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ABSTRACT 

In this work, a frequency domain method based on the Transfer Function Analyzer (TFA) technique to identify 

the yaw movement of an unmanned aerial vehicle (UAV) helicopter was presented. This study's contribution was to use a 

variable sample time instead of the traditional fixed sample time. The Transfer Function Analyzer identification was 

compared with an identification method using CIFER (Comprehensive Identification from Frequency Responses), a 

commercially available tool designed for aircraft identification. The two results were quite close for the two experiments. 
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1. INTRODUCTION 

System identification is a general term used to 

describe mathematical tools and algorithms that build 

dynamical models from measured data. Frequency domain 

experimental data are common in many applications, 

especially in application areas where experimental data of 

a process with unknown dynamics can be taken relatively 

cheaply. The excitation of the process with periodic 

signals (e.g., sinusoids) is an attractive way of extracting 

accurate information of the process dynamics from 

experiments. Due to the commercial availability of 

frequency analyzers that can handle large amounts of data 

by special-purpose hardware, the experimental 

determination of frequency response of dynamic systems 

has increased interest in application areas as the modeling 

of mechanical servo systems [1-4]. 

Identification based on frequency domain data 

has some advantages when compared to the “classical” 
time-domain approach. An overview of the advantages of 

identification based on frequency response data compared 

to time-domain approach is given in [5]. 

The formulation of an identification criterion in 

the frequency domain can be useful, especially in those 

situations where the application of the model dictates a 

performance evaluation in terms of frequency domain 

properties. This latter situation often occurs when the 

identified models are used as a basis for model-based 

control design. On the other hand, it should be worried 

that any frequency domain data is obtained by some data 

handling/processing mechanism that starts with time-

domain data. This situation is a reason not to overestimate 

the difference between time-domain and frequency-

domain identification; see, e.g., [1]. 

The conventional way of formulating an 

identification problem in the frequency domain is by 

assuming the availability of the exact frequency response 

of the (unknown) linear system, disturbed by some 

additive noise. Many identification methods exist for this 

situation, mostly dealing with the least-squares criteria [6], 

[7]. Recently subspace algorithms also have been analyzed 

for frequency domain identification [8]. Many more 

references and techniques can be found in [9]. 

A related approach to the problem based on the 

discrete Fourier transforms of input and output data in [1] 

shows a close similitude of results with the standard time-

domain approach.  

Frequency response analysis (FRA) is a very well 

established system identification method [9]. The 

technique has remained over other techniques simply 

because it is so simple, flexible, and robust. For example, 

the use of frequency response methods to measure the 

response of systems while under closed-loop control has 

been established for many years. Whereas closed-loop 

estimation using other methods of identification takes 

much longer to catch up and even require expert 

knowledge to apply them. The same is true of nonlinear 

systems and systems where the input or output signals are 

noise corrupted. FRA methods deal with such issues 

routinely while alternative methods need specialized 

experience. 

The present study aimed to use a frequency 

domain method based on the Transfer Function Analyzer 

technique applied for the identification of the yaw 

movement of a UAV helicopter (rotation in a plane 

parallel to the surface of the Earth). Yaw movement is 

achieved by making the two rotors of the helicopter spin at 

different angular rates, which will result in a torque on the 

body of the helicopter. Two DC motors drive the rotors. In 

a recent study, a PID controller was applied for the yaw 

movement of the coaxial helicopter in [10]. 

 

2. MATERIALS AND METHODS 

 

2.1 Yaw Movement in an Unmanned Aerial Vehicle  

The information used for this work was taken 

from the thesis [11] in which they used an identification 

method provided by CIFER, a commercially available tool 

designed for aircraft identification. We focused just on the 

identification part to compare those results with our 

identification method using TFA. 
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The application presented in this work is a UAV 

platform based on a commercially available coaxial 

helicopter shown in Figure-1. 

 

 
 

Figure-1. Coaxial helicopter. 

 

2.2 Frequency Response Analysis 

Frequency response analysis is the technique 

where a sinusoidal test signal is used to measure points on 

the frequency response of a transfer function or impedance 

function. Figure-2 shows the scheme in which a sine wave

( )u t is applied to a system with transfer function ( )G s . 

