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ABSTRACT 

The article describes a method for investigating the robustness of an aircraft landing control system built in the 

form of a MIMO system.As a research apparatus, the gradient-velocity method of the Lyapunov function is used. The 

study assumes that wind gusts are equal to zero, the regulator is selected in the form of single-parameter structurally stable 

maps (“fold” catastrophe).The constructed function is investigated for stability in three stationary states. The results of 

numerical experiments confirm the existence of asymptotic stability of the system. 
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INTRODUCTION 

It is known that the key criterion for the 

appearance of chaos can be the stability of formations 

arising in the system with respect to small disturbances. If 

there is no such stability, the deterministic description 

loses its meaning, and statistical methods must be used. 

As numerous studies have shown, statistical laws, 

as well as statistical description, apply not only to 

significantly complex systems with a large number of 

degrees of freedom [1]. The problem lies not in the 

complexity of the system under study and not in external 

noise, but in the appearance of exponential instability of 

motion at certain values of the parameters. 

Nowadays, methods for classifying various types 

of chaos have been developed, patterns of its development 

have been found, techniques have been created to 

distinguish chaos from white noise, etc. [1, 2-7]. 

Moreover, it was discovered and rigorously substantiated 

that the complex space-time behavior of distributed media 

with a huge number of degrees of freedom can be 

adequately described by nonlinear systems of small 

dimension [8, 9-11]. 

As is known, the mathematical image of steady 

periodic oscillations is the limit cycle. [12-13, 14-15]. 

Stable cycles are examples of attractors, since they 

"attract" all close trajectories. Physically, this means that 

when deviating from such fluctuations, the system returns 

to them after a while. If the system exhibits chaotic 

properties, this corresponds to the presence in its phase 

space of a more complex formation than the cycle: a 

strange (chaotic) attractor. In addition, the movement in 

the parameter space along the corresponding direction 

makes it possible to determine the sequence of 

bifurcations, as a result of which a chaotic attractor is 

formed [2-7]. 

It should be noted that the theory of catastrophes 

defines the area of existence of various structures, the 

boundaries of their stability. To study the dynamics of 

systems, it is necessary to know exactly how new 

solutions of equations "branch off" from the known 

solution. The answer to such questions is given by the 

theory of bifurcations, that is, the emergence of a new 

solution at a critical value of the parameter. The moment 

of transition (catastrophic jump) depends on the properties 

of the system and the level of fluctuations [12-13]. 

Studies of nonlinear dynamic processes in 

mathematics and physics have shown that chaotic behavior 

in systems with a small number of degrees of freedom is 

quite typical [14, 15]. Thus, the problem of predictability 

has become common to many areas of modern science. In 

this regard, recently it has become urgent to study the 

problems of predictability of the behavior of chaotic 

systems, control of their dynamics and the possibility of 

suppressing chaos. 

Chaotic dynamical systems are absolutely 

malleable and extremely sensitive to external influences 

[1]. Moreover, the dynamics of chaotic systems can be 

controlled, that is, by means of weak influences, such 

systems can be transferred from the mode of chaotic 

oscillations to the required dynamic mode (thereby, 

stabilizing their behavior). Consequently, such systems 

can be classified as self-organizing. One of the approaches 

is based on the fact that chaotic attractors contain, as a 

rule, an infinite number of unstable cycles. For a number 

of systems, methods have been developed that make it 

possible to either stabilize these cycles or create new ones. 

This is the key to solving the problem based on the use of 

systems with suppressed chaos [2-7, 8-13]. 

The phenomenon of self-organization is always 

associated with the loss of stability of a less organized or 

disordered state of motion and is always nonlinear in 

nature [12, 13]. To ensure the safe functioning of real 

technical systems, it is necessary that the mathematical 

models describing the dynamics of these complex systems 

possess stability. Frequently, it is impracticable to achieve 

the desired result by classical methods, since they are 

based on the assumption that the mathematical model of 

an object absolutely accurately describes its behavior and 

mailto:gulzhum_01@mail.ru


                                  VOL. 17, NO. 7, APRIL 2022                                                                                                                 ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2022 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                        785 

the model is known in advance. In addition, circumstances 

such as the presence of parametric uncertainty and 

external uncontrolled disturbances are frequently ignored 

[1, 14, 15]. The problem of finding an appropriate 

algorithm which would solve the problem posed to the 

specialist appears. An adequate solution is the construction 

of a robust controller capable of ensuring the stability and 

acceptable quality of the control system with small 

deviations of the plant parameters and external 

disturbances from the nominal models. 

