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ABSTRACT 

Antenna with Non-uniform linear array is sophisticated for the reconfigurable antenna setup. This paper deals 
with the DOA estimation of signals with non-uniform linear array setup adopting the sparse representation based 
implementation. A Mixed basis vector based sparse representation is adopted in this paper to predict the DOA estimation. 
MATLAB based implementation is carried out for the DOA estimation for non-uniform linear array setup and estimation 
accuracy is analyzed for the proposed work. Estimation accuracy is found from different waveforms generated from the 
results which involve graphs like Signal to Noise Ratio versus Mean Square Error. The results thus obtained are compared 
with the traditional methods to validate the performance of the results obtained from the proposed method. 
 
Keywords: mixed basis vector, direction of arrival, sparse representation, non-uniform linear array. 
 
INTRODUCTION 

The concept of smart antennas inspired by the 
fact that it can automatically detect the signal direction 
from the source that falls on the sensor which is usually 
the Uniform Linear Array (ULA) of antennas. The signal 
direction also known as Direction of Arrival (DOA) 
estimation without miscalculating the interference as the 
signal of interest, and detecting the DOA for the noise and 
other correlation issues in finding the signal direction. The 
accurate DOA estimation and novel methods to obtain this 
higher efficient DOA estimation is an important milestone 
to be obtained after continuous research on this topic. The 
signal processing algorithms decide the performance 
efficiency of the smart antenna in DOA estimation   
methods. Sparse representation is a new stream of signal 
processing algorithm that gives accurate DOA estimation 
implementation in the antenna arrays.  

Important term meant for the DOA estimation is 
the target sparsity which is the ability of the algorithm to 
approximate the source using the basis vectors. This is 
also called as basis pursuit. The implementation involves 
creation of the manifold matrix which is the combination 
of the basis vector that would create the dictionary of 
signals that get represented with signal under study for it 
can be able to find the direction of the signal falling on the 
antenna. 

The manifold matrix also known as the sparse 
matrix is the main component of the sparse representation 
implementation since the way this matrix varies depends 
how better the basis pursuit can occur. The following 
details would discuss about the basics of sparse 
representation and its applications in various fields of 
engineering. Representation of the higher dimensional data 
into effective and compressed way is a challenge which is 
a fast-growing research area in signal processing 
paradigm. The term for the above said representation is 
called Spare Representation that combines the elementary 
components called as atoms to develop the signal models 
that are chosen from the dictionary. The dictionary is the 
set of all such combinations of vectors. Source Separation, 

signal denoising, compressed sensing and signal recovery 
are few applications where Sparse Representation 
implementation is carried out. A deeper study of finding 
the over complete dictionaries and the best ‘bases’ for 
sparse representation is being investigated to adapt it to the 
signal under study. Compressed Sensing is one such 
application that got revolutionized due to the sparse 
representation technique. The sub sampling at very low 
rates that is evident in compressed sensing is advantageous 
to the conventional sampling method. The random 
projections that depict the dimensionality reduction on the 
signals conveys the sparsity of the algorithm. The 
assumptions that are meant for sparsity, if properly 
designed, is enough for the recovery of the signal with 
lesser error. Both sampling and compression comprises of 
the compressed sensing implementation. The fullest 
potential of this compressed sensing algorithm is not yet 
reached considering the amount of research work carried 
out with Sparse Representation. Although DOA estimation 
using sparse representation is researched by many 
researchers in the recent literatures publications the 
complete sparsity level is not utilized. Sparse 
representation is applied in applications including source 
separation in audio processing applications and other 
learning-based applications. 
 
LITERATURE SURVEY  

Orthogonal projection of the steering vector on 
both noise and the source subspace attributes to the 
knowledge that the noise and the source subspace are 
orthogonal components. This orthogonal concept is used 
in MUSIC algorithm that infers that the noise subspace 
does not contribute to the DOA estimation. The literature 
involves a novel noise subspace called the proper noise 
subspace for the MUSIC based DOA estimation 
algorithm. To attain it the oblique projector is used. The 
oblique projector projects the steering vector on the proper 
noise subspace along the signal subspace unlike the 
traditional MUSIC algorithm. The efficiency of the 
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algorithm is found to be satisfactory for the DOA 
estimation [1]. 

The ability of the MIMO radar system to provide 
higher spatial resolution can be exploited to obtain a better 
performance for target detection. The ability to estimate 
the DOA estimation parameter is improved significantly in 
the MIMO radar paradigm in the literature. Impulsive 
noise is introduced in the implementation which 
incorporates robust covariation (ROC). Normalisation 
using the fractional lower order moment (FLOM), 
fractional lower order cyclic (FLOC) is adopted. The 
narrow band mono static MIMO radar signals both at 
transmitted and received arrays is close to each other. A 
modified MUSIC algorithm that uses the Eigen structure 
for DOA estimation is carried out. Among the four 
methods involved in DOA estimation the concept of 
similar normalization performed better. The computational 
complexity of the algorithm in the literature needs 
improvement in the computational complexity [2]. 

L shaped antenna array are converted to two sub 
arrays and two 1D DOA estimation is carried out to obtain 
the DOA estimation in traditional estimation methods. A 
pair matching approach is developed in the literature that 
finds the matched 1D-DOAs from the covariance matrices 
obtained. Objective function that is defined using the two 
source covariance matrix is used to obtain the optimal pair 
matching by permutating matrix. This pair matching 
algorithm showed satisfactory results for all scenarios 
including deficient snapshot, coherent and uncorrelated 
signal, signals with lesser SNR. The obtained angle pairs 
from the cost function minimization exploit the signal 
covariance matrices [3]. 

The multisensory array setup with non-stationary 
signals is sampled sparsely in the literature. Time-
frequency signal representation (TFSR) using Sparse 
representation is used for DOA estimation.  The kernelled 
processing in the sparse representation implementation 
makes the signal DOA estimation possible since 
traditional time frequency analysis creates artifacts due to 
data that are missing. This is a group sparse reconstruction 
problem since multiple signals are denoted in the same 
time frequency region. The spatial time frequency 
distribution (STFD) matrix formed using both the auto and 
cross sensor TFSR to obtain the advanced MUSIC 
algorithm. DOA estimation from the STF MUSIC 
algorithm exhibited good discrimination capability [4]. 

