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ABSTRACT 

The planting and commercialization of coffee is an important source of economic resources and commercial 
dynamizer for many developing countries, particularly with economies that are strongly dependent on agricultural 
production, as is the case of Colombia. Coffee is the most important export product of the country and enjoys a high 
reputation for its quality and flavor. Although the country has done a lot of research to develop the sector, investment in 
technology is very low, and most of its cultivation for export (of the highest quality) is done by small coffee families 
without a high degree of technology, and without major resources to access it. The quality of the coffee bean is strongly 
sensitive to various diseases induced by environmental conditions, fungi, bacteria, and insects, which directly and strongly 
affects the economic income of the entire production chain and the country. In many cases the diseases are rapidly 
transmitted, causing great economic losses. A quick and reliable diagnosis would have an immediate effect on reducing 
losses, which is why the development of a low-cost embedded system capable of making reliable diagnoses in the hands of 
peasant farmers is proposed. In this article, we propose the development of a software model capable of identifying in real-
time the possible disease of a plant from an image of a leaf. For this, we use a DenseNet convolutional neural network 
trained with 1250 images corresponding to five categories that include the most important diseases of the plant. Laboratory 
tests show that the proposed model is capable of operating on a low-cost embedded system with a high-performance rate 
by correctly categorizing the plant's leaves against an unknown set. 
 
Keywords: cercospora coffeicola, convolutional neural network, coffee leaf miner, coffee leaf rust, deep neural network, densenet, 
image processing, phoma leaf spot. 
 
1. INTRODUCTION 

Colombian coffee enjoys great importance in the 
international markets, not only because it is one of the 
countries with the highest production and exportation, but 
also because Colombian coffee has characteristics that 
make it stand out, such as its excellent quality and its soft 
flavor [1]. The importance of coffee is so great that it has 
been the main source of foreign exchange for the country 
with 5.3 of the Gross Domestic Product (GDP) and with a 
production of one million fifty thousand sacks by January 
2020. However, its cultivation is mainly carried out by 
low-income coffee families, with very little access to 
technologies that help reduce the effect of the plagues that 
affect the plant [2, 3]. While real-time image processing 
can be computationally expensive [4, 5], a low-cost 
artificial system reduces costs for damage and care of the 
plant because farming families can access these tools at 
low cost and use them to reduce the spread of disease and 
artificial intelligence strategies can increase crop 
performance if they are made accessible to people with 
modest education and purchasing power [6, 7]. 

The production and conservation of quality coffee 
are very difficult for small producers [8]. In Colombia, 
only Arabic coffees are cultivated, which differ from the 
Canephora coffees (Robusta coffees) because they are 
soft, and of greater acceptance in the world market. The 
harvest is mostly done by small coffee-growing families of 
medium and low profile. Some plagues attack and make 
the plant sick, reducing the production and affecting the 
quality and flavor [9, 10]. These problems have increased 
considerably in the last decades worldwide, which has 
affected quality and quantity indicators [11]. Among the 

most important pests that affect the coffee plant are Coffee 
Leaf Rust (CLR) [12, 13, 14], the Coffee Borer Beetle 
(Hypothenemus Hampei) [15], the Coffee Leaf Miner 
(Leucoptera Coffeella) [15], the Citrus Mealybug 
(Planococcus Citri), the Coffee Stem, and Root Borer 
(Plagiohammus Colombiensis), and the red spider. Also of 
importance are the Iron Spot (Cercospora Coffeicola) 
[16], the Lint Disease (Corticium Koleroga), the Cock’s 
Eye (Mycena Citricolor) [17, 18], and the Anthracnose 
(Colletotrichum Coffeanum) [19]. The varieties of Arabic 
found in Colombia are Tipica (susceptible to CLR), 
Borbón, Maragogipe, Tabi (resistant to CLR), Caturra 
(susceptible to CLR), and Colombia variety (resistant to 
CLR). 