The research is devoted to the construction of a 

control system with an increased potential for robust 

stability by a dynamic object with uncertain parameters, 

with an approach to the construction of control systems in 

the class of fold catastrophe [12-13, 16-19]. 

To study the robustness of automatic control 

systems, the methods of Lyapunov functions [20-21, 22-

25] are used, which is based on the geometric 

interpretation of the theorem on asymptotic stability in the 

state space. The Lyapunov function is synthesized in the 

form of a vector function, the antigradient, which is given 

by the components of the velocity vector of the system in 

the form of a tensor. 

 

RESEARCH METHOD 

Consider the problem of investigating stability of 

control systems with increased potential of robust stability 

constructed in the class of single-parameter structurally 

stable maps for objects with m inputs and n outputs. 

The control system defined by the equation [16-19]. 
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Cxy                        (1) 
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 - matrix of the control object. 

Suppose that all components of the state vector are 

measurable, and for simplicity, the matrix of the system 

can be represented in the following form 
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An Algorithm for Studying the Robust Stability of a 

MIMO System Using the Lyapunov Function 

Choosing Control Law 

The control law is described by a vector-function 

in the form of single-parameter structurally stable maps 

[16-19] 
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Stationary States of the System 
The system (1) can be written in expanded form 
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The stationary state 𝑥𝑖𝑠 , 𝑖 = 1, . . . , 𝑛 of the system 

(3) is determined by solving the equations 
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From (4) the system’s stationary state can be 

determined as (5) 

 

,01 isx ni ,...,1                      (5) 

 

Other stationary states can be determined as 

solutions of equations 

 

nіakx іnіis ,.....,1,0)( 1
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     (6) 

 

For negative 𝑘𝑖 − 𝑎𝑛−𝑖+1(𝑘𝑖 − 𝑎𝑛−𝑖+1 < 0), 𝑖 =1,2, . . . , 𝑛, this equation has an false solution, which 

cannot correspond to any physically possible situation. For 𝑘𝑖 − 𝑎𝑛−𝑖+1 > 0, 𝑖 = 1,2, . . 𝑛, equation (6) admits the 

following stationary states 
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The states (7-8) merge with (5) at the control 

parameter 𝑘𝑖 − 𝑎𝑛−𝑖+1 = 0 and branch off from it at 𝑘𝑖 − 𝑎𝑛−𝑖+1 > 0 

 

INVESTIGATION OF THE CONTROL SYSTEM 

FOR STABILITY IN ZERO STATIONARY STATES 

 

Finding the Components of the Gradient Vector 

It is known, that on the basis of Lyapunov’s 

theorem [6; 14, 16-19; 23; 26]: if Lyapunov function V (x) 

is given in the form of a vector-function V (x), then 

according to geometric interpretation of the second 

Lyapunov method the components of the velocity vector 

are equal to [20-22, 25] 
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From (8a) the components of the gradient vector 

of the Lyapunov vector function can be found in the form: 
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Finding the Components of the Velocity Vector 
From (9) the expansion of velocity vector 

components in the coordinates can be represented as 

follows: 
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Finding the Common Time Derivative of the Lyapunov 

Function 

Common time derivative of the Lyapunov vector-

function V (x), with considering the state equation (3) can 

be defined as the scalar product of the gradient vector 

from the Lyapunov vector-function and the velocity 

vector, i.e., 
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Construction the Lyapunov Vector-Function 
It is obvious from (10) that the total time 

derivatives of the vector-function V(x) are negative. 

Components of Lyapunov vector-function can be found 

from gradient-vector. Lyapunov function in the scalar 

form can be written as [6; 8; 14, 16-19; 23; 26]: 
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Finding Conditions for the Positive Definiteness of the 

Lyapunov Function, if the Gradient Vector is Negative 

The conditions of positive definiteness of the 

function (11) are determined by the inequalities: 
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Thus, the area of system stability (3) for the 

steady state (5) is determined by the system of inequalities 

(12). 

 

INVESTIGATION THE CONTROL SYSTEM FOR 

STABILITY IN STATIONARY STATES 2 AND 3 

Develop a similar algorithm for investigating the 

stability of the stationary states (7-8) based on the method 

of Lyapunov functions. 