The literature incorporates discrete Fourier 
transform (DFT) - (ESPRIT) for TOA and DOA 
estimation. The computational complexity involved in the 
MUSIC and ESPRIT algorithm in vehicle frequency 
modulated continuous-wave (FMCW) radars reckons an 
alternate algorithm that can detect TOA and DOA in real 
time. The location tasks that is involved in finding the 
targets from the vehicle radar needs high speed detection 
algorithms. The DFT-ESPRIT algorithm for TOA and 
DOA estimation with multitarget environment is 
compared with the Monte-carlo simulation with AWGN 
channels [5]. 

Advanced Signal ratio estimate from radar with 
unknown input signal SNR is carried out in this literature. 

The two unresolved targets detection is carried out using 
the maximum likelihood angle extractor for DOA 
estimation. The simulation implementation of the method 
is implemented using the prior information on SNR [6]. 

Space Alternating Generalized Expectation 
(SAGE) Maximization algorithms for DOA and Angular 
Spread (AS) is utilized in the literature. The angular 
spread of the wave which is incident due to scattering, 
reflection and diffraction needs to be considered while 
estimating DOA. DOA Matrix method and SAGE method 
id combined to obtain the DOA estimation and the AS 
respectively. The estimation performance is improved 
using the Stochastic Local Search (SLS) algorithms [7]. 

DOAs obtained from the sparse recovery 
implementation does not need the sampling grid. Instead a 
basis is required which is a off grid problem.  But the issue 
faced in the off grid estimation is that it develops a large 
basis. A sparse matrix or a offset matrix is developed by 
remodeling the basis.  The DOA estimation from the offset 
matrix which compensates the off grid problem is 
developed in the literature. This method shows better 
effectiveness in DOA estimation since the in spatial 
domain each spectrum of the input signal is sparse by 
itself. The joint estimation of both sparse matrix and the 
DOA is found to be performing efficiently [8]. 

The spatial observation matrix incorporated in the 
sparse representation based DOA estimation algorithms 
are larger while larger array scale and wide angular range 
is used. This increases the computational complexity in the 
sparse representation based implementation.  Literature 
introduces the separable sparse representation (SSR) based 
DOA estimation to reduce the computational complexity. 
SSR (Separable sparse representation) DOA algorithm is 
said to be working efficiently for the high resolution 
implementation [9]. 

Exploiting the sparsity of the signals in spatial 
domain DOA estimation a novel method is used. The 
method works while the dynamics of sensor’s gain and 
uncertainties in phase of the signal is considered. One 
existing finding on uncertainty matrix is it is a sparse 
matrix since it only is diagonal. Phase and gain 
uncertainties are estimated by using the sparse property of 
the uncertainty matrix. Iterative process with one step 
estimating the DOA and the second step estimating the 
gain and phase uncertainties is applied and find that the 
effectiveness to be satisfactory. 

Although the algorithm is off grid in nature and is 
able to estimate DOA by solving the two step iterative 
process, improvement of robustness is still a challenge 
[10]. 

Antenna arrays arranged in circular or concentric 
circular arrangement is considered for DOA estimation 
with MUSIC algorithm in the literature considered. The 
probabilities of occurrence in spatial spectrum false peaks 
in various geometries of the array and with different noise 
environments are simulated. It is observed that greater the 
aperture lesser the probability of false peak occurrence 
[11]. 

A real valued signal that is received is split into 
real and imaginary array and are combined to form a 
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sampling vector with twice the number of elements. The 
extended dimension MUSIC(ED-MUSIC) algorithm 
developed in the literature improved the estimation 
accuracy. The algorithm is capable of estimating DOA for 
2M-1 sources if M array elements are used. ED-MUSIC 
algorithm is equivalent to applying MUSIC with double 
the number of elements and also the Degree of Freedom 
[12]. 

AS of the incoming signal due to the scattering, 
diffraction and reflection of the signal needs to be 
considered while DOA estimation is carried out. The 
linear array for DOA estimation is converted to planar 
array which combine both the AS and DOA. Estimation 
errors due to the overlapping error needs to be removed by 
implementing SLS algorithm [13]. 

Literature applies DOA on the Phase Monopulse 
antenna used for radar communication with RF multiplier 
integrated planar topology.   DOA estimation is carried out 
using the ratio of sum and difference of the signals from 
two antennas. Unlike the traditional methods where half 
angle space can be estimated, the proposed method 
increases the range of estimation employing RF multiplier 
[14]. 

Decoupled matrix for DOA estimation using the 
Rank-reduction (RARE) methods reduces its performance 
as the number of elements starts reducing in the UCA. The 
approach that revises the beam space data while rank 
reduction implementation using the MUSIC algorithm in 
the Uniform Circular Array (UCA) is developed in the 
literature.  The approach estimates with better 
performance for both equal and unequal power signals 
with both the directional antennas and omni-directional 
antennas in the UCAs [15]. 

DOA estimation in Unmanned Aerial Vehicle 
(UAV) by generating a suitable steering vector is 
developed in the literature. Estimation algorithm is 
approached while the input signals experience equal power 
and uncorrelated and with different angles. First the 
steering vector suitable for UAV is developed and 
theoretical and practical DOA estimation while mutual 
coupling occurs is incorporated. Results obtained from the 
simulation is satisfactory by developing a mutual coupling 
matrix (MCM) to estimate DOA [16]. 
Modified ESPRIT algorithm that exploits the Multi 
Invariance (MI) property of the signal is proposed for the 
DOA estimation of the signal. Received signal is 
represented as the time-frequency data model which 
facilitates the MI property from the signal. Frequency and 
temporal variations from the ULA sub arrays are extracted 
to obtain the spatial distribution matrix. MI-ESPRIT 
algorithm thus developed from the chirp signal input 
estimates the DOA with different SNR and snapshot 
numbers. As a future improvement in the algorithm fast 
algorithms are applied that reduces the computational 
burden [17]. 