Another important factor that negatively affects 
the cultivation of coffee, and that favors the propagation of 
plagues and their diseases, is related to the climatic 
variations of the planting areas [20, 21]. These climatic 
variations in addition to affecting the growth of the plants 
tend to increase the aggressiveness of the pests [22]. It has 
been observed that height affects the intensity of CLR 
aggression, which is greater in the lower areas with higher 
temperatures [23, 24]. 

Prevention and timely diagnosis are essential to 
stop the advance of pests [25]. Identifying pests at an early 
stage of infection greatly increases the chances of 
successful treatment. There are methods for determining 
the diseases of any plant, such as taking samples of 
vegetative tissue to a specialized laboratory or bringing an 
expert agronomist to the crop site. In any of these cases, 
the disadvantages for the farmer are centered on the time 
needed to obtain the results and the costs involved. This is 
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why the design of autonomous systems using artificial 
vision and pattern recognition techniques, as well as some 
classification algorithms, has been considered for the 
development of preliminary diagnostic tasks [26, 27, 28]. 
In this way, the coffee grower can identify the possible 
disease, its propagation, and with experts and specialists 
coordinate more quickly and with less cost the correct 
treatment [29, 30]. 

Several of the diseases and plagues that are 
threatening the cultivation of coffee also produce visually 
detectable effects [5]. The visible effects have been 
studied as possible indicators of their presence, thanks to 
the fact that they present specific characteristics [31]. 
Among these specific characteristics are abnormal 
coloring of the leaves, deformation of the leaves, and signs 
of dehydration. These particular characteristics can be 
used for the process of diagnosis of the disease, or in the 
opposite case, to diagnose the plant as healthy. RLC is 
considered by many to be the most severe disease of the 
coffee crop since it causes the premature fall of the leaves, 
leading to the death of the plant. The disease has caused 
great production losses in countries in Asia, Africa, and 
the Americas. Once the disease appears and establishes 
itself in a place, it has not been possible to eradicate it, 
despite multiple strategies implemented by the producing 
families [32]. It is characterized by pale spots on the 
underside of the leaves that over time become large yellow 
or orange spots with the presence of a yellow powder (the 
spores of the fungus) [33]. 

In the case of the Cock’s Eye disease (Mycena 

Citricolor), small circular or oval spots are observed, 
slightly sunken, with a diameter of 6-10 mm on the leaves 
[17, 18]. The lesions start as dark brown spots with an 
undefined border, which when reaching their final size 
present a well-marked border, with little or no chlorosis 
around them, and can be light brown, grayish, or reddish-
brown, with a papery and dry appearance. 

Iron Spot (Cercospora Coffeicola) is another 
important disease that attacks coffee cultivation. It is 
caused by a fungus that affects the plant in various stages, 
beginning in the nursery [16]. It is visually characterized 
by brown spots with a yellowish halo that contrasts with 
the normal leaf tissue. As the disease progresses, the size 
of the spot increases, causing the tissue to die. The most 
serious damage occurs to the fruit, but also affects the 
leaves. It is transmitted by the fungus Cercospora 

Coffeicola, and its spot is particularly prevalent in the 
nursery and on unshaded coffee plantations. In the fruits 
the infection starts through wounds or exposure to the sun 
forming lesions similar to those on the leaves, but which 
eventually stop being circular to become elongated and 
dark. 

Each disease produces characteristic damage to 
the plant. These damages visually generate geometrical 
and colorimetric parameters that can be identified through 
digital image processing [34, 35]. One of the most 
powerful strategies for image categorization is the 
convolutional neural networks, which have demonstrated 
to have a very high capacity to identify information in 
unknown images after training with categorized cases [36, 

37]. Therefore, it is possible to use a neural model to 
design an embedded, autonomous, and low-cost system 
capable of identifying in real-time diseases of the coffee 
plant leaves [38]. 
 
2. PROBLEM FORMULATION 

This research seeks to develop an autonomous 
model, based on deep neural networks, for the 
identification of diseases in the coffee plant from color 
images of the plant's leaves. The intention is that the 
neuronal model can be implemented on a low-cost 
embedded system, which is why the tool must have a low 
computational requirement (both in processing and storage 
hardware) that allows it to run in real-time on a small 
development board. These restrictions are imposed as a 
condition for its possible massification among family 
coffee growers. 