The formally described expansion [15] can be 

represented in the form 

 

...
24

1

6

1

2

1
)()(

43

2


















































xxxx
xxxx

F
xxx

xxx

F

xx
xx

F
x

x

F
XFxXF

ss

ss

XX

XX

ss

           

(13) 

 

The values of the derivatives in the stationary 

states 
sX are determined as 
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Describing the Control System for Relatively 

Stationary States 

Equations of state (3) in the deviations with 

respect to the stationary states 2

Sx  and 3

Sx  (7-8) can be 

determined as 

 
























nnnnnnnn

nn

nn

nnnnnnnn

nn

nn

xkbaxk
b

a
bxbxaxax

xaxkbaxk
b

a
bxbxax

xaxaxkbaxk
b

a
bxbx

)(3...

...)(3

...)(3

23

2211

2222222

2

22

22

22
22

3

2221212

1212111111

2

11

11

11
11

3

1111









(14) 

 

The Components of the Gradient Vector 

To study the stability of the system in stationary 

states (7-8), based on the geometric interpretation, from 

equation (14) the components of the Lyapunov vector-

function V(x)=(V1(x),…,Vn(x)) should be determined: 
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The Components of the Velocity Vector 

From the state equation (14), the expansion of the 

components of the velocity vector in coordinates is 

obtained in the form 
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The Total Time Derivative of the Lyapunov Function 

Full time derivative of the Lyapunov function V 

(x), given the state equations in deviations (14) relative to 

the stationary states (7-8) is defined as the scalar product  
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The function (15) is negative, i.e. a sufficient 

stability condition will permanently be satisfied. 

 

Lyapunov Vector-Function 
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The function (16) at the origin is zero, is a 

continuously differentiable function and has as variables 

the terms with odd powers. Therefore, on the basis of 

Morse lemma [8, 11, 15], the function (16) around 

stationary states can be represented in the quadratic form 
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Finding Conditions for the Positive Definiteness of the 

Lyapunov Function 

Hence, the positive definiteness of the Lyapunov 

function is determined by the inequality 

 

niiiiiiii aaakba  ...)( 21
, ;,...,1 ni     (17) 

 

Thus, the control system built in the class of 

single-parameter structurally stable maps, is stable 

indefinitely in wide limits changes of uncertain parameters 

of the control object ).,...,1( niai   The stationary state 1

Sx  

(5) exists and is stable when the indeterminate parameters 

of the object change in the region (12), and the stationary 

states 2

Sx  and 3

Sx  (7-8) appear when the stability of the 

state 1

Sx  (5) is lost and they do not exist simultaneously. 

The stationary states 2

Sx  and 3

Sx are stable when the 

system of inequalities (17) is satisfied. 

 

CASE STUDY 

 

Construction Aircraft Landing Control System in the 

Class of “Fold” Catastrophe 

According to the developed technique, the 

stability of the aircraft landing control system constructed 

in the class of single-parameter structurally stable maps 

[7-8] by the Lyapunov function method [14, 16-20; 23, 26] 

is investigated. 

On the considering the aircraft landing system, 

the following variables are represented as state variables: 

x1 - the height, x2 - the rate of change in altitude, x3 - the 

pitch angle, and x4 - the angular velocity of the pitch, these 

variables can be easily measured with a radio altimeter and 

hydro sensors. The dynamics of the aircraft is 

characterized by the equations [26]: 
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in equation (1), δ (t) characterizes the deviation of the 
elevator, and the coefficients of the state variables are 

[26]: 
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00 ,,, TK   – coefficient of damping of short-period 

oscillations, amplification coefficient of short-period 

oscillations, resonance frequency of oscillations, trajectory 

time constant, respectively. These parameters depend on 

the aircraft structure. In the study it’s assumed that 

sec5.2sec;/1;sec95.0;5.0 00

1  
TradK 

To examine the system for stability, the control law is 

chosen in the form of single-parameter structurally stable 

maps [14, 16-20; 23, 26]: 
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In the expanded form, the equation of state (18) is 

written 
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Investigate the stability of the system (20), 

constructed in the class of single-parameter structurally 

stable maps, according to the developed method [16-19]. 