Support Vector Regression (SVR) based DOA 
estimation is simulated on signals with tailed noise 
modeled using the Laplacian Distribution in the literature. 
SVR based approach outperformed both MUSIC and 

ESPRIT based algorithm with improved estimation 
accuracy and better computational time [18]. 

Literature introduces the Continuous Compressed 
Sensing based combined estimation of Doppler frequency 
and DOA.  This method adopts the atomic norm 
minimization technique to generate the sparse virtual 
aperture along with the spatial-temporal co-array to 
recover the signals. The sparse recovery from the coprime 
arrays and the coprime samplers which recover the full 
virtual array aperture is utilized. The virtual aperture is 
fully recovered without discretization which indirectly 
increases the computation due to dense grid.  Thus a 
search free method is adopted with unitary ESPRIT for the 
joint estimation in the literature [19]. 

Multi Task -Bayesian Compressive Sensing (MT-
BCS) is utilized to find the DOA for multiple signals 
received on the linear array. Spectral correlation from the 
signal acquired with different frequency helps in 
estimating signal bandwidths. Bayesian Compressed 
Sensing method proposed in the literature has given better 
results in the estimation accuracy point of view [20]. 

DOA estimation introduces new challenges while 
implemented on the ULA while end-fire direction targets 
are to be estimated and underwater target detection is 
carried out.  To engage the challenge, the literature 
introduces the A-shaped antenna array for the wideband 
signal.  Minimum Variance Distortionless Response 
(MVDR) based algorithm is developed using two ULAs 
which is distributed with specific angle. Spatial Spectrum 
for the sub bands are obtained from the two sub arrays. 
Location of spectral peak is followed by the spatial 
spectrum development. The A-shaped array thus 
developed outperforms the traditional ULAs in efficient 
DOA estimation. Lower beam width, robustness to lower 
SNR are few advantages of adopting the A shaped array 
[21]. 

DOA and Direction of Departure (DOD) 
estimation for the non-stationary signals is achieved using 
ambiguity function based algorithm in the literature for the 
radar signals. Joint DOA and DOD estimation starts with 
generation of the spatial time-frequency distribution 
(STFD) matrix. Multidimensional spectrum peak 
searching algorithm is avoided by using the ESPRIT-Root 
MUSIC algorithm. Extraction of the auto term and 
nullifying the noise term is efficient in the ambiguity 
algorithm compared to the pseudo Wigner-Ville 
distribution [22]. 

Wave velocity variation in the received signal 
affects the efficiency of the DOA estimation. A velocity 
independent DOA estimation is carried out using the 
modified MUSIC algorithm with L-shaped antenna array. 
The imprecise wave velocity issue is removed by using the 
L shaped antenna array [23]. 

Algorithm proposed in the literature reduces the 
two dimensional search space to the single dimensional 
search the reduced dimension MUSIC algorithm is 
introduced for DOA estimation that reduces the 
computational cost to larger extent. Although the 
computational cost is less the performance of the 
algorithm is near to the 2D MUSIC algorithms [24]. 
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Spatial Smoothing technique is used to adopt the 
MUSIC algorithm for coherent signal DOA estimation in 
linear arrays. Smoothed signal after decorrelation is 
applied with MUSIC algorithm. The comparison with the 
MUSIC and ESPRIT algorithm found that ESPRIT 
algorithm required lesser computational time [25]. 

Joint DOD and DOA estimation is carried out 
using the MIMO MUSIC algorithm in the referred 
publication. Gibbs sampling is applied on the signal to 
facilitate joint DOA DOD estimation. Markov Monte 
Carlo algorithm is combined with the MIMO MUSIC 
algorithm to estimate the DOA.  Although the joint DOA 
DOD estimation provided the same DOA estimation as the 
MIMO MUSIC, the computational complexity is low [26]. 

Underwater acoustic sources will suffer from low 
SNR ratio, and lesser data snapshot. The algorithm 
involved created a unit circle which is mapped with the 
response beamformer formed by minimum variance 
distortion within the selected angular sector. This 
circularly mapped beamformer is then calculated for 
pseudo spatial spectrum. Even with lower SNR and few 
number of snapshots the algorithm delivered sharper DOA 
estimation in the long-distance underwater acoustic 
sources environment [27]. 

Both DOA and polarization is tracked by the 
Electromagnetic (EM) vector sensor arrays. The capability 
of crossed-dipole linear arrays, to track only two 
polarization parameters and one DOA parameter reckons 
newer algorithms. The literature adopts a algorithm where 
dimensionality reduction is applied after reconfiguring 
This problem could be solved by extending the geometry 
to a two dimensional (2-D) rectangular array so that both 
the azimuth and elevation angles figuring the crossed 
dipole linear arrays to a linear tri pole array. Instead of the 
4D estimation problem it is converter to two 2-D 
estimation problem. Maintaining the effectiveness of 
estimation, computational complexity is also reduced [28]. 

In case more sources than the array elements need 
to be adopted in the implementation, a subspace based 
DOA estimation is introduced in the literature. Coprime 
array is developed by generating the Toeplitz matrix 
which does not need the number of sources for spatial 
spectrum calculation. The problem of computational cost 
needs to be solved even though the accuracy is found to be 
satisfactory [29] 

DOA estimation for coherent signals with 
MUSIC algorithm developed in the literature. An antenna 
array is adopted and reconfigured into two non-coherent 
sub arrays. The DOA estimation with this configuration of 
sub array failed for two coherent signals. Thus the 8 
element ULA (two 4-element sub arrays) based DOA 
estimation is used to solve the incoherency problem. 
Computational complexity is higher [30]. 

DOA estimation is considered as a Basis Pursuit 
De-Noisisng (BPDN) problem in the literature. Interior 
Point method (IPM) usually adopted in the BPDN method 
is replaced with the Alternating Direction Method of 
Multipliers (ADMM). The purpose is to eliminate the 
higher computational complexity that is inherent in the 
IPM method. Considering the real time implementation of 

the DOA, ADMM is introduced that splits the iterative 
procedure to smaller pieces, thus reducing the 
computational complexity [31]. 

This paper adopts the Mixedbasis vector based 
DOA estimation and results are detailed. 