To design the model, the most frequent diseases 
that cause the most damage to the plant and coffee 
production were selected. For these images, we used 
public databases categorized by experts in the plant [39]. 
We used 1250 images with a size of each of 2048x1024 
pixels, corresponding to Arabica coffee leaves separated 
into five categories, each category with 250 images. The 
number of images in each category was kept the same 
(250) to avoid bias in the model. The label for each of the 
categories is taken from the name of the folder containing 
the images of the category (Figure-1). The first category 
(category 1) corresponds to healthy leaves, the other four 
categories correspond to leaves affected by four common 
plant diseases (each leaf has only one of the diseases): 
Coffee Leaf Miner (CLM, category 2), Coffee Leaf Rust 
(CLR, category 3), Phoma Leaf Spot (Phoma Tarda, 
category 4), and Iron Spot (Cercospora Coffeicola, 
category 5). Figures 2 to 6 show the detail of the images in 
each of the categories. 
 

 
 

Figure-1. Dataset and labels for each category used for 
training and model validation. 

 
The leaves are framed in the figure horizontally, 

regardless of the orientation of the petiole (sometimes to 
the right and sometimes to the left). Before training the 
model, the images will be pre-processed using 
segmentation and labeling filters to remove the 
background of the image and keep only the leaf. Color 
adjustment filters will also be used to enhance the images. 
In this way, we seek to ensure that each image has the 
visual information that a human expert would identify. 
The same processing is applied to the images used in the 
training as well as those used for model validation. 
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Figure-2. Sample of the images corresponding to category 
1: healthy leaves. 

 

 
 

Figure-3. Sample of the images corresponding to category 
2: Coffee Leaf Miner (CLM). 

 
The use of a DenseNet (Dense Convolutional 

Network) type convolutional neural network is proposed 
as a deep learning architecture. Convolutional neural 
networks have convolution layers (convolution filters) that 
have the effect of filtering the image with a previously 
trained kernel capable of detecting primitive features such 
as lines or curves. Over several layers, the neural network 
learns to identify these features along with the training 
dataset. The DenseNet architecture stands out among 
convolutional topologies because of its dense structure that 
leads to a lower number of adjustable parameters 
compared to other networks such as ResNet (Residual 
Neural Network), with equal or superior performance. 
This characteristic is achieved thanks to its design; the 
topology of the network contemplates short connections 
from the previous layers which have been observed to 
increase its accuracy. Figure-7 shows a section of a 
DenseNet network where the jumps between layers are 
detailed. 
 

 
 
Figure-4. Sample of the images corresponding to category 

3: Coffee Leaf Rust (CLR). 
 

 
 

Figure-5. Sample of the images corresponding to category 
4: Phoma Leaf Spot (Phoma Tarda). 

 
The secret of this model lies in its dense 

connection structure, thanks to which it achieves a 
considerable reduction in the number of parameters to be 
adjusted while increasing its categorization capacity 
compared to other topologies such as ResNet (Residual 
Neural Network). In a convolutional neural network, 
different convolution layers are applied to the image to 
identify high-level features, in the DenseNet network this 
is taken a step further, each layer of the network receives 
additional inputs from the previous layers, and at the same 
time sends outputs to the subsequent layers of the network. 
Consequently, it can be said that each layer of a DenseNet 
receives the accumulated knowledge from the previous 
layers. 
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Figure-6. Sample of the images corresponding to category 
5: Iron Spot (Cercospora Coffeicola). 

 

 
 

Figure-7. Densely Connected Convolutional Network 
(DenseNet) architecture. 

 
3. MATERIALS AND METHODS 

We selected Arrow Electronics' DragonBoard 
410c development board as the platform to evaluate the 
performance of our neural model as an embedded system. 
We chose this board for both cost and performance. This 
board has a Qualcomm APQ8016e 64-bit quad-core 
processor, Wi-Fi, Bluetooth, and GPS connectivity, and 
support for Windows 10 IoT Core, Android 5.1, and 
Debian 8.0. To evaluate the performance of our model, we 
use Keras 2.4.3 and Tensorflow 2.3.0 installed above 
Linux Debian OS. Additionally, we used numpy 1.18.5, 
scipy 1.4.1, scikit-learn 0.22.2, Pillow 7.0.0, glob2 0.7, 
matplotlib 3.2.2, cv2 4.1.2.30, seaborn 0.11.0, and pandas 
1.1.2. 