After transients due to initial conditions have declined, the 

output ( )y t  will be a sine wave but with a different 

magnitude b and phase shift . 

 

 
 

Figure-2. Linear transfer function with sinusoidal input. 

 

Figure-3 depicts the input and output signals, 

where as:  

( ) sin( )u t a t and ( ) sin( )y t b t   ;
2

2 f
T

    

with 
1

f
T

 , the frequency in Hz. 

 

 
 

Figure-3. Sinusoidal input (up) and sinusoidal  

response (down). 

The magnitude and phase of the output ( )y t are 

related to the transfer function ( )G s at the frequency (ω 
rad/s) of the input sinusoid as: 

 

( )
b

G i
a

 is the gain at   

( )G i  is the phase at   

 

For several measurements of the gain and phase 

at various frequencies, a diagram of the system frequency 

response can be plotted either as a Nyquist diagram in the 

complex plane or a Bode diagram as shown in Figure-4. 

 

 
 

Figure-4. Frequency response diagrams, Nyquist (right) 

and Bode (left). 

 

2.3 General TFA Approach (One Sinusoidal Input) 

The relative phase and magnitude of the input and 

the output waveforms can be directly measured from an 

oscilloscope trace (Figure-3). However, this measurement 

has reduced accuracy, and more sophisticated methods are 

required to remove specific errors that occur due to noise 

and non-linearity. Signal corruption is due to external 

noise which infects the output measurements; thus the 

output ( )y t is: 

 

( ) sin( ) ( )y t b t n t   
                                               

(1) 

 

Where ( )n t represents the noise. 

Both the problems of non-linear distortion and 

noise corruption are overcome in the measurement scheme 

of Figure-5, in which the measured output ( )y t is first 

multiplied by sine and cosine respectively and then 

integrated. 
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Figure-5. TFA implementation. 

 

In Figure-5, the output ( )y t is first multiplied by a 

sine and cosine of the test frequency  then the result of 

the multiplications are integrated over
m

T seconds. 

Integrating for one period, we obtain: 

 

0
( ) ( )sin( )

mT

s m
y T y t t dt 

                                                    

(2) 

 

0 0
( ) sin( )sin( ) ( )sin( )

m mT T

s m
y T b t t dt n t t dt      

  
(3) 

 

We apply a product to sum formula for the 

quantity in the first integral: 

1
sin( )sin( ) [cos( ) cos(2 )]

2
t t t        

                

(4) 

 

We thus obtain: 

 

0 0 0
( ) cos cos(2 ) ( )sin( )

2 2

m m mT T T

s m

b b
y T t dt n t t dt             (5) 

 

0 0
( ) cos cos(2 ) ( )sin( )

2 2

m mT T

s m m

b b
y T T t dt n t t dt           (6) 

 

Analogously, 

 

0
( ) ( )cos( )

mT

c m
y T y t t dt 

                                                   

(7) 

 

0 0
( ) sin( )cos( ) ( ) cos( )

m mT T

c m
y T b t t dt n t t dt      

 

(8) 

 

We apply a product to sum formula for the 

quantity in the first integral: 

 

1
sin( )cos( ) [sin( ) sin(2 )]

2
t t t        

                 

(9) 

 

and thus obtain: 

 

0 0 0
( ) sin sin(2 ) ( )cos( )

2 2

m m mT T T

c m

b b
y T t dt n t t dt        

 

(10) 

 

0 0
( ) sin sin(2 ) ( )cos( )

2 2

m mT T

c m m

b b
y T T t dt n t t dt       

 
(11) 

 

As the averaging time increases, the contribution 

of all unwanted frequency components in ( )
s m

y T and 

( )
c m

y T go to zero. In practice, the averaging is conducted 

over a finite time interval
m

T , and it is necessary, that
m

T be 

made an integer multiple of the test frequency period. If 

one integrates on a multiple of half the period for a 

particular frequency, one can observe that the second term 

in equations (6) and (11) will be zero.  If we consider the 

integration time to be long enough, the noise will be 

filtered out (i.e., zero average). Thus, we can write: 

 

( ) cos
2

s m m

b
y T T                                                          (12) 

 

( ) sin
2

c m m

b
y T T                                                          (13) 

 

   From equations (12) and (13) we deduce that: 

 

2 22
( ) ( )

s m c m

m

b y T y T
T

                                              (14) 

 

( )
tan

( )

c m

s m

y T
a

y T
 

               

                                             (15) 

 

Plotting the b and values for a range of 

frequencies we can obtain a Bode diagram for the 

identified system. 