Since the research is based on Basis Pursuit 
DeNoising (BPDN) based sparse representation DOA 
estimation methods an introduction about this method is 
introduced. The advancement in the existing DOA 
estimation algorithm in Sparse representation paradigm is 
applied and compared with the traditional method 
discussed in the previous chapter. The BPDN based DOA 
estimation algorithm thus developed in the existing 
literature is advanced with the Hybrid basis vector and 
Mixed Basis vector based implementation. 
 
Signal Model 

Omnidirectional antennas with M elements are 
placed in a non-uniform linear array which is located at 
different distances [0,d1,….dM-1] , which denotes distance 
between the reference location and different antennas. 
This distance is the integral multiples of half the 
wavelength. Improvement of convergence in any sparse 
representation problem is improved by increasing the 
Degree of Freedom (DOF). DOF considered in the 
omnidirectional antenna array is the difference co-array as 
discussed in [30]. The difference co-array is defined as 
 𝛺 = {𝑑𝑚1 − 𝑑𝑚2}𝑚1=0,1,……𝑀−1;𝑚2=0,1,….𝑀−1 

 
For M antennas 𝛺 provides more DOFs.Considering that 
N far-filed sources uncorrelated in nature is falling on M 
antennas. The narrow band sources is defined by 𝑆𝑛(𝑡), 𝑘 = 1,2, … , 𝑁 which impinges on antenna arrays. 
The proposed implementation calculates the DOA 
estimation with spatially white Gaussian noises as the 
channel for all the M antennas denoted by 𝑛𝑚(𝑡), 𝑚 =0,1, … . , 𝑀 − 1.  T snapshots of the signal with noise is 
defined as, 
 
x(t)=As(t)+n(t)                                    (1)  
 

Array received vector x(t), signal from the 
transmitting source  s(t) and the noise in the channel n(t)  
for the 𝑡𝑡ℎsnapshot is denoted in equation (1). The steering 
vectors of all the N sources are consolidated in the 
manifold matrix A. 
A=[a(𝜃1), 𝑎(𝜃2),⋅] ⋅⋅⋅, 𝑎(𝜃𝑁)] 

Where the steering vector a(𝜃𝑛), n=1,2,⋅⋅⋅,N, 
corresponding to the 𝑛𝑡ℎ incident signal is defined as  

a(𝜃𝑛) = [1, 𝑣(𝑑1,𝜃𝑛),⋅⋅⋅, 𝑣(𝑑𝑀−1,𝜃𝑛)]𝑇, phase component 𝑣(𝑑, 𝜃) is defined as v(dm, 𝜃) = 𝑒𝑥𝑝 [−𝑗2𝜋 (𝑑𝑚𝜆 ) 𝑠𝑖𝑛𝜃], 
and {·}T  denotes the transpose. It is considered that the 
signal and the noise are uncorrelated and thus the 
covariance matrix is formulated as defined in equation (2). 
 
Rx=E{x(t)xH(t)}=Adiag (σ1

2, σ2
2,⋅⋅⋅, σN

2)AH+ σn
2IM,       (2) 
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The uncorrelation between the source and the 
noise is denoted in equation (2) by introducing multiple 
variances σ1

2, σ2
2,….,σN

2 corresponding to N sources. 
Expectation E{·} for the component x(t)xH(t) defines the 
covariance matrix. The identity matrix IM with size M Х 
M. Vectorizing the equation (2) as described in [91] 
creates the virtual array from the covariance matrix. The 
vectorization involves Khatri Roa (KR) product in the 
equation (3). 
 
Y=vec(Rx)=vec(ARsA

H)+ σn
2vec(I)=(A*⊛ 𝐴)g+ σn

2IM    (3) 
 

In equation (3) KR product ⊛, conjugate 
transpose{·}H ,g=[ σ1

2, σ2
2,⋅⋅⋅, σN

2]T denotes source 
variance vector, 1m=[e1

1,e2
T,⋅⋅⋅,eM

T]T with emvector being 
zeros excluding the 𝑚𝑡ℎ entry which is 1. 𝐴=(A*⊛A), is 
the virtual array manifold matrix. The virtual manifold 
matrix  𝐴 with N virtual steering vectors 𝑎(𝜃𝑛) =𝑎∗(𝜃𝑛)⨂𝑎(𝜃𝑛), n=1,2,⋅⋅⋅,N, where ⨂ indicates the 
Kronecker product. Distinct entries of a*(𝜃)⨂𝑎(𝜃) 
increases the DOF of the DOA estimation problem. The 
provided data is the sample covariance matrix while in 
reality defined as 𝑅̂𝑥 = ∑ 𝑋(𝑡)𝑋𝐻(𝑡)/𝑇𝑇𝑡=1 . As the 
incident signals are defined as circularly symmetric 
Gaussian distribution a asymptotic complex gaussion 
distribution results as the residual error of covariance 
matrix as defined in [92]. The residual error is defined in 
equation (4),  
 𝑌̂ − 𝑌 = 𝑣𝑒𝑐(𝑅̂𝑥) − 𝑣𝑒𝑐(𝑅𝑥)~𝐶𝑁 (0, 1𝑇 𝑅𝑥𝑇⨂𝑅𝑥).    (4) 

 
Let 𝑅̃𝑥 = 𝑅𝑥𝑇⨂𝑅𝑥/𝑇, and by using(3) equation 

(4) is transformed  to be 
 𝑌̂~𝐶𝑁(𝐴𝑔 + 𝜎𝑛21𝑀, 𝑅̃𝑥)                                                  (5) 
 

Equation (5) defines the BPDN formulation for 
DOA estimation. The sparse solution space is identified in 
the sample grid represented as 𝛩 = {𝜃1, 𝜃2,⋅⋅⋅, 𝜃𝑁}. The 
sample grid or the sparse solutions space spans range of all 
possible incident directions of the signal. Thus the 
equation (5) is converted to the following equation, 
 𝑌̂~𝐶𝑁(𝛷𝑤 + 𝜎𝑛21𝑀, 𝑅̃𝑥)       (6) 

Matrix  𝛷  acts as the overcomplete dictionary of 
the DOA estimation problem. All the direction in the grid 𝛩 is utilized in 𝛷  and acts as the basis vector for matrix𝐴. 
The non negative sparse matrix w contains ones where 
actual DOA is present and zeros in all other positions. 𝑁being the non-negative Gaussian distribution defined in 
[93]. 
 