System’s steady states are determined as: 
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From (21) the stationary states of system (20) can 

be found as: 
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Other stationary states of system (20) will be determined 

by solving equations
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For 

negative 
1k )0<( 1k , 

2k )0<( 2k , 
3k )0<( 3k и

4k )0<( 4k  this 

equation has an false solution, which cannot correspond to 

any physically possible situation. For 
1k )0( 1 k , 
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)0( 2 k , 
3k )0( 3 k и

4k )0( 4 k  the equation admits the 

following stationary states  
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The states (23) and (24) for system (21) merge 

with (22) at the value of the parameters 

0 0,0, 0, 4321  kkkk  and branch off from it 

at 0> 0,>0,> 0,> 4321 kkkk  

 

Investigation of the Stability of the System in the Zero 

Stationary State 

To research the robust stability of the stationary 

states (22), (23) and (24), the basic propositions of the 

developed Lyapunov function method are used, here the 

components of the gradient vector can be given as: 
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The total time derivative of the Lyapunov scalar 

function can be written 
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The total time derivative of the Lyapunov 

function is a negative function. The components of the 

Lyapunov vector-function can be obtained in the form  
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The Lyapunov function in the scalar form can be 

represented in the form 
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The stability conditions for the zero stationary 

state (22) are obtained with allowance for the negative 

definiteness of the function (25), from the condition of 

positive definiteness of the function (26), the stability 

condition can be found as: 
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Stability of the Control System in a Stationary State 

(23-24) 

Observe the stability of the stationary states (23-

24) and for this equation the state of the aircraft landing 

process (21) is written in the deviations with respect to the 

stationary state (23-24): 
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The components of the gradient vector from the 

components of the Lyapunov vector-function are 

represented as 
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The expansion of the components of the velocity 

vector in coordinates is obtained in the form 
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The total time derivative of the Lyapunov vector-

function is found in the form  
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The total derivative (28) of the Lyapunov vector-

function is a negative function. 

Using the gradient, Lyapunov functions can be 

created 
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According to the Morse lemma, the function (29) 

can be replaced by the quadratic form 
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The condition for the positive definiteness of the 

functions (29) is obtained in the form 
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(31) 

 

It follows from (31) that the stationary states (23-

24) will be asymptotically stable. 

Thus, the control system for linear aircraft 

landing processes, constructed in the class of single-

parameter structurally stable maps, the "fold" catastrophe, 

shows that the control system stable in a limited range of 

parameters becomes stable, i.e. the system has no 

restrictions on changing the parameters. 

The stationary state (22) is globally 

asymptotically stable when the conditions (27) are 

satisfied and unstable if these conditions are violated, and 

for the stability of the stationary states (23) and (24) under 

conditions (31). Forkp, branching occurs and new stable 

branches appear. 

In other words, branches (23), (24) appear as a 

result of a bifurcation at the moment when the stationary 

state (22) loses stability, and these branches themselves 

are stable. The stationary states (22), (23) and (24) do not 

exist simultaneously. This allows to increase the robust 

stability potential of the system under conditions of 

uncertainty of parameters. 

 

Table-1. Parameters of the aircraft landing process 

control system. 
 𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝟒 𝒌𝒑  

-0.9 1 -2 -0.2 -2.375 

-0.9 0.5 -5 -1 -2.375 

 

  
 

Figure-1. Results of simulations. 

 

Table-2. Parameters of the aircraft landing process 

control system. 
 𝒌𝟏 𝒌𝟐 𝒌𝟑 𝒌𝟒 𝒌𝒑 

0.9 -1 -48 -0.2 -2.375 

0.9 -0.5 -47.5 -1 -2.375 

 

  
 

Figure-2. Results of simulations. 

 

The aircraft landing control system, built in the 

fold catastrophe, is stable over a wide range of changes in 

the uncertain parameters of the control object. The 

stationary state (22) exists and is stable when the 

parameters of the system in the region (27) change, and 

the stationary states (23-24) appear when the state (22) 

becomes unstable, and they do not exist simultaneously. 

Stationary states (23-24) are stable when the system of 

inequalities (31) is fulfilled, which excludes the regime of 

deterministic chaos and instability during aircraft landing, 

which manifest themselves in the form of vibrations, 

instability and accidents. 

 

CONCLUSIONS 

The study presents the analysis and synthesis of a 

dynamic control system for the landing of an aircraft, a 

control law is introduced in the form of one-parameter 

structurally stable mappings. The considered method of 

constructing the Lyapunov function makes it possible to 

determine the limits of the stability of the system. 

Numerical experiments demonstrate the presence of 

asymptotic stability of the aircraft landing control system. 
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