 

2.4 TFA Concept with a Chirp Signal 

As explained in section 2.2, several sinusoidal 

test signals at different frequencies are used to measure 

points on the frequency response of a transfer function. 

Now the approach is to obtain the response for the whole 

range of frequencies by sending just one identification 

signal. The frequency of this sinusoidal test signal should 

vary from a minimum frequency
0( )f  till a maximum 

frequency 
1( )f  in a specific time T . This signal is 

commonly named “Chirp signal”.  The sampling period of 

the signal will also vary according to frequency, to 

maintain the same sampling resolution for all frequencies. 

Then, we will use a fixed number of data points ( )
s

N to 

sample one period independently of the frequency. An 

example of the mentioned chirp signal is showed in 

Figure-6. 
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Figure-6. Chirp signal from 1 to 10 Hz in 5 seconds, 20 

points per period. 

 

In Figure-6, it is possible observe that each period 

is sampled with exactly 20 points. To processing the data, 

we will divide the chirp signal into fragments, which can 

be considered to have the same frequency. Each of these 

fragments will be used to obtain one point for gain and one 

point for the phase in the Bode diagram of the system. The 

scheme of the TFA discrete implementation is depicted in 

Figure-7. 

 

 
 

Figure-7. Scheme of the TFA discrete implementation. 

 

To the chirp generation se should consider that 

sin 2 sin 2 ( ) ( )
s

f t f t kT t      . We should choose al 

every moment t , a variable time step ( )
s

T t  such that 1 

period contains 
s

N  samples; so we must select ( )
s

T t such 

that 
1

( ) ( )
s

s

f t T t
N

  . 

The
s

N samples are then given by
2

sin( )
s

k

N


, with

0,1... 1
s

k N  . 

 

Consider that we choose to split the chirp signal 

into intervals of one period.  If we were to numerically 

apply equations (6) and (11) on the nth interval, we would 

obtain: 

 
1

( 1)

2
( ) ( )sin( ) ( )

s

s

N n

s s

k N n s

k
data n y k T k

N



 

 
                          

(16)  

1

( 1)

2
( ) ( )cos( ) ( )

s

s

N n

c s

k N n s

k
data n y k T k

N



 

 
                         

(17)             

 

( )
s

T k
 

represents the sampling time at the th
k  

sample in the  data  vector. ( )
s

T k
 
should respect the next 

relation: 

 

1
( )

( )
s

s

T k
N f k

       (18) 

 

Where ( )f k represents the frequency at the th
k

sample. The linear instantaneous frequency at the time t , 

can be found as: 

 

1 0

0

( )
( )

f f
f t f t

T


       (19) 

 

Considering we obtain one point in a Bode plot 

for each period on which we integrate, it makes sense to 

increase frequency exponentially with time, to get the 

same resolution (points per decade) for all frequency 

intervals in the plot. Therefore, frequency is calculated as: 

 

1 0

0

(log log )
log ( ) log

f f
f t f t

T


     (20) 

 

1

0 0

( )
log log

ff t t

f f T
      (21) 

 

1

0 0

( )
log log( )

t

T
ff t

f f
      (22) 

 

1

0

0

( ) ( )
t

T
f

f t f
f

       (23) 

 

3. RESULTS AND DISCUSSIONS 
 

3.1 Hypothetical Model of Yaw Rotation 

Let us regard the mechanical equation for the 

torque on the shaft of a motor (24) in the case of the 

helicopter: 

 

d
J B

dt

                                                                 (24) 

 

Where  the torque is generated by the DC 

engine on its shaft, J  is the moment of inertia of the 

rotating mass,  is the angular rate of the rotor and B is 

the viscous friction coefficient. 