The Basis Vector 

Since the components of the  𝛷 matrix [please 
explain some example matrix ]is similar to the basis vector 
as discussed in the term basis vector is introduced in the 
research and also the variations in the reference basis 
vector is created in the Sparse Bayesian learning technique 

discussed .The performance evaluation while applying 
DOA estimation using the NNSBL methods with Mixed 
basisvector and while multiple basis vectors are used is 
carried out . 

Similar to the eigen decomposition utilized in the 
traditional algorithms a symmetric positive definite basis 
vector can act as the infinite Eigen function. The basis 
vector is defined as 𝑘(𝑥, 𝑥′) = ∑ 𝜆𝑖𝑒𝑖(𝑥)𝑒𝑖(𝑥′)∞𝑖=1  with < 𝑒𝑖(𝑥), 𝑒𝑖(𝑥) >𝐻𝑥= 𝛿𝑖−𝑖′, where 𝛿𝑖 denotes the 
kronecker’s delta using the weighted Eigen functions 𝜙𝑖(𝑥) ≔ √𝜆𝑖𝑒𝑖(𝑥),   𝑖𝜖𝑅∞ such that 𝜙𝑖 = 𝜙𝑖(𝑥), 𝑖𝜖𝑁.  The 
mapping of the basis vector in the search space in 𝑅∞, 
since for two points 𝑥, 𝑥′𝜖𝑋,  
 𝑘(𝑥, 𝑥′) = ∑ 𝜙𝑖(𝑥)𝜙𝑖(𝑥′)∞𝑖=1 ≔ 𝜙𝑇(𝑥)𝜙(𝑥′).                (7) 
 

This inner product interpolation is the basis for 
the basis vector. 
 
SPARSE BAYESIAN MODELLING 

In non-negative Sparse Bayesian Learning 
(NNSBL) discussed in w needs to be considered as 
nonnegative. Due to that consideration even the BPDN 
problem is considered as the real valued problem 
incorporating the positive source variance. It is discussed 
in that if the incident signals follow a circular-symmetric 
Gaussian pattern the positive source variance is converted 
to Gaussian distribution with real values. Thus equation 
(6) is rewritten as equation (8). 
 

P(𝑦̂|𝑤, 𝜎𝑛2) = 𝑁(𝛷̃𝑤, 𝑅),                                                 (8) 
 
Where 𝑦̃(𝜎𝑛2) = [𝑅𝑒(𝑦̂𝑇) − 𝜎𝑛2 ∙ 1𝑀𝑇 , 𝐼𝑚(𝑦̂𝑇)]𝑇, 𝛷̃ =[𝑅𝑒(𝛷)𝑇 , 𝐼𝑚(𝛷)𝑇]𝑇  and 𝑅 = 12 [𝑅𝑒(𝑅̃𝑥) − 𝐼𝑚(𝑅̃𝑥); 𝐼𝑚(𝑅̃𝑥)𝑅𝑒(𝑅̃𝑥)] 
 
Traditional SBL uses 𝑙1-norm as the objective for sparse 
learning problem. NNSBL uses the Laplacian prior 
distribution in place of 𝑙1-norm.The prior distribution is 
defined in equation (9) 
 

P(w|𝜆)=
𝜆𝑁2𝑁 𝑒𝑥𝑝 (−𝜆 ∥ 𝑤 ∥1)                                             (9) 

Equation (9) is rewritten considering that w is a 
nonnegative vector and given in (10).  
 𝑝(𝜆) = 𝜆𝑁𝑒𝑥𝑝 (−𝜆 ∑ 𝑤𝑖𝑁𝑖=1 ), 𝑤𝑖 ≥ 0, i=1,2,⋅⋅⋅,N         (10) 
 

Bayesian framework starts with the prior 
distribution. The solutions for the sparse problem starts 
with this prior and develops a posterior distribution.  As 
discussed in if the prior distribution that is defined in 
equation (10) does not appear to be conjugate of the 
conditional distribution of the observed data the 
hierarchical nonnegative Laplace prior is developed.   The 
hierarchical prior model with first stage is as given in the 
equation (11).  
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𝑝(𝛾) = ∏ 𝑁+(0, 𝛾)𝑁𝑖=1 ,                                                   (11) 
 

Gaussian Probability Density Function (PDF) 
with zero mean is defined as 𝑁+(0, 𝛾) = 2 𝑁(0, 𝛾), 𝑤𝑖 ≥ 0 . 

Allowing the hyper parameter 𝛾𝑖 in equation (11) 
to be the one which creates the sparsity in the solution is 
the idea in SBL. A hyperprior is built such that the w is 
ensured with a heavy tailed distribution in the equation 
(12).  
 𝑝(𝜆) = ∏ 𝜆2𝑁𝑖=1 𝑒𝑥𝑝 𝑒𝑥𝑝 (− 𝜆𝛾𝑖2 ) 𝛾𝑖 ≥ 0, 𝜆 ≥ 0, 𝑖 =1,2, … . , 𝑁                                                                       (12) 
 

A generalized inverse Gaussian (GIG) PDF 
function with its integrable property and modified second 

kind Bessel Function 𝐾1/2(𝑧) = √𝜋/2𝑒−𝑧𝑧−1/2,z>0, the 

prior function is indicated as follows: 
 𝑝(𝜆) = ∫ 𝑝(𝛾)𝑝(𝜆)𝑑𝜆=∏ ∫ 2(2𝜋𝛾𝑖)−1/2∞0𝑁𝑖=1 𝑒−𝑤𝑖2/(2𝛾𝑖) ⋅(𝜆/2)   𝑒−𝜆𝛾𝑖/2 𝑑𝛾𝑖 = 𝜆𝑁/2 𝑒𝑥𝑝 𝑒𝑥𝑝(−𝜆𝑁/2 ∑ 𝑤𝑖𝑁𝑖=1 ), 𝑤𝑖 ≥0,1,2, … , 𝑁,                                                                    (13) 
 