The images in the dataset were filtered to remove 
the background, center the leaf on the image, and improve 
its color level. Also, they were randomly mixed within the 
stack to improve the performance of the network. To 
facilitate training and reduce resource consumption, the 
images were scaled to 224x224 pixels in RGB format 
(default image size in DenseNet121 architecture, Figure-
8). Although the aspect ratio of the images was altered, 
this does not alter the visual information related to the 
images, but it does facilitate the design of the neural 
network. 
 

 
 

Figure-8. Image of the dataset after segmentation, 
labeling, filtering and scaling. 

 
For neural network training, the color matrices of 

the images, which make up the input parameters, were 
normalized to color depths in the range of zero to one. 
Besides, the 1250 images were randomly separated into 
two groups, the first group with 80% of the images (1000 
images) for neural network training, and a second group 
with the remaining 20% (250 images) for model validation 
purposes. For the design of the network structure, the size 
of the input images is taken into account, 224*224*3 = 
150,528, which defines the total number of input nodes. 
The number of output nodes is defined by the number of 
network categories, which in our case are five categories, 
so five output nodes. In the output, a one-hot coding 
structure was defined to define these five output 
categories. The neural network has a depth of 121 layers 
(DenseNet121), which corresponds to one of the standard 
topologies of the DenseNet network. The network has a 
total of 7,042,629 parameters, of which 6,958,981 were 
adjusted during training (Figure-9). These layers are 
distributed in a 5+(6+12+24+16)*2=121 structure, where 
5 is (convolutional, pooling) + 3 transition layers + 
classification layer. Multiplication by 2 is done because 
each dense block has two layers (1x1 convolutional and 
3x3 convolutional). 
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Figure-9. Detail of network parameters and structure 
of its last layers. 

 
As optimization function in the model, we use the 

stochastic gradient descent function. In the optimization 
we use as error measure the categorical cross-entropy 
function. During the training, we calculated in each epoch 
the values of accuracy (or hit rate) and MSE (mean 
quadratic errors) metrics to observe the performance of the 
network throughout the training. The final model was 
trained over 30 epochs with a batch size of 32. Throughout 
the training, the accuracy increased from 59.6% to 94.9% 
for the training data. The final accuracy for the validation 
data was 72.0%. 
 
4. RESULTS AND DISCUSSIONS 

Figure-10 shows the behavior of the trained 
model. The error produced by the training data is 
continuously reduced during the 30 epochs. An equivalent 
behavior is observed in the accuracy of the training data, 
which increases continuously throughout the training 
process. The behavior of the validation data is not so 
uniform, but an overall reduction of the error is observed 
at the end of the training process (1.9 to 0.4). Despite this, 
the accuracy of the validation data does have a uniform 
behavior, increasing continuously throughout the training 
process. The results show that it is possible to further 
increase the performance of the model by final tuning. It is 
also clear that the model is viable for the classification of 
coffee leaves. 
 

 
 

Figure-10. Model behavior based on training and 
validation data. 

 
The confusion matrix provides a quick image of 

the model's classification capability. We calculate the 
confusion matrix for our model using the images from the 
validation group (unknown images for the model) and 
assign a heatmap with light colors for the highest number 
of true positives, and dark colors for the opposite cases 
(Figure-11). The diagonal of the curve clearly shows that 
the model correctly classifies most of the unknown 
images. For example, for the healthy leaves' category, 41 
of the images were correctly classified in the first 
category. However, the color of category 3 (CLR) is very 
dark (only 23 images out of 51 were correctly sorted). 
 

 
 

Figure-11. Confusion matrix. 
 