The parameter J represents the moment of inertia 

of the rotors. The parameter B refers to the opposing force 

from the air, acting on the blades. This is the force 

responsible for the lift. In the other hand, it is well known 

0 1 2 3 4 5
-1

-0.5

0

0.5

1
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the following transfer function between torque and input 

voltage: 

 

2
( ) ( )

( )

t t

e t

JK s K B
s u s

s JL RJ BL s RB K K





   
                  (25) 

 

Where u  is the voltage input, L  is the 

inductance of the coil, 
e

K  is the constant which links the 

induced voltage with the angular rate of the rotor; it 

depends on the permanent magnets and the coils on the 

motor. 
t

K is the constant which links the current owing 

through the coils of the motor to the generated mechanical 

torque. 

To simplify the transfer function in equation 25, 

we could neglect the transient in the angular speed, . 

This would imply that the blades have no inertia, or 0J  . 

By making this assumption we obtain a new, simplified 

transfer function between  and u : 

 

( ) ( )

t

e t

K

Ls u s
K KR

s
L BL

 
 

                                              (26) 

 

Comparing to equation 25, we see that we have 

lost the zero, which would describe the peak in torque 

necessary to accelerate the blades. We have also lost a 

possible oscillatory variation in torque, which could have 

occurred because of energy shifting from the magnetic 

field of the coil to the kinetic energy of the blades and vice 

versa. Even so, the approximation seems reasonable, 

provided the transient of will have little effect compared 

to the lasting torque generated by the friction of the blades 

with the air. 

Given the above assumption that 0J  , we can 

write the torque equation for each rotor of the helicopter: 

 

top top
B                                                                      (27) 

 

bot bot
B                                                                      (28) 

 

The two rotors spin opposite each other, and to 

keep the body from rotating, the two torques should cancel 

each other out 1 2 0   . To make the body spin, but 

maintain the same lift, if the torque generated by one rotor 

increases, the other should decrease by the same amount. 

If  is the torque on the body of the helicopter and the two 

rotors change their torque with the same scalar amount 

(only in opposite sense), we can write: 

 

2
top bot
      

                                                       
(29) 

 

If we express  according to the transfer 

function 26 we can write: 

 

2

( ) ( )

t

e t

K

Ls u s
K KR

s
L BL

  
 

                                           (30) 

 

A PWM (Pulse-Width Modulation) signal in 

voltage controls the motors on the helicopter, and we now 

have a transfer function between and u . However, the 

signal sent to the helicopter by the remote control does not 

control the torque on the body of the helicopter, but its 

angular rate. This makes sense, since it would be 

cumbersome to control an angle by the angular 

acceleration. If we consider r to be the angular rate of the 

body of the helicopter,
h

J the moment of inertia of the 

body and 
h

B  to be the friction coefficient of the body with 

air we can write the torque equilibrium: 

 

h h

dr
J B r

dt
                                                                (31) 

 

Considering r is fairly small, we can neglect the 

air friction of the body and obtain: 

 

h

dr
J

dt
                                                                        (32) 

 

If we apply Laplace transformation, we obtain: 

 

1
( ) ( )

h

r s s
J s

                                                                (33) 

 

Substituting ( )s according to equation 30we 

obtain: 

 

2
1

( ) ( )

t

e t h

K

Lr s u s
K KR J s

s
L BL

 
 

                                    (34) 

 

The manufacturers of the helicopter use a 

gyroscope to measure r  and a closed-loop for its control. 

A hypothetical model of what is implemented in the mixer 

circuit of the helicopter is presented in Figure-8. What we 

intend to identify is the system between the input and 

output boxes in this figure. If we close the loop for the 

transfer function from equation (34) and add a gain K  for 

a proportional regulator, we will obtain: 

 

2

2

2
( )

t

h

e t t

h

K

LJ

K K KKR
s s

L BL LJ
  

                                            (35) 
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Figure-8. Hypothetical model of yaw control design. 

 

3.2 Identification Using CIFER 

The performance of frequency response methods 

can be enhanced by using powerful tools like CIFER. 