The marginal prior of the w is defined as a 
laplace distribution while the hyper prior for the hyper 
parameter 𝜆 is given as a gamma Distribution. 
 𝑃(𝜆; 𝑣) = 𝛤(𝜆|𝑣, 𝑣)                                                       (14) 
 

Definition of the Gamma Probability Distribution 
Function is given as 𝛤(𝑎, 𝑏) = 𝑏𝑎𝜆𝑎−1 𝑒𝑥𝑝 𝑒𝑥𝑝(−𝑏𝜆)/𝛤(𝑎). Where V is the hyperparameter V which defines the 
set of constant values v 0, called as the Jeffrey’s hyper 
prior. Another prior for the variance value 𝜎𝑛2, is 
considered as a noninformative distribution to complete 
the Bayesian Model. 
 𝑝(𝜎𝑛2) ∝ 1,    𝜎𝑛2 > 0                                                      (15) 
 

All the distributions defined for different 
variables and hyper parameters are combined to obtain a 
joint PDF to form the Bayesian model combining equation 
(7),(10),(11),(13) and (14)  as defined in equation (16). p(w, γ, λ, σn2 , ŷ) = p(w, σn2)P(w|γ)p(γ|λ)p(λ)p(σn2).  (16) 
 

With the developed Bayesian model the Bayesian 
inference and the solutions are obtained to estimate the 
DOA of the given signal. 
 
BAYESIAN INFERENCE  

Once the Bayesian model is ready with all the 
priors combined the posterior has to be obtained in order 
to infer from the signal. The posterior PDF for the 
Bayesian model is defined in (16) is as defined in equation 
(17). 
 𝑝(𝑦̂) = 𝑝(𝑤, 𝛾, 𝜆, 𝜎𝑛2, 𝑦̂)/𝑝(𝑦̂)    (17) 
 

The equation (17) has the denominator that can’t 
be calculated analytically a approximation is applied to 
find the solution. 

Thus a Expectation Maximization algorithm is 
adopted to find the solution. Variable w is unknown and 
the objective is to maximize the expectation defined  𝐸{𝑙𝑜𝑔 𝑙𝑜𝑔𝑝(𝑤, 𝛾, 𝜆, 𝜎𝑛2, 𝑦̂)} with variation in the posterior 
of w. It is found that the posterior distribution of w is 
nonnegative in nature by combining (8) and (11).  
 𝑝(𝑦̂, 𝛾, 𝜎𝑖2) = 𝑁+(𝜇, ∑) = 𝑁(𝑤|𝜇,∑)∫ 𝑁(𝑤|𝜇,∑)𝑑𝑤𝑤≽0 𝑤 ≽ 0           (18) 

 
with parameters 
 𝜇 = ∑𝛷̃𝑇𝑅−1𝑦̃(𝜎𝑛2), ∑  = (𝛷̃𝑇𝑅−1𝛷̃ + 𝛤−1)−1

,           (19) 
 

Element wise greater than or equal is denoted as ≽ and 𝛤 = 𝑑𝑖𝑎𝑔{𝛾1, 𝛾2,⋅⋅⋅, 𝛾𝑁} 
The terms that are independent to 𝛾𝑖 ,i=1,2,⋅⋅⋅,N  is 

ignored to update the value of hyperparameter  𝛾𝑖. The 
complete posterior prior in𝑙𝑜𝑔 𝑙𝑜𝑔𝑝(𝑤, 𝛾, 𝜆, 𝜎𝑛2, 𝑦̂) will 
ignore  𝛾𝑖 and thus the maximizing problem is converted 
to 𝐸𝑝(𝑤|𝑦̂,𝛾,𝜎𝑛2){𝑙𝑜𝑔 𝑙𝑜𝑔𝑝(𝛾) +𝑙𝑜𝑔 𝑙𝑜𝑔𝑝(𝜆)}, which leads 

to 
 𝛾𝑖 = −1/2(2𝜆) + √1/(4𝜆^2) + 〈𝑤𝑖2〉/𝜆,                    (20) 
 

Where 〈𝑤𝑖2〉 = 𝐸𝑝(𝑤|𝑦̂,𝛾,𝜎𝑛2){𝑤𝑖2} denotes the 

second moment of wiby𝑃(𝑤|𝑦̂, 𝛾, 𝜎𝑛2) 

The hyperparameter 𝜆 update is obtained by 
maximizing the equation 𝐸𝑝(𝑤|𝑦̂,𝛾,𝜎𝑛2){𝑙𝑜𝑔 𝑙𝑜𝑔 𝑝(𝜆) +𝑙𝑜𝑔 𝑙𝑜𝑔𝑝(𝜆)} with respect 

to 𝜆,which gives  
 𝜆 = (𝑁 − 1 + 𝑣)/(∑ 𝛾𝑖/2𝑁𝑖=1 + 𝑣)                                (21) 
 

Similar to the hyper parameter update the non 
negative variance 𝜎𝑛2 is updated ny maximizing 𝐸𝑝(𝑤|𝑦̂,𝛾,𝜎𝑛2){𝑙𝑜𝑔 𝑙𝑜𝑔𝑝(𝑦̂|𝑤, 𝜎𝑛2)}with respect to 𝜎𝑛2which 

result in 
 𝜎𝑛2 = {𝛼0 =1𝑀𝑇 (𝑣1 − 𝑉2)/(1𝑀𝑇 𝑅𝑒(𝑅̃𝑥−1)1𝑀),       𝑤ℎ𝑒𝑛 𝛼_0 >0          𝑢𝑛𝑐ℎ𝑎𝑛𝑔𝑒𝑑,     𝑊ℎ𝑒𝑛 𝛼0 ≤ 0,                           (22) 
Where  𝑣1 = 𝑅𝑒(𝑅̃𝑥−1)(𝑅𝑒(𝑦̂) − 𝑅𝑒(𝛷〈𝑤〉), 𝑣2 =𝐼𝑚(𝑅̂𝑥−1)(𝐼𝑚(𝑦̂) − 𝐼𝑚(𝛷)〈𝑤〉), 〈𝑤𝑖〉 =𝐸𝑝(𝑦̂,𝛾,𝜎𝑛2){𝑤𝑖}and𝑅̃𝑥−1 can be simplified 𝑅̃𝑥−1 =𝑇(𝑅𝑥−1 ⊗ 𝑅𝑥−1). 