To evaluate the performance of the model in a 
specific way, we calculate the accuracy, recall, f1-score, 
and support metrics for each of the categories with the 
validation images (the 250 unknown images for the model, 
Figure-12). The average accuracy of the model 
(percentage of correct positive predictions among all 
positive predictions) was 74%, with an exceptional 
classification of diseased leaves with Iron Spot (88% 
accuracy) and healthy leaves (80% accuracy). However, 
the classification of diseased leaves with Coffee Leaf 
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Miner was considerably low (58% accuracy). The values 
of recall, f1-score, and support show similar results to 
those shown by the accuracy, in the case of recall 
(percentage of correct positive predictions among all 
positive predictions that could have been made) some 
measure of the wrong positive predictions is presented, in 
this case, the average value drops a little to 72%, which is 
very similar to the accuracy value, but the recall for the 
leaves that are sick with Iron Spot drops to 60%, and the 
value for the leaves that are sick with Coffee Leaf Miner 
goes up to 85%, that is, it is much more wrong in the first 
case than in the second. The f1-score corresponds to the 
harmonic mean of accuracy and recall, so the above peaks 
are averaged out at 71%. 
 

 
 

Figure-12. Model metrics. 
 

We also calculated the ROC curve (Receiver 
Operating Characteristic) of the neural model (Figures 13 
and 14). This curve graphically shows the sensitivity of 
the model (ratio of true positives to the ratio of false 
positives) to variations in the discrimination threshold 
between categories. In this sense, high average values 
(0.93) and high values per category (0.86 to 0.95) of true 
positives versus false positives are observed. 
 

 
 

Figure-13. ROC curve (average behavior). 
 

 
 

Figure-14. ROC curve (behavior by class). 
 
5. CONCLUSIONS 

In this article, we present the design and tuning of 
a classification model based on convolutional neural 
networks for the rapid and low-cost classification of 
diseases in the coffee plant leaf. Coffee is an export 
product of great importance for the Colombian economy, 
as well as for other tropical countries such as Brazil, 
Vietnam, Indonesia, Uganda, Mexico, and Peru. Despite 
this, its cultivation is largely developed by small coffee-
growing families with little access to modern technologies. 
This constitutes a great weakness of the economic model 
since diseases in the plants can be late or incorrectly 
diagnosed, which facilitates the propagation of the disease, 
and therefore the reduction in quality and quantity of the 
product. Eradication costs, along with reduced sales and 
export revenues, strongly affect the production chain and 
the country's income. As an alternative to support coffee 
growers in the early diagnosis of common diseases, the 
development of an autonomous low-cost system that can 
be used directly by the farmer and that allows the 
categorization of the disease of a plant from the 
photograph of the leaves is proposed. For the design of the 
classification model, we selected four high impact diseases 
for this crop: Coffee Leaf Miner (CLM), Coffee Leaf Rust 
(CLR), Phoma Leaf Spot (Phoma Tarda), and Iron Spot 
(Cercospora Coffeicola). Healthy leaves were also 
assigned a category. These diseases produce visible 
damage in the coffee leaf that can be identified and 
classified by image processing. In this sense, we selected a 
deep neural network type DenseNet (Dense Convolutional 
Network) to identify and learn the characteristics of the 
leaves and their diseases. This neural network was selected 
due to its high performance and lower number of 
parameters compared to other topologies such as ResNet. 
The architecture of the DenseNet network was adjusted for 
input images of 224x224 pixels in RGB format, 121 layers 
of depth (DenseNet121), and five output categories. The 
database was made up of 250 images in each category, and 
80% of them were used for training (1000 images) and 
20% for model validation. The training was carried out 
over 30 epochs taking care not to over-adjust the network. 
To fine-tune the parameters, the error was evaluated using 
the categorical cross-entropy function, and optimized 
using the stochastic gradient descent function. The final 
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accuracy achieved by the model was 94.9% for the 
training data and 74% for the validation data (images 
unknown to the model). This model was implemented on a 
DragonBoard 410c from Arrow Electronics, running a 
Debian OS. Preliminary results show low resource 
consumption, low cost, and acceptable performance for 
real-world implementation. 
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