CIFER was developed by the Aero-flow dynamics 

Directorate (AFDD at Ames Research Center) in the 

1980s, specifically for rotorcraft applications. It represents 

an integrated facility for system identification based on the 

frequency-response approach. The identification method 

used by CIFER is schematically presented in Figure-9 

[12]. 

It consists of six analysis programs and a 

database for storing the input data time signals and the 

frequency response results. For this project, the CIFER 

Student Edition was used. The utilities used so far are 

FRESPID for determining the frequency response of the 

yaw channel. 

 

 
 

Figure-9. Frequency-domain system identification procedure (CIFER). 

 

3.3 Identification using TFA 

The control signal for the helicopter is PPM 

(Pulse Position Modulation), which is time-modulated. It 

takes around 12 ms to send a complete control frame. This 

is the most significant problem when applying the TFA 

method since it will be impossible to sample high-

frequency sine waves accurately. This limited the 

identification experiments until frequencies of around 5 

Hz. The lowest frequency chosen was 1Hz. The presented 

experiment was done for 20 seconds (sufficiently long to 

have a smooth passing between frequencies). The number 

of data points to each sample period was calculated from: 

 

0 1f Hz  

1 5f Hz  

20T s  

0.012
s

T s  

1

1

0.2
16.6

0.012
s

s

f s
N samples

T s
  

 
 

At the beginning of the identification chirp 

signal, a pure sine was added, with the frequency of the 

first frequency in the chirp signal, to avoid the transient 

effects in the chirp signal. The signal was then filtered to 

remove the high-frequency noise produced by the rotors. 

A10th
order low-pass Butterworth filter was used, with a 

cut-off frequency of 6 Hz. Due to its rotating masses, a 

helicopter is usually subject to intense vibration. If a rotor 

is slightly unbalanced or a rotor shaft is a bit tilted, 

vibrations will appear. The UAV helicopter makes no 

exception to this rule. Figure-10 shows the used signals for 

the experiments in the time domain. 
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Figure-10. Input chirp signal and output system response. 

 

The amplitude of the chirp signal varies from -0.2 

to +0.2 (-60°/s and +60°/s). These values represent the 

percent of the total range of the stick position, which has a 

total variation between -1 and 1, corresponding to an angular 

velocity of approximatively-300°/s and +300°/s, 

respectively. 

The frequency responses obtained using the TFA 

(green line) and CIFER (blue line) methods can be seen in 

Figure-11. The two results are quite close for the two 

methods, so a long time for the experiment is not needed. 

 

 
 

Figure-11. Bode rresponse obtained with TFA 

and CIFER. 

 

A resonance peak around 22 rad/sec corresponds to 

a frequency of around 3.5 Hz. After this frequency, the 

magnitude decreases. Because of the sampling time 

limitations, we cannot see what happens with the system at 

frequencies higher than 8 Hz, but we can assume that the 

system's magnitude will continue to decrease. 

The phase is continuously decreasing because of 

the dead time, mainly generated by the transmission delay. 

We can also conclude that the TFA method performs well. 

 

4. CONCLUSIONS 

The identification of the yaw movement of the 

helicopter was presented. The TFA identification was 

compared with an identification method using CIFER, a 

commercially available tool designed for aircraft 

identification. The two results are quite close for the two 

experiments. The phase was continually decreasing 

because of the dead time, mainly generated by the 

transmission delay.  

A frequency-domain identification based on the 

TFA technique was developed and tested. The novelty of 

the study was to use variable sample time in the chirp 

signal used as the input for the identification. The purpose 

of this variable sample time was to have the same number 

of samples per cycle for all ranges of frequencies of the 

chirp signal. Thus the sampling period was varying 

according to the frequency to maintain the same sampling 

resolution for all frequencies.  

The theoretical framework regarding the 

frequency response analysis was presented and followed 

by the practical implementation was widely explained. 

The TFA concept was used, considering as input just one 

identification signal called a chirp signal. 

Parameters designs to have an appropriate chirp 

signal were considered. Suitable design parameters 

guarantee the generation of a useful signal for the 

identification purpose and can lead to considerable 

advantages in the cost-benefit relation during the real tests. 
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