As the solution procedure involves the 
variable 𝑤𝑖and 𝑤𝑖2, the different proposition discussed in 
the following: 

Proposition 1:  first and the second moments of 
the posterior distribution defined in (18) is as shown in 
equation (23), as discussed in [94] 
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〈wi〉 = μi + σiie μi22σii2
√π2erfc(− μi√2σii) ,        〈wi2〉 = σii2 + μi2 +

μiσiie− μi22σii2
√π2erfc(− μi√2σii),                                                                  (23) 

 

Parameter  𝜇𝑖 = 𝜇[𝑖], 𝜎𝑖𝑖 = √∑ [𝑖, 𝑖] , and the 

complementary error function  𝑒𝑟𝑓𝑐(𝑥) = 2 ∫ 𝑒−𝑡2∞𝑥 𝑑𝑡/ √𝜋 . The concept is that when the complementary error 

function tends to zero 𝑒𝑟𝑓𝑐(𝜇𝑖/(√2𝜎𝑖𝑖)) → 0, then   〈𝑤𝑖〉 → 0 and 〈𝑤𝑖2〉 → 𝜎𝑖𝑖2. Values of〈𝑤𝑖〉 and 〈𝑤𝑖2〉  varies 

that fits inside the limiting condition, − 𝜇𝑖√2𝜎𝑖𝑖 ≥ 10 . 
Considering  〈𝑤𝑖〉 = 0 and 〈𝑤𝑖2〉 = 𝜎𝑖𝑖2 in the algorithm the 
sparse learning problem is carried out. The algorithm thus 
used is relevant for both the uniform linear array and the 
sparse arrays. But the algorithm is better suited for the 
sparse array.The consideration that the incident signals 
must be uncorrelated makes it unsuitable for coherent 
signals. And for uniform array many algorithms are 
available that solves the DOA estimation. Since it is a 
sparse array even if more sources are there compared to 
the number of antenna elements it can resolve; thus is 
particularly suitable for this underdetermined condition. It 
can be observed in the simulation and results chapter that 
the algorithm can handle partly correlated source but with 
degradation in performance. Higher computational burden 
lies while matrix inversion in equation (19) is determined .  
While 𝑀2 < 𝑁 , the Woodbury matrix identity reduce the 

computational burden:∑ = 𝛤 − 𝛤𝛷̃𝑇(𝑅 + 𝛷̃𝛤𝛷̃𝑇)−1
, and 

therefore in each iteration the computational  complexity 
is  calculated as 𝑂({𝑀6, 𝑁3}) . The convergence pattern in 
the algorithm makes sure that the peaks of the spatial 
spectrum is kept intact even after multiple iteration once it 
reaches convergence (i.e., 〈𝑤𝑖2〉, 𝑖 = 1,2,⋅⋅⋅, 𝑁). The 
algorithm shows the same time cost that of BPDN-based 
methods spends. 
 
Multi Basis Vector 

The NNSBL based DOA estimation algorithm 
uses the Matrix  𝛷  acts as the overcomplete dictionary. 
This overcomplete matrix is generated using usually a 
Gaussian basis vector. This basis vector is advanced in the 
proposed algorithm to make it a Hybrid basis vector 
implementation.  

In NNSBL DOA estimation during the search a 
or to generate manifold matrix processing time to using 
multi basis vector using more than one basis vector using 
is a multi-basis vector 

Using multi-basis vector to finding manifold 
matrix its taking less time to achieve near to zero of the 
signal its help dual basis vector  using this is basis vector 
is Gaussian basis vector using to finding manifold matrix 𝛴𝑖=1∞ 𝜙𝑇(𝑥)𝜙(𝑥′) 𝜙(𝑥)its manifold matrix 

 
Why Mentioned Only About Basis Vector 

 
Mix basis vector 

In this thesis using a Mixed basis vector means 
using two different basis vector using one is a Gaussian 
and hyperbolic tangent basis vector to find manifold basis 
vector. 
 
Gaussian basis vector 

In order to give a proper introduction to Gaussian 
basis vectors, this week’s post is going to start out a little 
bit more abstract than usual. This level of abstraction isn’t 
strictly necessary to understand how Gaussian basis 
vectors work, but the abstract perspective can be 
extremely useful as a source of intuition when trying to 
understand probability distributions in general. and in 
order to get back to the computational world, we can 
recover our original five-dimensional basis vector by just 
forgetting all but the first five of the entries. In fact, the 
original five-dimensional space is contained in this infinite 
dimensional space.  

The Gaussian basis vector transforms the dot 
product in the infinite dimensional space into the Gaussian 
function of the distance between points in the data space: 
If two points in the data space are nearby then the angle 
between the vectors that represent them in the basis vector 
space will be small. 
 𝑘(𝑥, 𝑦) =𝑒𝑥𝑝 𝑒𝑥𝑝 (−𝛾||𝑥 − 𝑦||2) 

 
Hyperbolic tangent 

Basis vector hyperbolic tangent basis vectors owe 
their popularity to neural networks, which traditionally 
used the hyperbolic tangent activation function 

A provides a basis vector based on the hyperbolic 
tangent of a dot product with fixed linear scaling. 
Hyperbolic tangent basis vectors are popular as neural 
network activation functions. 
 𝑓(𝑥) = 𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ(𝛼(𝑥. 𝑥′) + 𝑐) 
 
Adjusting parameter 𝜶equilibrium 

constraint𝒄 intercept constant 

The over complete basis vector that is used in the 
NNSBL algorithm is changed with the Hybrid basis vector 
and the Mixed basis vector basis vector and the 
performance is checked and compared. 
 
RESULTS 

Matlab based simulation is developed for the 
proposed algorithm with the deviation Mixed Hybrid basis 
vector based Sparse learning based algorithm. The results 
obtained from the proposed algorithm is compared with 
the other advanced algorithms and the traditional 
algorithms. The proposed Mixed Basis vector based 
algorithm is compared with the MUSIC, SBL and NNSBL 
algorithms. The parameter on which the simulation is 
carried out is as given in Table-1. 
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Table-1. Parameters considered for proposed algorithm. 
 

