptibility, virulence of fungus and growth stage of rice. A new global as-ymptotic stability criterion of equilibrium 

point for susceptible-exposed-infections-recovered (SEIR) epidemic model is derived by constructing a suitable function.  

Then, this research shows the points of free-disease equilibrium and endemic equilibrium to be able to apply for study on 

the preparation to prevent the rice blast disease or plan rice planting.  
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INTRODUCTION 

Mathematical modeling is considered an effective 

tool for describing the dynamical behavior of infections 

[1-5]. Many researchers have formulated models for 

realizing and controlling the outbreak of transmissible 

diseases. They applied mathematical modeling for the 

study of transmissible infectious diseases. Several 

researchers have developed dif-ferent mathematical 

models depend on their study for these epidemic diseases 

and then studied the stability analysis and optimal control 

of these epidemic models [6-12]. Then, mathematical 

modeling is one of the powerful tools for describing the 

dynamic behavior of many diseases. 

This research aims to study the stability analysis, 

where the stability of the state tra-jectory or equilibrium 

state is examined. It will formulate the fundamental 

matrix, the so-lution of systems of differential equations 

and the computation of the eigenvalues from the model of 

rice blast disease under the changing of rice cultivar 

susceptibility, virulence of fungus and growth stage of 

rice. This research will be considered the disease free-

equilibrium, endemic equilibrium and basic reproduction 

number by analyzing the global stability. 

 

MODEL FORMULATION 
Kirtphaiboon et al. [13] developed the model of 

rice blast disease on the mathematic model by considering 

the change of susceptible (S), exposed (E), infectious (I), 

and removal (R) site as known as SEIR. The model is 

considered the pathogen life cycle together with the 

disease development that affects the weather parameters 

change. According to three optimal factors for occurring 

the rice blast disease, consists of host, pathogen and 

environment. This research analyzed the stability of the 

extended model of rice blast disease by considering the 

difference of rice cultivar susceptibility, virulence of 

fungus and rice growth stage in term of infection 

efficiency  E
I . The canopy growth is considered from 

( ) 1
RG

A
f t R A

M

   
 

, where A is the total sites (A = 

H+L+I+R), RG
R  is the maximum growth rate and M is the 

maximum canopy size. The senescence is calculated from   

 sen

0( ) sr t t
t e    where s

r  is the senescence increase rate 

and sen
t  is the date of senescence. Then, the governing 

equations of the extended model of rice blast disease are: 

 

E

dH
H I SIH

dt
            (1) 

 

E

dL L
I SIH L

dt p
           (2) 

 

dI L I
I

dt p i
           (3) 

 

dR I
R

dt i
          (4) 

 

To construct the new system, is dimensionless by 

letting, 
H

H
N

 , 
L

L
N

 , 
I

I
N

 , 
R

R
N

 . 

The simplified model becomes: 

 

 E

d H
I S I H N

dt
           (5) 

 

1
E

d L
I SI HN L

dt p
 

 
   

 
      (6) 

 

1d I L
I

dt p i
    

 
       (7) 
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d R I
R

dt i
          (8) 

 

STABILITY ANALYSIS 

 

Equilibrium Analysis 
Based on Equation (5)-(8), stability analysis is 

carried out to determine the disease-free equilibrium point 

and endemic equilibrium point. 

To determine the two equilibrium points, each 

equation in Equation (5)-(8), must be equal to zero, or 

0
d H

dt
 , 0

d L

dt
 , 0

d I

dt
  and 0

d R

dt
 . 

Then obtained: 

 

  0
E

I S I H N            (9) 

 

1
0

E
I S I HN L

p
 

 
   
 

    (10) 

 

1
0

L
I

p i
    

 
    

  (11) 

0
I

R
i

        (12) 

 

Then, we found the equilibrium point of , ,H L I

and R . 

 

Free-Disease Equilibrium 

Equilibrium points are conditions where there is 

no spread of disease. Then, 0L I  . 

From Equation (9);  E

H
I S IN


 




 

Then obtained, 1H   

From Equation (10); 
1

E
I S I HN

L

p






 
 

 

 

Then obtained, 0L   

From Equation (11); 
1

L
I

p
i




  
 

 

Then obtained, 0I   

From Equation (12); 
I

R
i

  

Then obtained, 0R   

Thus, the equilibrium points of disease-free are 

 

( , , , ) (1,0,0,0)
f

E H L I R      (13) 

 

Endemic Equilibrium 
Endemic equilibrium points are used to indicate 

the possibility of disease spread. Because in the endemic 

conditions and disease spread, the populations 

0, 0,S L  0I   and 0R  . 

Equation (5)-(8) obtained the endemic 

equilibrium points are: 

 

  1
1

E

p
i

H
I SN

 



   
       (14) 

 

 

1

1
E

p
pi

L
I SN p

 


 

               
 

    (15) 

 

  1
1E

I
I SN

p
i

 
  

 
  
   

         

    (16) 

 

 

1 1 1

1
1E

R
I SN i

p
i

  

  
                         

   (17) 

 

Thus, the equilibrium points of endemic are 

 

( , , , )
e

E H L I R

 

 

 

 

1
1

,

1

,
1

,
1

1

1 1 1

1
1

E

E

e

E

E

p
i

I SN

p
pi

I SN p

E

I SN
p

i

I SN i
p

i

 



 


 

 
  

  

       
 
 
                   


  
  
  

          
   
                            


















  (18) 

 

Basic Reproduction Number 

The basic reproduction number  0R  is 

determined using the matrices generation method, Based 

on Equation (5) to (8), to determine  0R : 
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Let 

0

1
0

E
I SNH

F

p

 
   
  

 and 

1
0

1
0

p
V

i





  
   
  

        

  

 

Then we found, 

 

1

1
0

1

1
0

1

p
V

i







         
 
      

    (19) 

 

The generation matrix is : 

 

0
1

1
0

1

E
I SNH

i

p
p








 
      

  
 
  

  
  

    (20) 

 

To consider the characteristic equation,  

 1det 0I FV     

Thus, the basic reproduction number is given the 

spectral radius of matrix 1
FV

  is 

 

0
1 1

E
I SNH

R

p
p i




 


     
  

    (21) 

 

Stability Analysis 

 

Theorem 1. 

1.  If 0 1R  , then Equation (5)-(8) of the model is 

global asymptotic stable. 

2.   If 0 1R  , then Equation (5)-(8) is unstable. 

 

Proof of Theorem 1.  

Base on the Equation (5)-(8), found the Jacobian 

matrices 

 

0 0

1
0

   1 1
0 0

1
0 0

E E

E E

I SIN I SHN

I SIN I SHN
p

J

p i

i

 

  





 
 

             
  

 
  

  (22) 

 

Then, to find the eigenvalue of the Jacobian 

matrix in Equation (22): 

 

0 0

1
0

1 1
0 0

1
0 0

E E

E E

I SIN I SHN

I SIN I SHN
p

I J

p i

i

  

   


 

 

  
 

                 
  

 
   

 

 

To consider the characteristic equation: 

det( ) 0I J   , then 

 

 

 

 

 

   

  

2

1

1

01

1

1

E

E

E

E E

E E

I SNI
p

I SNI
p

I SNH
p

I SNI I SNI
p

I SNH I SNI
p



 

 

 


  

 

 
 

          
      
  
   
  
   

 
  
 
 
 
  

   

 

   2

1 3 2 3 2 4

3 2 3 2 3 4

0
C C C C C C

C C C C C C

 
 



    
  

    
  (23) 

 

where 1

1
C

p


 
  
 

, 
2

1
C

p
 , 

3 E
C I SNI  and  

4 E
C I SNH . 

So,     and 
2

1 2 0D D    . 

 

Due to the characteristic values of equation 

system are negative, the equilibrium point is stable global 

asymptotic. 

To consider  2

1 3 2 3 2 4 3C C C C C C C      

2 3 2 3 4 0C C C C C   , 

From the Routh-Hurwitz criterion, the 

equilibrium point is stable when it satisfied the following 

conditions: 

1.   1 2 4 3 2 3( )C C C C C C    

2.  
3 2 3 2 3 4( )C C C C C C   . 

 

This concludes that if  1 2 4 3 2 3( )C C C C C C    

and 
3 2 3 2 3 4( )C C C C C C   . Then 0  . 

Due to the characteristic values of the equation 

system in the model are negative, Then, the equilibrium 

point is stable global asymptotic. 
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Thus, the disease equilibrium point is global 

asymptotically stable when 
0 1R  . 

 

CONCLUSION AND DISCUSSIONS 

This research presented the stability analysis of 

the model of rice blast disease that is considered under the 

changing of rice cultivar susceptibility, virulence of 

fungus and growth stage of rice. It is found that the disease 

free-equilibrium are  1( , , 0, ,0,0,)
f

E H L I R  and 

found the equilibrium points of endemic. The analysis of 

the model uses the generation matrix method to obtain the 

basic reproduction number and the global stability. 

Kermack and Mckendrick [14] initiated a 

fundamental mathematical model by proposing the SIR 

model as a tool for epidemic analysis and control of 

communicable diseases. The basic formulation are 

 

dS
kSI

dt
   

dI
kSI I

dt
   

dR
I

dt
  

 

 where S is the susceptible population, I is the 

infected population and R is the removed population from 

disease or die, k is rate of infection and   is the rate of 

recovery of the infected population. 

Capasso and Serio [15] developed the general 

formulation of the SIR model as follows: 

 

( )
dS

g I S
dt

   

( )
dI

g I S I
dt

   

dR
I

dt
  

 

They considered that :g R R
   is the 

continuous and bounded function corresponding with the 

following conditions: 

 

i)  ;  ( ) 0x R g x
     

ii)  (0) 0g    

iii)   0 ;  ; ( )c R x R g x c
         

iv)  :g R R
    is exist and has close bounded on 

R

 where  (0) 0g    

v)  ;  ( ) (0)x R g x g x
     where 0,R

     

 

Wanblao, et al. [16] studied the asymptomatic 

linear stability with the damper of the SIR model as 

follows: 

 

1( ) ( ) ( )
dS

S t I t h S t b
dt

       

2( ) ( ) ( ) ( )
dI

S t I t h I t I t
dt

       

3( ) ( )
dR

I t R t
dt

    

 

They classified the newly born people as those at 

risk of infection where 
1 20,  0    and 

3 0   is 

senescence rate of susceptible, infectious and removed 

population, respectively. In biology, they assumed 

 1 2 3min ,    and 0h   is the damper. The SIR 

model corresponded to the initial conditions as 

1( ) ( ),S    2 1( ) ( ),  ( ) ( ),  ( 0)I R h          

where    1 2 3, ,
T

C     is the continuous function 

and ( ) 0
i

   where 0,h     1,2,3i  , C is Banach 

spaces    3,0 ,C h R  by assuming (0) 0
i

   for 

1,2,3i  . 

They found that the asymptomatic stability 

system showed that the endemic equilibrium point was 

stable when 
*

0S S  using the Lipunov function as a 

stability analysis tool. 
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