Details Configuration 

Number of Antennas 6 

Antenna Array type Non-uniform 

Angle Range − 𝜋3  𝑡𝑜 𝜋3 

Min to Max degrees -40 to 40 

Carrier frequency 280Hz 

Propagation velocity 360 

Interval of angle 
Searching 

1 

Angles of source 
signals 

-54.8, -28.6 -9.2, 10.5 31.4, 
56.7 

 
The manifold matrix which defines the basis 

vectors of the DOA estimation algorithm needs to be 
generated for the number of source signals impinging on 
the antennas. 
 

 
 

Figure-1. Manifold matrix. 
 

The source matrix that is incident on the 4 
antennas that is arranged with different distance between 
them for receiving the signals is depicted in Figure-2. 
 

 
 

Figure-2. Source signals. 
 

The channel used in the DOA estimation for the 
proposed and the traditional algorithms is the AWGN 
channel. The AWGN noise added to each source signal is 
as given in Figure-3. 
 

 
 

Figure-3. AWGN noise signal. 
 

The AWGN noise is added with the source signal 
to obtain the complete incident signal that fall on the 
antennas. Incident signal is as depicted in Figure-4. 
 

 
 

Figure-4. Source signal with noise. 
 

In order to obtain the DOA estimation using the 
Sparse Bayesian learning algorithm manifold matrix is 
developed and combined with the source signal as 
discussed in the previous chapter. The manifold matrix 
with different angles and combination of basis vector is 
used to develop the manifold matrix in the 
implementation. The product of a manifold matrix with the 
incident source signal is as defined in Figure-5. 
 

 
 

Figure-5. Source signal and manifold product. 
 

Proposed implementation exploits the stochastic 
nature of the manifold matrix by introducing different 
basis vectors that can acquire better basis pursuit while 
DOA estimation using any sparse learning algorithms. 
While NNSBL is recent algorithm with better robustness it 
is adopted in the proposed implementation. Hybrid basis 
vector manifold matrix is developed by combining the 
gaussianbasis vectors multiple times to obtain the Hybrid 
basis vector manifold matrix. Similarly, different basis 
vectors are combined to obtain the Mixed Hybrid basis 
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vector manifold matrix to obtain the DOA estimation. The 
SNR, mean and variance of the noise added to the signal is 
as given in the Table-2. 
 

Table-2. SNR, mean and variance of noise added. 
 

S. No SNR mean variance 

1 -10 -100.0000 10.0000 

2 -8 -50.4766 6.3096 

3 -6 -23.8864 3.9811 

4 -4 -10.0475 2.5119 

5 -2 -3.1698 1.5849 

6 0 0 1.0000 

7 2 1.2619 0.6310 

8 4 1.5924 0.3981 

9 6 1.5071 0.2512 

10 8 1.2679 0.1585 

11 10 1.0000 0.1000 

12 12 0.7571 0.0631 

13 14 0.5574 0.0398 

14 16 0.4019 0.0251 

 
The proposed algorithm is compared with the 

traditional and the recent algorithm to validate the 
performance of the method. The DOA estimation of the 
same setup with six incident source signals on six antennas 
for MUSIC algorithm is as given in Figure-6. 
 

 
 

Figure-6. DOA estimation -MUSIC algorithm. 
 

Traditional MUSIC algorithm exhibits lesser 
sharpness in the estimated DOA beam forming.  NNSBL 
algorithm DOA estimation as shown in Figure-7 shows a 

sharper DOA estimation compared to the MUSIC 
algorithm. 
 

 
 

Figure-7. DOA estimation using NNSBL estimation. 
 

Mixed Hybrid basis vector DOA estimation to 
obtain a better and sharper DOA estimation compared to 
all the implementation considered. 
 

 
 

Figure-8. Mixed Multi basis vector NNSBL 
DOA estimation. 

 
Performance validation of DOA estimation 

algorithms are carried out using the SNR vs Root Mean 
Square Error (RMSE) graph. The SNR is varied between -
10 to 20db and for different possible db between this range 
the RMSE is estimated. SNR versus RMSE graph for 
NNSBL DOA estimation is as defined in Figure-9. 
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Figure-9. NNSBL SNR vs  RMSE graph. 
 

The SNR vs RMSE graph for Mixed Hybrid basis 
vector based NNSBL algorithm is as given in Figure-10. It 
can be observed from the SNR-RMSE graph of the Mixed 
Hybrid basis vector based SNR-RMSE graph that it is 
better all the other methods considered. 
 

 
 

Figure-10. Mixed hybrid basis vector SNR-RMSE graph. 
 

For validation of SNR-RMSE values obtained 
from the traditional MUSIC algorithm with the proposed 
algorithm.  

Considering Different snapshot window from the 
signal the RMSE is found for a range is SNR. The results 
are obtained as follows. Figures 11 and 12 are the graphs 
that are drawn with different snapshots. 
 

 
 

Figure-11. RMSE versus Snapshot NNSBL. 
 

 
 

Figure-12. RMSE versus snapshot mixed hybrid basis 
vector NNSBL. 

 
Table-3. Execution time comparison for algorithm considered. 

 

Comparison between Multi-basis vector NNSBL and NNSBL 

S. No Algorithm type Compilation time 

01 NNSBL 0.448159 seconds 

02 Mix Hybrid basis vector 0.375230 seconds 

 



                                  VOL. 17, NO. 8, APRIL 2022                                                                                                                 ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2022 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               914 

The above table depicts that the execution time of 
the proposed algorithm is found to be improved thus the 
computational complexity is improved. The stochastic 
nature of the adaptive basis vectors has performed better. 
 
CONCLUSIONS 

MATLAB based implementation is carried out 
for the DOA estimation for non-uniform linear array setup 
and estimation accuracy is analyzed for the proposed 
work. Estimation accuracy is found from different 
waveforms generated from the results which involve 
graphs like Signal to Noise Ratio versus Mean Square 
Error. The results thus obtained are compared with the 
traditional methods to validate the performance of the 
results obtained from the proposed method. The overall 
performance of the MixedHybrid basis vector algorithm 
on DOA estimation is found to be satisfactory. 
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